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Focusing on NK cells and ADCC:
A promising immunotherapy
approach in targeted therapy
for HER2-positive breast cancer

Feifei Li and Sheng Liu*

Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
Human epidermal growth factor receptor 2 (HER2)-positive breast cancer has a

highmetastatic potential. Monoclonal antibodies (mAbs) that target HER2, such

as trastuzumab and pertuzumab, are the cornerstone of adjuvant therapy for

HER2-positive breast cancer. A growing body of preclinical and clinical

evidence points to the importance of innate immunity mediated by

antibody-dependent cellular cytotoxicity (ADCC) in the clinical effect of

mAbs on the resulting anti-tumor response. In this review, we provide an

overview of the role of natural killer (NK) cells and ADCC in targeted therapy of

HER2-positive breast cancer, including the biological functions of NK cells and

the role of NK cells and ADCC in anti-HER2 targeted drugs. We then discuss

regulatory mechanisms and recent strategies to leverage our knowledge of NK

cells and ADCC as an immunotherapy approach for HER2-positive

breast cancer.

KEYWORDS
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Introduction

Human epidermal growth factor receptor 2 (HER2)-positive breast cancer accounts

for 15%-20% of all types of breast cancer (1), and it is characterized by a high recurrence

rate and poor prognosis (2). The targeted drugs for HER2-positive breast cancer include

trastuzumab (3), pertuzumab (4), and trastuzumab emtansine (T-DM1) (5), which are

the standard first- and second-line drugs. In addition, highly promising targeted drugs,

such as magrolimab (6) and margetuximab (7), have significantly improved the survival

rates of HER2-positive breast cancer patients. These monoclonal antibodies (mAbs) bind

via the fragment crystalline (Fc) of immunoglobulin G1 (IgG1) to the Fcg receptor III
(FcgRIII) (CD16) on natural killer (NK) cells and elicit the release of cytotoxic factors, in

a process known as antibody-dependent cell-mediated cytotoxicity (ADCC).
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Immunotherapy has been established as a pillar of cancer

treatment. In phase-I trial, involving 31 patients with refractory

HER2-positive breast cancer, infusion with expanded activated

autologous NK cells enhanced trastuzumab-mediated ADCC

and produced a potent killing effect on breast cancer (8). The

ADCC effect is an important mechanism in mAbs of HER2-

positive breast cancer (9). ADCC has received accumulating

attention given its substantial contribution to the therapeutic

efficacy of mAbs. Understanding the role of ADCC in the

immune response to mAbs will allow us to rationally combine

these types of treatments in the context of HER2-positive breast

cancer. In this paper, we summarize the advances of NK cells,

ADCC effect, and corresponding research strategies in targeted

therapy for HER2-positive breast cancer.
NK cells biology

Origin and ontogeny

NK cells are innate lymphoid-like cells that trigger an

immune response to eliminate tumors through the secretion of

cytokines and lytic granules (10). The development and

maturation of NK cells constitute a stepwise process that can

be divided into five stages (11). In the first stage, progenitors

retain CD34 expression and acquire CD45RA and CD10; the

second stage is marked by the absence of CD10 expression and

the acquisition of CD117; the third stage is marked by the down-

regulation of CD34 expression and the acquisition of

lymphocyte function-associated antigen (LFA-1). The fourth

and fifth stages involve mature NK cells, which include

CD56bright CD16dim and CD56dim CD16bright subpopulations,

respectively (12).

Mature NK cells migrate to the circulation and periphery to

perform their functions. The CD56bright CD16dim subpopulation

mainly distributes in peripheral tissues and secretes chemokines

and cytokines (13). The CD56dim CD16bright subpopulation

exerts its cytotoxic activity by secreting perforin and granzyme

A/B (14). Except the circulating NK cells, tissue-resident NK

subpopulations are present in various organs (15). In the tumor

microenvironment (TME), tumor-associated fibroblasts and

tumor-induced immunosuppressive cells also regulate NK cells

and their anti-tumor activity (16).
Function

NK cells play a key role in defending against tumor initiation

and metastasis as the first line of immunity. NK cells are

considered the most promising tumor-killing effector cells

other than T cells because they are not limited by the major

histocompatibility complex (MHC) (17). NK cells have a broad

spectrum of tumor-killing effects, which include ADCC, release
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of perforin and granzyme A/B, factor-associated suicide (Fas)

and Fas ligand (FasL) interaction, and cytokine secretion (18).
FcgRs

FcgRs are expressed on NK cells, and they include FcgR I

(CD64), FcgR IIa (CD32A), FcgR IIb (CD32B), FcgR IIc

(CD32C), FcgR IIIa (CD16), and FcgR IIIb (CD16B). Low-

affinity FcgRs are important mediators of ADCC function, and

include two activating receptors, namely, FcgR IIIa and FcgR IIa,

and the sole inhibitory receptor FcgR IIb (19). The ADCC

activity of mAbs is largely dependent on the CD16 expressed

by NK cells (20).
NK cell-mediated ADCC in
targeted drugs of HER2-positive
breast cancer

Trastuzumab

Trastuzumab is a humanized IgG-type mAb that specifically

binds to the extracellular segment IV of the HER2 receptor (21),

it blocks the formation of homodimers between HER2 and other

HER family members (22). The immune system plays a key role

in the anti-tumor effect of trastuzumab, which occurs through

the binding of the HER2 receptor by the fragment antigen

binding (Fab) and Fc to the CD16 of NK cells (23).

