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Rift Valley fever (RVF) is a zoonotic disease caused by Rift Valley fever virus

(RVFV), an emerging arbovirus within the Phenuiviridae family of Bunyavirales

that has potential to cause severe diseases in both humans and livestock.

It increases the incidence of abortion or foetal malformation in ruminants and

leads to clinical manifestations like encephalitis or haemorrhagic fever in

humans. Upon virus invasion, the innate immune system from the cell or the

organism is activated to produce interferon (IFN) and prevent virus

proliferation. Meanwhile, RVFV initiates countermeasures to limit antiviral

responses at transcriptional and protein levels. RVFV nonstructural proteins

(NSs) are the key virulent factors that not only perform immune evasion but also

impact the cell replication cycle and has cytopathic effects. In this review, we

summarize the innate immunity host cells employ depending on IFN signal

transduction pathways, as well as the immune evasion mechanisms developed

by RVFV primarily with the inhibitory activity of NSs protein. Clarifying the arms

race between host innate immunity and RVFV immune evasion provides new

avenues for drug target screening and offers possible solutions to current and

future epidemics.
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1 Introduction

Rift Valley fever virus (RVFV), belonging to the Phlebovirus genus of the Phenuiviridae

family from Bunyavirales (1), is an arthropod-borne virus that affects people and livestock. It

was first discovered in 1930 when a fatal infectious disease broke out among sheep in the Rift

Valley, Kenya (2). Since the 1950s, the RVF pandemic had regularly occurred throughout

Africa (3). The infected area expanded to Yemen and Saudi Arabia in the Arabian Peninsula

after 2000 (4, 5). Transmitted by Aedes and Culex mosquitoes, RVFV spreads in larger

geographic ranges due to climate change, making its propagation a possible hazard to non-
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epidemic countries (6, 7). Instead of mosquito bites, most human

cases are caused by contact with infected animal fluids or tissues (8).

RVFV causes human diseases including mild flu-like symptoms,

hepatitis, retinitis, lethal encephalitis, and hemorrhagic fever, and

the overall mortality rate is 0.5 to 1% (9). Pregnant livestock,

especially sheep, are highly susceptible to RVFV infection. It

generates abortion storms in which almost all pregnant infected

animals have miscarriages (10). It also incurs a high mortality rate

among newborn lambs (11). Therefore, RVFV infection has severe

economic and human health costs. RVFV is now classified as a

Category A disease by the National Institute of Allergy and

Infectious Diseases (NIAID) and the National Institutes of Health

(NIH) because of its potential for purposeful aerosol transmission

and the absence of FDA-approved antiviral therapies or licensed

vaccinations for humans. RVFV is also a select agent by the Centers

for Disease Control and Prevention (CDC) and the U.S.

Department of Agriculture (USDA).

RVFV genome consists of tripartite negative-sense single-

stranded RNA segments. The RNA-dependent RNA polymerase

is encoded by the large (L) segment (Figure 1). The medium (M)

segment encodes the nonstructural protein NSm and envelope

glycoproteins Gn and Gc. NSm-1 and NSm-2 are expressed from

alternative start codons (Figure 1) (12). The nucleocapsid

protein (N) and the nonstructural proteins (NSs) are both

encoded by the small (S) segment (Figure 1). These two

proteins are expressed in an ambisense manner, which means

the N gene is encoded in the negative-sense genome, and NSs

gene is encoded in the positive-sense genome (13, 14).

When host cells detect an RNA virus, a series of complicated

innate immune responses are initiated to eliminate the virus, alert

cells nearby, and assemble more specialized immune cells to the site

of infection. Retinoic acid-inducible gene I (RIG-I), melanoma

differentiation factor 5 (MDA5), and Toll-like-receptors (TLRs)

are cytosol pattern recognition receptors (PRRs) capable of
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detecting RNA viruses (15). RIG-I can be recruited to the

mitochondria where it associates with the mitochondrial antiviral

signaling protein (MAVS) (16). This activated RIG-I/MAVS

complex serves as the intersection of multiple innate immune

pathways stimulated immediately, particularly the interferon

(IFN) and nuclear factor kB (NF-kB) signals (17). However,

RNA viruses have advanced procedures to avoid, exploit, or

dysregulate these innate immune pathways, which can be seen in

chikungunya virus (CHIKV) infection (18). The E1, E2, and nsP2

proteins of CHIKV potently inhibit the activity of MDA5/RIG-I,

and nsP2 also suppresses the downstream phosphorylation of signal

transducer and activator of transcription 1 (STAT1), blocking the

IFN-induced JAK-STAT pathway (18). In this review, we

summarize host innate immune responses to RVFV and how

they are dysregulated by viral interference, which will offer

possible insights into the vaccine and antiviral developments

against RVFV.
2 Innate antiviral host defense:
Interferon response as the
crucial step

Interferon is a potent cytokine and a key component of the

first line of defense against viral infection (19), which has

immunological effects mainly through the direct induction of

anti-pathogen molecules that inhibit viral replication (20). There

are three types of IFNs involved in antiviral immunity, including

IFN-I, IFN-II, and IFN-III. IFN-I and IFN-III share important

antiviral properties and are expressed by cells with immunologic

and tissue specificity (20, 21).

RNA-triggered intrinsic immunity of RVFV is initiated

predominantly by recognition of RIG-I (22). RIG-I consists of a

C-terminal domain, a DECH helicase, and N-terminal caspase

activation and recruitment domains (CARDs). When cytoplasmic

RIG-I is bound with viral RNA, its recruitment to MAVS is

activated through the liberated CARDs (23). RIG-I/MAVS

complex then catalyzes the combination of TANK-binding kinase

1(TBK1) and inhibitor of kB kinase ϵ (IKKϵ) to phosphorylate and
dimerize interferon regulatory factor 3 (IRF3). The phosphorylated

dimeric IRF3 could be transported into the nucleus to directly

promote IFN-I transcription (24). IFN-I aims primarily to activate

the JAK/STAT immune signals in autocrine and paracrine

manners, which results in IFN-stimulated genes (ISGs)

expression, eliciting subsequent adaptive immune responses (25).
2.1 MAVS is crucial for mounting
IFN-I response

RIG-I is critical for IFN generation in a TLR-independent

way by primary immune cells like macrophages and dendritic
FIGURE 1

Genomic structure of Rift Valley fever virus. The tripartite negative-
sense single-stranded RNA segments are named according to
sizes: small (S), medium (M) and large (L), and proteins encoded by
each segment are illustrated. The M-segment encodes at least
four types of proteins: Gn, Gc, NSm and NSm-1. N and NSs are
expressed in an ambisense manner. L, L protein; RdRp, RNA-
dependent RNA polymerase; Gn, Gc: glycoproteins; NSm, non-
structural protein M; N, nucleocapsid protein; NSs, non-structural
protein S.
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cells. That signaling through MAVS protects cells against

mortality and mild morbidity during live RVFV mucosal

infection (22). RVFV has been emerging as a noticeable

neuropathogen (26, 27) and airborne transmission causes

severe encephalitis. To understand the precise molecular

mechanisms by which RVFV infection is controlled in the

brain, a recent study found that microglia, the resident

immune cell in the central nervous system acting as

macrophages, strongly upregulated transcriptional levels of

antiviral immune genes and increased levels of activation

markers as well as cytokine secretion. This process was

dependent on MAVS rather than TLR3 or TLR7 (28).

MAVS-/- mice displayed IFN-I defects and lymphocyte

infiltration dysregulation, leading to enhanced susceptibility to

RVFV and higher mortality. This study defines a protective role

for MAVS in propagating antiviral responses in the brain and

suggests that signaling through MAVS may also be required for

cerebral functional T and NK cell responses.
2.2 Intrinsic antiviral effect of exosomes

Exosomes belong to extracellular vesicles (EVs) and make

contributions to cell–cell communication, immunomodulation,

as well as infectivity enhancement during viral infections (29).

The content of exosomes depends on the cellular origin and the

type of infection (30, 31). They are thought to originate from late

endosomes and then are secreted into the extracellular

environment (32).