In HER2-positive breast cancer mice, tumor growth was

almost completely inhibited by trastuzumab treatment (13/17);

however, the tumor-suppressive capability of trastuzumab was

significantly reduced in hormonal mice lacking FcgR III (1/15).

Mice lacking FcgR IIB exhibited more ADCC; by contrast,

trastuzumab failed to prevent tumor growth in mice lacking

FcgR IIIa. These results suggest the significant contribution of

FcgR IIIa-dependent mechanisms to the anti-tumor effects of

cytotoxic antibodies (24). Duong MN observed that adipocytes

promoted resistance to trastuzumab by secreting extracellular

matrix components that formed a physical barrier between the

tumor, antibodies, and immune cells. The physical barrier

inhibited the lysis of NK cells, which resulted in the reduced

sensitivity to trastuzumab-mediated ADCC in HER2-positive

breast cancer (25).

NK cells are the main immune cell type that exerts the effects

of ADCC (26). Arnould L (27) showed that patients with an

objective response to trastuzumab had increased leukocyte

infiltration and ADCC activity. Varchetta S (28) reported that

the ADCC effect of trastuzumab was positively correlated with

pathological remission rates in HER2-positive breast cancer

patients, which suggested that enhancing the ADCC effect can

optimize the efficacy of trastuzumab. Beano A conducted a

clinical observation of 26 patients with metastatic HER2-
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positive breast cancer treated with trastuzumab. After six