Although studies have shown the role of exosomes in viral

infections (33), little is known about the mechanisms by which

exosome exchanges control the immune response and impact

the pathogenesis of RVFV. Researchers generated RVFV-

resistant latent clones whose exosomes contain not only

normal marker CD63 but also viral RNA and proteins like N

and NSs (34). Some of the neighboring recipient cells showed

drastically increased apoptosis via PARP cleavage and caspase 3

activation. Later, one study revealed how exosomes affect viral

production and protect recipient cells in an innate immune

manner (35). Exosomes that are purified from RVFV-infected

cells carry RNA genome segments, which activate RIG-I to

induce IFN-dependent activation of autophagy in naïve

recipient cells like monocytes to suppress viral replication

and dissemination.
2.3 Host cell metabolites and
immune response

2.3.1 Polyamine depletion stimulates innate
immune signal

To successfully infect a host cell, viruses need cellular

metabolites, and there are different ways they can take over
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these molecules. One of the critical members of these metabolites

is polyamines. They are small, positively charged host-derived

molecules that play diverse roles in human cells (36), and

polyamine-depleted mammalian cells maintain viability

without significant toxicity (37). RNA viruses rely on

polyamines for replication (38) and a recent study showed that

diverse bunyaviruses, especially RVFV, La Crosse virus (LACV),

and Keystone virus (KEYV), require polyamines for productive

infection (39). Viral noninfectious particles can interfere with

productive infection via binding cellular receptors or usurping

cellular and viral machinery from infectious viruses (40). In

polyamine-depleted cells, bunyaviruses produce a large number

of noninfectious virions that are indistinguishable from

infectious particles, but these particles could disrupt

productive infection and stimulate antiviral signaling pathways

like the IFN-I pathway. To conclude, polyamine depletion

results in the accumulation of noninfectious particles that

interfere with viral replication and stimulate innate immune

signaling to limit infectivity. Later, researchers investigated how

polyamines precisely function in RVFV infection and found that

spermidine, a specific type of polyamine, is required for RVFV

replication (41). Furthermore, RVFV also relies on polyamines

for cholesterol synthesis to complete replication and form

progeny virions, including the incorporation of cholesterol in

virions (42). It will emphasize a promising method of targeting

host polyamines to reduce virus replication.

2.3.2 AMPK inhibits fatty acid synthesis to
restrict viral infection

Viruses also manipulate cellular lipids to form complex

structures required for viral replication, many of which are

dependent on de novo fatty acid synthesis (43). For example,

envelope formation during viral assembly involves membrane

lipid modifications (44). The energy regulator AMP-activated

protein kinase (AMPK), which strongly inhibits fatty acid

synthesis (45), could restrict infection of RVFV, and it relies

on the upstream activator LKB1 (46). AMPK is activated during

RVFV infection, leading to the phosphorylation and inhibition

of acetyl-CoA carboxylase, the first rate-limiting enzyme in fatty

acid synthesis. Therefore, the activation of AMPK both restricts

infection and reduces lipid levels. Also, this pathway plays a

broad role in the antiviral defense of various arboviruses. Taken

together, AMPK is an important component of the host cell

innate immune response that provides a novel antiviral

therapeutic target associated with the suppression of fatty

acid metabolism.
2.4 TCF/b-catenin regulates virus-
induced IFN-b expression

Production of IFN-b plays a key role in the innate antiviral

response. Using genome-wide RNA interference (RNAi)
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screening, canonical Wnt/b-catenin signaling was found to be an

important host pathway during RVFV infection. It can regulate

optimal cell cycle conditions and mediate the formation of the

TCF/b-catenin complex to promote efficient viral replication

(47). b-catenin can be found within a degradation complex

associated with GSK-3, the Wnt/b-catenin pathway kinase.

Inhibiting GSK-3 increases the amount of b-catenin and

promotes its nuclear accumulation. b-catenin interacts with T-

cell factor (TCF), rather than IRF3, to form the TCF/b-catenin
complex, which can be recruited over the IFN-b promoter and

increase the degree of constitutive IFN-b expression in

uninfected cells (48). Additionally, raising the level of

constitutive IFN-b is capable of conferring an effective

antiviral state to naïve cells in order to promote subsequent

virus-induced IFN-b expression. In RVFV infection, active TCF/

b-catenin complexes are formed and the host Wnt/b-catenin
pathway is targeted at the transcriptional and protein levels. NS

protein is the major virulent factor to inhibit Wnt/b-catenin
signaling by regulating relevant gene expression. Removal of NS

protein from RVFV activates the Wnt/b-catenin pathway,

forming a TCF/b-catenin complex, and TCF directly

upregulates IFN-b expression.
3 Viral countermeasure and innate
immune evasion

Host cells tend to take immediate measures to limit viral

replication and propagation right after being infected, and

simultaneously the virus initiates countermeasures to limit the

cell’s antiviral responses. This includes suppressing the host

innate immune pathway, and directly disrupting host

gene expression.
3.1 Alternative splicing of RIOK3 during
RVFV infection reverses its antiviral and
anti-inflammatory effects

Transcriptome studies have revealed that viral invasion

could change host splicing patterns (49). A significant post-

and co-transcriptional regulatory mechanism known as

alternative splicing (AS) affects the expression of more than

95% of the genes in the human genome and increases genetic

coding capacity (50). Through its functional relationship with

nonsense-mediated decay (NMD) to degrade premature

termination selectively, AS enables the creation of structurally

varied protein isoforms from a single gene and can help regulate

gene expression (51, 52).