months of treatment, 17 patients were rated as responders and

9 as non-responders, in accordance with the response evaluation

criteria in solid tumors. The results revealed that NK cell and

ADCC activities were significantly higher in responders, and

non-responders showed a lower NK cell activity. In addition,

progression-free survival (PFS) significantly increased in

patients with high levels of NK cell activity (29).
Pertuzumab

Pertuzumab is a humanized IgG-type mAb that complements

trastuzumab by blocking the heterodimeric activation pattern of

HER2. Piccart M reported that the addition of pertuzumab to

standard adjuvant therapy prolonged invasive disease-free

survival of HER2-positive breast cancer patients with positive

axillary lymph nodes (30). In the latest Chinese Society of Clinical

Oncology guideline, the treatment of trastuzumab in combination

with pertuzumab was recommended as the first-line option in

targeted therapy. Both trastuzumab and pertuzumab exert anti-

HER2 effect by inhibiting HER2 signaling and inducing ADCC

activity (31, 32). Diessner J (33) discovered that tumor cell killing

via ADCC increased when the triple combination of trastuzumab,

pertuzumab, and NK cells was applied to HER2-positive breast

cancer cells compared with the extent of ADCC induced by a

single antibody. This study demonstrated the immunotherapeutic

benefit achieved by the combined application of trastuzumab

and pertuzumab.
T-DM1

T-DM1 is an antibody-drug conjugate (ADC) with two core

functional components: trastuzumab and a potent chemotherapeutic

drug. Similar to a nuclear missile, ADC drugs combine the two

components through a special linker to achieve a precise tumor-

killing effect. T-DM1 has been approved by the United States Food

and Drug Administration (FDA) for the treatment of HER2-positive

metastatic breast cancer (34). HER2-DC1 comprises intratumoral

multiepitope MHC class II HER2 peptide-pulsed type I polarized

dendritic cells. Ramamoorthi G observed that HER2-DC1 combined

with T-DM1 increased the levels of tumor-infiltrating CD4 and CD8

T, B, natural killer T, and NK cells in HER2 breast cancer-bearing

mice and promoted complete tumor regression (35). ADCC effects of

T-DM1 have been reported in other HER2-overexpressing cancers,

such as lung and ovarian cancers. The activity of T-DM1 is superior

to those of trastuzumab, pertuzumab, and their combination in high

HER2/neu-expressing epithelial ovarian cancer (36). In HER2-

overexpressing lung cancer cell lines, T-DM1 intervention

overcame gefitinib resistance, and its ADCC effect was similar to

that of trastuzumab in the presence of interleukin (IL)-2 activated NK

cells (37).
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Margetuximab

As an Fc-modified chimeric mAb, margetuximab was

designed to increase binding to CD16 and decrease binding to

inhibitory FcgRIIB (CD32B), which resulted in the increased

activation of ADCC and NK cells (38). In 2020, margetuximab

has been approved in combination with chemotherapy for the

treatment of patients with HER2-positive metastatic breast

cancer (39). Rugo HS reported that margetuximab plus

chemotherapy for HER2-positive advanced breast cancer had

an acceptable safety and statistical improvement in PFS

compared with trastuzumab plus chemotherapy (40). In

addition, the safety and synergistic effects of margetuximab

plus pembrolizumab were demonstrated in a single-arm IB-2

trial involving HER2-positive gastric cancer (41). These studies

demonstrated that Fc-optimized anti-HER2 agents have

desirable clinical futures.
Small-molecule tyrosine kinase inhibitors

Small-molecule TKIs can inhibit kinase activity and

downstream signaling by targeting the intracellular structural

domain of HER2. Studies revealed that TKIs can modulate

mAb-mediated ADCC responses. Lapatinib significantly

increased membrane HER2 levels, and the combination with

trastuzumab provided the largest ADCC response in HER2-low

breast cancer models compared with afatinib and neratinib (42).

Okita R (43) stated that malignant mesothelioma cells (MPM)

pretreated with lapatinib bound more trastuzumab than untreated

cells, which suggests that combinations of lapatinib and

trastuzumab may be a promising strategy for MPM treatment.

Cavazzoni A (44) explored erlotinib in combination with

cetuximab or trastuzumab, and a significant effect on ADCC

and inhibition of tumor growth were observed in the treatment of

non-small-cell lung cancer (NSCLC).
Regulatory mechanisms and
research strategies of NK cells
and ADCC

As previously mentioned, NK cell-mediated ADCC plays an

important role in anti-HER2 therapy (45). However, the

cytotoxicity of NK cells decreases with the altered activation

receptor phenotype in breast cancer patients. Compared with

healthy donors, NK cells express lower levels of NK cell p30-

related protein (NKp30), NKp46, and NK cell group 2 member

D (NKG2D) in breast cancer patients (46). Therefore, the

enhancement of NK cells and their ADCC effect is an effective

way to improve the efficacy and sensitivity of trastuzumab (47).

The regulation of the effect on NK cells and ADCC is

maintained by a dynamic balance between activating and
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inhibiting receptors (48). Figure 1 summarizes the regulatory

mechanisms of NK cells and ADCC. The activation of NK cells is

tightly regulated by the balance of signals from inhibitory and

activating receptors, which is controlled by multiple lineage-

encoded receptors that enable these cells to sense and respond

rapidly to changes in their environment (49, 50). N-

Glycosylation of FcgRIII also affects receptor interactions with

IgG, which has led to studies of antibody engineering with

greatly improved ADCC activities (51). Recombinant

cytokines, agonists that promote activation receptors, and

antibodies that block inhibitory receptors can be used to

enhance ADCC (52, 53). Based on the regulatory mechanism

of NK cells and ADCC, we summarized relevant research

strategies, including targeted activation and inhibitory

receptors, cytokine therapy, antibody engineering, and

chimeric antigen receptor (CAR)-NK cells.
Targeted activation receptors

NKG2D is a C-type lectin surface receptor, and binding to its

ligand mediates the immune response of NK cells to tumors

(54). The specific binding of antibodies to NKG2D and HER2

increases the cytotoxicity of peripheral blood mononuclear cells,

thus significantly enhancing the killing activity of CAR-NK cells

against the HER2-positive primary trastuzumab-resistant cell
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line JIMT-1 (55). Natural cytotoxicity receptors (NCRs) are

prominent among activating NK cell receptors, and they are

notably the only NK-activating receptors that can recognize

pathogen-derived ligands. NCRs include the most specific NK

cell markers, namely, NKp46 (NCR1, NCTR1, and CD335),

NKp44 (NCR2, NCTR2, and CD336), and NKp30 (NCR3,

NCTR3, and CD337), all three being members of the

immunoglobulin superfamily (56).

NKp80 is a homodimeric C-type lectin-like receptor linked

to the NKp80 locus gene, which is preferentially expressed by

myeloid cells, thus promoting NK and myeloid intercellular

crosstalk (57). Peipp M fused the extracellular structural

domains of the ligands of NKp30 and NKp80 with single-

chain fragment variables (scFv) targeting HER2 (named B7-

H6:HER2-scFv and AICL:HER2-scFv, respectively). The results

showed that antibody-derived proteins involved in NKp30 or

NKp80 triggered NK cells to kill HER2-positive breast cancer.

Moreover, the cytotoxicity of NK cells was synergistically

enhanced when combined with the HER2-specific immune

ligands of NKG2D (58). In addition, B7-H6:HER2-scFv and

AICL:HER2-scFv synergistically enhanced the ADCC of the

therapeutic antibodies trastuzumab and cetuximab,

respectively. Kellner C constructed bispecific immunoligand

UL16 binding protein 2 (ULBP2):HER2-scFvm, which can

promote NK cell cytotoxicity against tumors and enhance

ADCC in combination with cetuximab (59). The anti-CD137
FIGURE 1

Regulatory mechanisms of NK cells and ADCC. The activating receptors of NK cells are NKG2D, CD94/NKG2C, NKp46, NKp44, NKp30,
recombinant NK cell receptor 2B4 (NKR2B4, 2B4), NKp80, NTB-A, and CD59, and the inhibiting receptors are KIR, LIRs, and TIGIT. CISH
normally inhibits IL-15/IL15R signaling in NK cells. The main cytokines secreted by NK cells are CX3CL1, chemokine (C motif) ligand 1 (XCL1),
IL10, IFN-g, TNF-a, and GM-CSF. HLA-G and HLA-E expressed by tumor cells bind to inhibitory receptors KIR2DL4 and CD94/NKG2A of NK
cells respectively to exert immunosuppressive effects; CD137 counteracts the immunosuppression caused by the overexpression of TGF-b by
tumor cells. The figure was drawn by Figdraw.
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agonist urelumab can overcome transforming growth factor

(TGF)-b-mediated inhibition of human NK-cell proliferation

and anti-tumor function and preserve the expressions of

NKG2D, granzyme B, and interferon-gamma (IFN-g) in

HER2-positive primary breast cancer (60). Combined

treatment with NKG2D agonist, 4-1BB antibody, and IL-27

improved activator receptor expression in NK cells and

promoted the secretion of IFN-g and tumor necrosis factor

(TNF-a) while reducing the expression of the inhibitory

receptor CD158a and the secretion of IL-10 in NK cells (61).
Targeted inhibitory receptors

NK cells detect the absence of self-molecules on potential target

cells through their inhibitory receptors, which is known as a

recognition strategy of “loss of self.” The inhibitory receptors

form three families, namely, killer cell immunoglobulin-like

receptors (KIRs), leukocyte immunoglobulin-like receptors (LIRs),

and NKG2A. KIRs and LIRs are members of the immunoglobulin

superfamily and type I transmembrane molecules that recognize

human leukocyte antigen (HLA) A, B, and C (HLA-I class a). LIRs

mainly recognize non-classical HLA-G (class I b) molecules.

NKG2A is a member of the NKG2 family, which belongs to the

C-type lectin family of receptors and recognizes non-classical HLA-

E class I molecules. KIRs/NKG2A plays a major role in mediating

inhibitory signaling by binding to HLA (58).

Experimental and clinical studies on targeting inhibitory

receptors are gradually being conducted. HLA-G can desensitize

breast cancer cells to trastuzumab by binding to KIR2DL4, an

atypical member of the KIR family, which responds to HLA-G

via endosomal signaling (62). In HER2-positive breast cancer,

blocking HLA-G/KIR2DL4 signaling improved trastuzumab

resistance (63).

Monalizumab, a humanized anti-NKG2A mAb, is currently

undergoing clinical trials in a variety of solid tumors (64). Frazao A

showed that NK cells from tumor-draining lymph nodes expressed

high NKG2A and checkpoint programmed cell death protein

1 (PD-1), which supported their potential as targets for

immunotherapy using anti-NKG2A and/or anti-PD-1 in breast

cancer (65). Phase II clinical trials suggest that monalizumab can

enhance NK cell-mediated ADCC and improve objective remission

rates in squamous cell carcinoma of the head and neck (SCCHN)

(66). However, clinical trials on NKG2A mAbs for the treatment of

breast cancer have not been reported. The marketing of NKG2A

mAbs needs the support of larger clinical trials.

KIR2D antagonists (lirilumab) promote NK cell and

granzyme B expression in a nuclear factor-kB-dependent
manner in autologous cervical cancer cells (67). Lirilumab

combined with rituximab can enhance NK cell-mediated

rituximab-dependent cytotoxicity in KIR transgenic and

homozygous mouse lymphoma models (68). In a phase II

study of locally recurrent SCCHN, a 43% response rate to
Frontiers in Immunology 05
anti-PD-1, nabumab, and lirilumab pathology was observed

with a favorable DFS and excellent 2-year overall survival

compared with previously treated high-risk patients (69).