Atypical RIO Kinase 3 (RIOK3) has been demonstrated to

play a significant role in promoting IFN-I production via PRR

signaling mediated by RIG-I-like receptors to inhibit RVFV
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propagation (53). However, RIOK3 mRNA expression is

distorted shortly after RVFV infection to produce alternatively

spliced variants, RIOK3 X2, the truncated protein encoding

premature termination codons to act as NMD substrate (54).

This alternative splicing of the RIOK3 transcript reduces

interferon expression conversely. Splicing factor TRA2-b is the

key to regulating RIOK3 splicing isoforms (55). TRA2-b
interaction with specific regions of RIOK3 pre-mRNA is

essential for constitutive splicing of RIOK3 mRNA and

RIOK3’s antiviral effect while lacking TRA2-b increases

alternative splicing. TRA2-b mRNA is also alternatively

spliced during RVFV infection, leading to a decrease in

cellular TRA2-b levels. The roles of RIOK3 and its spliced

isoform in both IFN and NF-kB pathways are intriguing (56).

RIOK3 negatively regulates the inflammatory response, but

RIOK3 X2 reverses the effects, mitigating the IFN response

and increasing the inflammatory NF-kB response. Therefore,

both RIOK3 and its X2 isoform have particular functions in

separate RVFV-induced innate immune pathways (Figure 2).
3.2 NSs protein: primary virulence factor
inducing immune escape

3.2.1 Main functions of RVFV NSs protein
RVFV NSs accumulates in the nucleus and cytoplasm, while

nuclear NSs forms a filamentous structure (57). Encoded on the

S-segment of the RVFV genome, it is an important virulence

factor which could potently suppress the innate immune

response (58). NSs binds to Sin3A Associated Protein 30

(SAP30), and through interactions with the transcription

factor Yin Yang 1(YY1) protein, the NSs-SAP30-YY1 complex

blocks the activation of the IFN-b promoter (59). Viral evasion

can occur with the contribution of NSs protein since RVFV

lacking NSs is shown to induce abundant IFN-I in mice and no

viremia is present (60).

Also, NSs generally inhibits host transcription and facilitates

viral translation. Eukaryotic transcription factor IIH (TFIIH) is a

general transcription factor for transcriptional initiation by

eukaryotic RNA polymerase II and plays an important role in

nucleotide excision DNA repair. TFIIH is comprised of ten

subunits, including the core complex XPD, XPB, p44, p62, p8,

p34 and p52. RVFV NSs could competitively bind to p44 and

sequester it from binding with XPD (61). p62 is degraded by NSs

in a post-translational way. Under the ubiquitin-proteasome

pathway, NSs works as an adaptor protein in the cullin 1-Skp1-

FBXO3 E3 ligase complex for p62 degradation (62, 63). These

two methods disrupt the recruitment of the TFIIH complex in

the nucleus, thus leading to the host transcriptional

shutoff (Figure 2).

Similarly, RVFV NSs protein enhances the post-translational

degradation of dsRNA-dependent protein kinase R(PKR) (64).
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PKR is a translation-inhibiting protein kinase. It can

phosphorylate Eukaryotic initiation factor 2a (eIF2a), and
then phosphorylated eIF2a inhibits the translation process.

NSs participates in the formation of the E3 ligase complex,

which consists of CUL1, Skp1, and FBXW11 (65, 66). This E3

ligase complex promotes the degradation of PKR via the

ubiquitin-proteasome system as well. In consequence, PKR-
Frontiers in Immunology 05
mediated eIF2a phosphorylation is blocked and viral

translation is facilitated effectively (Figure 2) (67).

Because of the genetic similarity of viruses within the

Phenuiviridae family, NSs is also a key virulence factor of

other phenuiviruses and its antiviral immune suppression in

those phenuiviruses is worth investing in. NSs of Dabie

bandavirus (severe fever with thrombocytopenia syndrome
FIGURE 2

Arm race between RVFV and host, with emphasis on immune evasion by RVFV. RVFV ssRNA is recognized by cytosolic RIG-I. RIG-I associates
with mitochondrial MAVS to activate multiple innate immune pathways. The kinase RIOK3 facilitates IFN expression and inhibits the
inflammatory response pathway mediated by NF-kB, while the alternative splicing isoform RIOK3 X2 antagonizes these effects. RVFV infection
also stimulates the Wnt pathway to produce IFNb, but the NSs protein inhibits this process. NSs conduct the immune escape from several
aspects. Those include inhibiting the aggregation of TFIIH complex to extensively inhibit host transcription, degrading kinase PKR to decrease
eIF2a phosphorylation and promote the translation of viral proteins, and forming SAP30-NSs-YY1 co-repressor complex at the IFN promoter to
block its transcription. Moreover, NSs affect the formation of cytoskeleton via suppressing Abl2 expression, which changes cell morphology and
movement. Also, NSs could damage the host chromosomal DNA and disrupt mitosis. NSm, however, plays an anti-apoptotic role in
mitochondria. ssRNA, single-stranded RNA; RIG-I, retinoic acid-inducible gene I; MAVS, mitochondrial antiviral signaling protein; TBK1, TANK-
binding kinase 1; IKK, inhibitor of kB kinase; IkB, inhibitor of NF-kB; IRF3, interferon regulatory factor 3; TCF, T-cell factor; RIOK3, RIO Kinase 3;
TFIIH, transcription factor IIH; CUL1, cullin 1; FBXO3, F-box protein 3; Skp1, S-phase kinase associated protein 1; FBXW11, F-box and WD repeat
domain containing 11; Rbx-1, ring-box 1; PKR, protein kinase R; eIF2a, eukaryotic initiation factor 2a; SAP30, Sin3A associated protein 30; YY1,
transcription factor Yin Yang 1; Abl2, Abelson murine leukemia viral oncogene 2; P, phosphate group; Ub, ubiquitin.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1084230
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2022.1084230
virus, SFTSV) has an intriguing mechanism to form granules in

the cytoplasm, the inclusion bodies, to entrap factors involved in

IFN-induced antiviral responses, like TBK1 and the E3 ubiquitin

ligase TRIM25 that is essential for RIG-I activation (68). TBK1 is

a critical regulator of not only IFN responses but also the NF-kB
inflammatory pathway because it hinders the form of the IKK

complex to limit the release and nuclear translocation of NF-kB.
The inhibition of TBK1 during SFTSV infection leads to hyper-

activation of NF-kB and inflammatory response (69). NSs of

SFTSV could induce the cytokine storm, which leads to a high

fatality rate of SFTS. Therefore, the different regulatory

mechanisms of NS proteins in the innate immune system

between RVFV and SFTSV have strong correspondence with

their divergent pathogenicity and clinical manifestations.

3.2.2 NSs affects host cell replication
Nuclear abnormalities and a decreased mitotic rate observed

in RVFV-infected cells, like micronuclei and lobulated nuclei,

are largely because of the chromosomal cohesion and

segregation defects (70). NSs filaments accumulating in the

nucleus induce canonical DNA damage signaling, including

checkpoint kinase 2 (Chk2), ataxia-telangiectasia mutated

(ATM), and p53 (Figure 2). They also induce cell cycle arrest

at the S phase or the G0/G1 phase (71). The SAP30-YY1

complex formed by NSs protein could affect not only IFN-b
expression but also the cohesion and segregation of chromatin

DNA. Through the SAP30-binding domain, RVFV NSs

filaments interact with the pericentromeric major g-satellite
sequence, but not the centromeric minor a-satellite sequence.

Also, YY1 could mediate the interaction between the NSs-SAP30

complex and the g-satellite sequence DNA (70). It is assumed

that through NSs-mediated DNA damage, erroneous host cell

replication impairs normal tissue development and may

contribute to fetal deformity in infected ruminants.