Clinical trial results for KIR antagonists were mixed, with a

KIR2D-specific mAb IPH2101 terminated early due to the lack

of clinical efficacy in a single-arm phase II clinical trial for

multiple myeloma (70). Carlsten M (71) analyzed the possible

reasons for the failure of this clinical trial given that IPH2101

marginally augmented the antimyeloma cytotoxicity of

remaining KIR2Ddull patient NK cells; the overall response was

diminished by significant contraction and reduced function of

KIR2D-expressing NK cells. At present, no clinical study has

reported lirilumab for the treatment of breast cancer, and its

therapeutic effects deserve further exploration.
Cytokines therapy

The activity of NK cells is also influenced by various pro-

inflammatory cytokines, including IL-15, IL-2, IFN-g, TNF,

granulocyte-macrophage colony-stimulating factor (GM-CSF),

TGF-b1, and C-X3-C motif chemokine ligand 1 (CX3CL1) (72).

Table 1 summarizes the effects of cytokines on NK cells and

ADCC effects.

The current research on cytokines therapy is focused on IL2

and IL15. Xiong Q constructed a membrane-bound IL-2 (mbIL-

2) consisting of human IL-2 and human IL-2Ra joined by a

classic linker. The novel mbIL-2 improved NK-92 cell

persistence and enhanced its anti-tumor activity (86). Fujii R

observed that the IL-15SA/IL-15RA complex can act as an

inhibitor to block the inhibitory effects of TGF-b on the NK

cell activation markers CD226, NKG2D, and NKp30 in breast,

lung, and prostate cancers (87). IL-12 is an essential cytokine

involved in the generation of memory-like NK cells, and IL-12

alone can sustain human primary NK cell survival without

providing IL-2 or IL-15 but is insufficient to promote human

NK cell proliferation (88). NK cells in breast tumors express high

levels of NKG2A and low levels of NKp46, perforin, and

granzyme B. One week of treatment with IL-12 and anti-TGF-

b resulted in the increased maturation of tumor-associated NK

cells (84). The combination of STING agonists with IL2/anti-

PD-1 synergized to stimulate sustained granzyme and cytokine

expression by lung-infiltrating NK cells in two spontaneously

metastasizing orthotopic breast tumor models (89).

Cytokine-inducible SH2-containing protein (CIS; encoded by

the gene CISH) is the first member identified in the suppressors of

the cytokine signaling protein family. CISH is a key negative

regulator of IL-15 signaling in NK cells, and it plays a key role in

the regulation of human NK cell metabolic activity and thereby

modulates anti-tumor activity (85). CISH deletion favors the

accumulation of NK cells in primary breast cancer, thus

optimizing NK cell-killing properties, and decreases T cell

immune receptors with immunoglobulin and ITIM domain
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(TIGIT) immune checkpoint receptor expression (90). The

activation of STAT3 helps tumor cells to evade NK cell-mediated

immune surveillance, which is associated with high expression of

tumor-promoting cytokines and growth factors, such as IL-10,

TGF-b, and vascular endothelial growth factor-A (91).

Novel cytokine superagonists and lipid nanoparticles (LNPs)

were designed to overcome the shortages of conventional cytokines,

such as poor half-life, circulation instability, and dose-limiting

toxicity. Jiangyin Lv combined IgG4 Fc segments, soluble IL-

15Ra, and IL-15 (N72D) into a homodimeric IL-15 superagonist

(F4RLI). F4RLI significantly stimulated the proliferation of human

CD3+CD8+ T cells and NK cells in vitro (92). Jin-Qing Liu

generated novel LNPs encapsulated with mRNA encoding

cytokines (including IL-12, IL-27, and GM-CSF) that induced

potent infiltration of immune effector cells, including IFN-g and

TNF-a producing NK and CD8+T cells into tumors, offering a new

strategy for oncology immunotherapy (93).

In HER2-positive gastric cancer, IL2 treatment restored

trastuzumab-mediated resistance to ADCC while restoring the

expression of the CD16 zeta molecule, which may have

implications for the treatment of HER2-positive breast cancer

(94). Blockade with a specific KIR2DL-1,2/3 mAb reversed NK-

cell inhibition and significantly enhanced degranulation and IFN-g
production of IL-2-preactivated NK-cells in the presence of primary

glioblastoma (GBM) cells (95). In pancreatic cancer, the stimulator

of interferon gene (STING)-IL35 axis in B cells reduced the

proliferation of NK cells and attenuated the NK-driven anti-
Frontiers in Immunology 06
tumor response (96). The team of Landolina N (83) transiently

silenced IL-1R8 by electroporated siRNA, and significantly higher

concentrations of IFN-g, TNFa, GM-CSF, CCL3, and CXCL8

release were observed in NK cells with silenced IL-1R8.

Disruption of the IL6R/STAT3 axis and TIGIT in prostate cancer

cells can increase the cytotoxicity of NK-92 cells by increasing FasL

and granzyme A/B (97). In a xenograft mouse model of B-cell

lymphoma, the addition of ALT-803 to anti-CD20 mAb treatment

in conjunction with NK cells reduced the tumor burden and

improved survival (98). Siebert N linked fibroblast activating

protein alpha (FAP) and a mutant IL-2 variant (IL-2v) to form a

FAP-IL-2v conjugate. They observed that FAP-IL-2v reduced

tumor growth of high-risk neuroblastoma and improved survival,

with increased numbers of NK and cytotoxic T cells (99). We have

compiled research strategies on potential targets and cytokines that

are currently being studied or in clinical trials (Table 2).
Antibody engineering and
glycoengineering

FcgR IIIa (CD16) binds to the Fc segment of IgG1 antibodies

by interacting with the hinge region and methylene structural

domain. This interaction is significantly influenced by the glycan

of Asn 297 at the N-glycosylation site in each methylene

structural domain. Therefore, studies have been conducted to

enhance the interaction of the Fc segment with FcgR IIIa to
TABLE 1 Effect of cytokines on NK cells and ADCC effects.

Cytokine Function Main mechanism Ref.

IL2 Activation IL2 ex vivo treatment of NK cells can restore the impairment of ADCC, concomitant to the normalization of the expression of
CD16 zeta molecules. Serum cytokine profiling demonstrated an increase in IFN-g induced protein 10. Gene expression
analysis revealed significant changes in a highly restricted set of genes, including forkhead box P3, IL-2 receptor antagonist,
and CISH.

(73,
74)

IL-15 Activation IL15 is a novel cytokine that activates NK cells through components of the IL-2 receptor. IL-15 was associated with increased
expression of NK cell activation markers NKp46 and NKG2D and increased NK cell isolated ADCC activity, whereas
inhibitory receptors PD-1 and Tim3 were reduced.

(75,
76)

IL-2/IL-15 Activation IL-2 combined with IL-15 enhanced the expression of NKG2D receptor to inhibit Wilms’ tumor via the mitogen-activated
protein kinase (MAPK) signaling pathway.

(77)

CX3CL1 Activation CX3CL1 overexpression recruited NK cells and increased NK cell-mediated cytotoxicity in HER-2 positive breast cancer. (78)

IL-23 Activation IL-23-induced NK cell activation and stimulated IFN-g production by CD56bright NK cells, which involved MEK1/MEK2, c-
Jun N-terminal kinase, and phosphatidylinositol-3 kinase pathways.

(79)

IL-21 Activation IL-21-treated NK cells secreted high levels of IFN-g, which enhanced NK cell activation through extracellular signal-regulated
kinase and signal transducer and activator of transcription (STAT) 1 signaling pathway, thus inhibiting tumor growth.

(80)

TGF-b Inhibition TGF-b inhibited the production of IFN-g in human NK cells and ADCC, and these effects were mediated through SMAD3. (81,
82)

IL-1R8 Inhibition The high concentrations of IFN-g, TNF-a, GM-CSF, CCL3, and CXCL8 release were observed in NK cells with IL-1R8
transient silencing by electroporated siRNA.

(83)

IL-12 Activation IL-12 is an essential cytokine involved in the generation of memory-like NK cells, and IL-12 combined with anti-TGF-b can
increase the maturation of tumor-associated NK cells.

(84)

CISH Inhibition CISH is a key negative regulator of IL-15 signaling in NK cells, and it inhibits anti-tumor activity of human NK cell. (85)
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TABLE 2 Strategies for potential targets and cytokines to enhance NK cells and ADCC.

Target Drug/
ClinicalExperimental

stage

Disease Main mechanism Ref.

Potential targets

NKp30/
NKp80

B7-H6: HER2-scFv and
AICL: HER2-scFv

Breast cancer Enhances ADCC by the therapeutic antibodies trastuzumab and
cetuximab synergistically

(58)

NKG2D/4-
1BB/IL-27

NKG2D agonist Prostate cancer Improves activator receptor expression in NK cells and promotes
the secretion of IFN-g and TNF-a

(61)

ULBP2 ULBP2:HER2-scFv Breast cancer Promotes NK cell cytotoxicity against tumors and enhances ADCC
in combination with cetuximab

(59)

CD137 Urelumab Breast cancer Overcomes TGF-b-mediated inhibition of human NK-cell
proliferation and preserves the expressions of NKG2D, Granzyme
B, and IFN-g

(60)

NKG2A Monalizumab/UPSTREAM
trial

Recurrent/metastatic SCCHN Stable disease was observed in 6 patients (23%) with a median
duration of 3.8 months (95% confidence interval: 2.7-NE).

(100)

NKG2A Monalizumab/Phase II
Study

Unresectable, Stage III NSCLC Patients in the durvalumab plus monalizumab group had high
objective remission rates and long PFS.

(101)

NKG2A Monalizumab/Dose-
Ranging and Cohort-
Expansion Study

Recurrent gynecological
malignancies

Intravenous monalizumab (10 mg/kg) treatment every 2 weeks was
well tolerated in pretreated gynecological cancer patients. Short-
term disease stabilization was observed.

(102)

NKG2A Monalizumab+cetuximab/
Phase II Study

SCCHN The objective remission rate was 31%. The most common adverse
events were fatigue (17%), fever (13%), and headache (10%).

(66)

KIR2D Lirilumab/Phase II Study Locally recurrent SCCHN Adjuvant ivolumab and lirilumab were well tolerated, with a 43%
pathologic response rate.

(69)

KIR2D IPH2101/Phase II Study Multiple myeloma The study was terminated due to the lack of patients meeting the
defined primary objective (50% decline in M-protein).

(70)

Cytokines

IL2 FAP-IL-2v conjugates High-risk neuroblastoma Reduced tumor growth and improved survival, with increased
numbers of NK and cytotoxic T cells

(99)

IL2 Membrane-bound IL-2 Leukemia Improved persistence of NK-92 cells and enhanced their anti-
tumor activity

(86)

STING/IL2/
PD-1

STING agonist Breast cancer and lung metastasis Synergized to stimulate sustained granzyme and cytokine
expression by lung-infiltrating NK cells

(89)

IL-15 IL-15SA/IL-15RA complex Breast, prostate, and lung cancers Blocked the inhibitory effects of TGF-b1 on NK cell activation
markers CD226, NKG2D, NKp30 and granzyme B and perforin

(87)

IL15 N-803 Pediatric recurrent and/or
metastatic osteosarcoma,
neuroblastoma, and GBM
multiforme

Increased the proliferative capacity of NK cells and was associated
with increased phosphorylation of STAT3, STAT5, AKT, and p38
MAPK

(103)

IL-12/TGF-b / Breast cancer Increased maturation of tumor-associated NK cells (84)

CISH / Breast cancer CISH deletion also favored NCR signaling and antitumor
functions.

(90)

IL-12, IL-27
and GM-CSF

LNPs encapsulated Melanoma Induced potent infiltration of immune effector cells and increased
secretion of IFN-g and TNF-a

(93)

IgG4 Fc
fragment and
IL-15/IL-15Ra

F4RLI (homodimer IL-15
super agonist)

Colorectal cancer Stimulated the proliferation of human CD3+CD8+ T cells NK cells
in vitro, with improved half-life and strong anti-tumor activity

(92)

(Continued)
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improve the ADCC effec t by techniques , such as

glycoengineering of Fc N-glycans and design of Fc structural

domains (106). Figure 2 shows the ADCC process.

Hsiao H-C observed that hinge cleavage occurred when

pertuzumab was incubated with cancer cells, which led to a

substantial loss of ADCC (107). They constructed the protease-

resistant version of the anti-hinged mAb to restore the ADCC.

Kinder M demonstrated that discrete mutations in the CH2

region can compensate for the loss of function associated with

mutation of the lower hinge of IgG1, thus initiating the

complement cascade and facilitating potent ADCC (108).

Oberg HH designed a trimeric structure of bsAb, that is,

[(HER2)xCD16], which can redirect CD16-expressing gd T

cells in addition to NK cells to lyse HER2-expressing tumor

cells. Their team discovered that trimeric bsAb with trastuzumab

enhanced gd T cell- and NK cell-mediated expression by an

increased degranulation (109). Lin X designed a nano-
Frontiers in Immunology 08
immunomodulator AuNSP@aCD16, which exhibited high gene

transfection efficiency and stable near infrared-II photothermal

capacity (110). AuNSP enables aCD16 gene transfection by

modifying the tumor surface with CD16 antibodies, thus forming

a tumor surface that allows NK cells to exert their recognition

ability in the TME. This function increases the release of cytolytic

particles and pro-inflammatory cytokines and ultimately

enhances the killing function of NK cells against solid tumors.

Hong S observed that tumor cells upregulate sialylated

glycans, which counteract NK-induced killing via the Siglec–

sialylated glycan interaction. In addition, the high-affinity ligand

of Siglec-7 leads to multifaceted consequences in the modulation

of NK activation (111). The team of Hong S also reported a

chemoenzymatic glycocalyx editing strategy to introduce high-

affinity and specific CD22 ligands onto NK-92MI and cytokine-

induced NK cells to achieve tumor-specific CD22 targeting

(112). Madsen CB created glycoengineered breast cancer cells
TABLE 2 Continued

Target Drug/
ClinicalExperimental

stage

Disease Main mechanism Ref.

IL6R/STAT-3 IL6R/STAT-3 inhibitors Prostate cancer Decreased STAT-3 phosphorylation level and increased NKP46
expression, thus increasing cytotoxicity of NK-92 cells by
increasing FasL, granzyme A, and granzyme B

(97)

VIII Factors VIII-FcFVIII complex Hemophilia A Efficient active NK cells in a CD16-dependent manner, leading to
IFN-g secretion and release of cytolytic perforin and granzyme B

(104)

TNF Recombinant Mouse IgG2a
Antibody TA99

Melanoma Promoted infiltration of NK cells and macrophages into B16
melanoma

(105)
frontier
FIGURE 2

ADCC process including NK cells, mAb, and tumor cells. The mAbs include the Fab and Fc segments. The Fab segment is an endometrioid by
heavy-chain constant region (CH1) and heavy chain variable region (VH), in which the amino acid sequence is constant. The amino acid
sequences of light-chain constant region (CL) and heavy-chain variable region (VL) sites are variable. Complementary determining regions
(CDRs) of the Fab segment bind on tumor cells by different amino acid sequences, such as trastuzumab binding to HER2 extracellular region IV.
The Fc segment includes CH2 and CH3. NK cells bind to the Fc segment of mAb via CD16. CD16 interacts with CH2 of mAb in a 1:1 manner,
where the N-glycan chain at the N297 position on CH2 also plays a key role in this interaction.
sin.org

https://doi.org/10.3389/fimmu.2022.1083462
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li and Liu 10.3389/fimmu.2022.1083462
via zinc finger nuclease knockout (KO) of the core 1 enzyme

chaperone (COSMC) for glycoengineering, and the ADCC effect

mediated to NK cells increased in the COSMC KO breast cancer

cell line (113).
CAR-NK

CAR-T therapy has been approved by the FDA for the

treatment of B-cell lymphoma and acute lymphoblastic leukemia.

Compared with CAR-T therapy, CAR-NK therapy possesses

unique advantages, such as the absence of autoimmune response

and its independent killing capability (114). CAR-NK therapy has

been carried out in a number of solid tumors in hematological

diseases (115), breast cancer (116), and ovarian cancer (117).

Retargeting of NK cells with CARs or mAbs is a promising

strategy to overcome tumor resistance. Eitler J reported that

retargeting by CAR and/or the FcR/mAb (ADCC) axis provides

the necessary signals for granule polarization and overcoming

the resistance of HER2-positive breast tumors (118). Portillo AL

demonstrated that HER2 CAR expression in NK cells enhanced

the anti-tumor functions of patients with HER2-positive breast

cancer, regardless of MHC class I expression (119). CAR-NK

cells secreted IL-15 to maintain their anti-relapsed/refractory

acute myeloid leukemia (AML) function and exhibited a high

anti-AML activity. However, this benefit was transient due to the

limited persistence of CAR-NK cells (120). Low-dose IL-2 was

included in several clinical trials as a single treatment or as

adjuvant therapy in combination with peripatetic NK and T cell

transfer therapy (121). These studies showed that CAR-NK cells

may be a highly potent and safe source of immunotherapy in the

context of HER2-positive breast cancer.
ADCC effective stage

The ADCC effective stage is mainly accomplished by the

polarized release of cytotoxic mediators, which consists of key

steps, such as reorganization and accumulation of filamentous

actin on the immunological synapse (IS), receptor aggregation,

polarization of the microtubule organizing center (MTOC) to

the IS with lysis granules, and secretion of toxic granule contents

at the IS (122, 123).

The F-actin network increases in specific regions of the IS, as

observed by three-dimensional-structured illumination microscopy

and two-color super-resolution imaging. When NK cells are

activated, the F-actin network opens with a diameter of

approximately 250–500 nm (124) to guide lysis granules along

microtubules toward the MTOC; this step allows lysis granules to

rest precisely around the area of MTOC polarization (125). Particle

polarization and degranulation involve multiple intermediate steps,

which culminate in the directed secretion of lysed particle contents

at the IS. Trastuzumab-refractory patients had high serum levels of
Frontiers in Immunology 09
inflammatory protein chitinase 3-like 1 (CHI3L1), which prevented

the correct polarization of the microtubule-organizing center along

with lytic granules to the IS by hindering the receptor of advanced

glycation end-products. CHI3L1 blockade was synergized with

ADCC to cure mice with HER2-positive xenografts (9).
Conclusion

As one of the main mechanisms of action of anti-HER2-

targeted drugs, targeting NK cells and their ADCC action is an

effective way to improve anti-HER2 efficacy. The development of

novel drugs is often tested first in hematologic or highly aggressive

metastatic tumors, whereas the research on HER2-positive breast

cancer is relatively late. mAb drugs, which were developed to

activate and inhibit receptors on NK cells, are still mostly in

preclinical studies. In conclusion, in the TME, enhancement of

NK cell activity and ADCC is a tumor immunotherapy strategy to

improve the clinical efficacy of anti-HER2mAbs. However, for the

complex regulatory mechanism of NK cells and the multi-level

ADCC effector process, considerable basic and clinical research

needs the joint efforts of biologists, antibody engineering

scientists, drug researchers, and clinical workers.
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