3.2.3 NSs and cytopathic effects
Besides functioning as the main virulence factor

counteracting the host innate antiviral response to facilitate

viral replication and spread, the role of NSs in RVFV-induced

cytopathic effects was investigated (72). Abelson murine

leukemia viral oncogene homolog 2 (Abl2) is a key regulator

of the actin cytoskeleton, regulating cell morphology and

mobility as well as cell-cell and cell-matrix adhesion (73, 74)

via its tyrosine kinase domain and two filamentous actin binding

domains (75). The impact of NSs expression on the actin

cytoskeleton was examined when carrying out infections with

the NSs-expressing virulent (ZH548) strain, the attenuated

(MP12) strain, and the non-NSs-expressing (ZH548DNSs)

strain, as well as following the ectopic expression of NSs. The

upregulation of Abl2 expression in macrophages, fibroblasts,

and hepatocytes, which would be identified as a component of

antiviral responses, was blocked by NSs expression. In addition,
Frontiers in Immunology 06
ZH548-infected cells had increased mobility compared to

ZH548DNSs-infected fibroblasts with substantial alterations in

cell morphology, including the loss of lamellipodia, cell

spreading, and distortion of adherens junctions. All these

phenomena are similar to the ZH548-induced cytopathic

effects seen in vivo. Taken together, NSs protein affects the

actin cytoskeleton of host cells at the transcriptional and

cellular levels, and the upregulation of Abl2 expression is

proposed to be part of the host strategy to restrict

virulence (Figure 2).
3.3 Anti-apoptotic role of NSm proteins

Like NSs protein, NSm is not essential for viral replication in

cell cultures (76). A recent study screened and identified 9 host

proteins that putatively interact with RVFV NSm, and three of

them (Cpsf2, Ppil2, SNAP-25) are the most promising targets

during viral infection (77). RVFV NSm was identified as the first

Phlebovirus protein that has an anti-apoptotic function (78). The

C-terminal region of NSm, which contains a basic amino acid

cluster and a putative transmembrane domain, targets itself to

the mitochondrial outer membrane to resist apoptosis

(Figure 2) (79).

In comparison to RVFV arMP-12-infected cells, RVFV

arMP-12-del21/384-infected cells which lacked NSm

expression caused widespread cell death because of the

cleavage of Caspase-3 and its downstream substrate poly

(ADP-ribose) polymerase. And the initiator caspases, caspase-

8 and -9, were all activated earlier. Further, NSm does not

require other viral proteins to prevent cell apoptosis because

NSm production prevents the staurosporine(STP)-induced

activation of caspase-8 and-9. The P38-MAPK pathway is

essential for cell survival, and RVFV NSm could also regulate

the p38-MAPK response in mammalian cells (80). The specific

host factors involved in the NSm-mediated anti-apoptosis are

worth investigating, and whether NSm contributes to reaching a

balance with the pro-apoptotic NSs protein is an interesting

problem requiring further comparison of various environmental

factors and mutual molecular mechanisms.
4 Conclusion and perspectives

As one of the most important bunyaviruses, RVFV has been

responsible for significant human and ruminant outbreaks that

have devastated local economies with increasing mortality and

morbidity. Upon viral infection, the innate immune system is

activated as the first line of defense. IFN response is induced by

intricate upstream pathways. The MDA5 and RIG-I are RIG-I-

like receptors (RLRs) sensing foreign RNA in the cytoplasm,

which transduce a signaling cascade to induce downstream IFN
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production and subsequent antiviral responses. Lack of

metabolites essential for the viral replication cycle and

production of noninfectious particles are also methods against

RVFV infection. RVFV evolves to evade immune attacks and in

turn impairs cellular functions, which is mainly achieved by the

powerful virulent NSs protein. These studies are critical to the

development of RVFV attenuated vaccines that have been

created so far, as well as the research on novel targets for

effective viral inhibitors.

According to the effects of exosomes, it is verified that

antiviral autophagy can be induced by IFN signals in RVFV

infection. ERK1/2 Akt/mTOR signaling pathway might

participate in the antiviral immunity since they have been in

anti-tumor immunity (81). Meanwhile, IFN-b also activates

caspase-dependent apoptosis, and autophagy could in turn

decrease apoptosis to promote cell growth (81). Although IFN-

induced innate immunity is TLR-independent, there still exists a

Toll receptor-autophagy axis in RVFV infection with Toll-7 and

Toll-like receptor adaptor MyD88 (82). Since NSs presents

potent suppression of IFN-b transcription and induces the p53

signaling pathway to increase cell apoptosis (83), it is of great

significance to discover other independent autophagy-activated

systems to restrict viral replication in time. Further research on

the precise mechanism in which autophagy is initiated by anti-

RVFV innate immune responses and on the intrinsic correlation

between IFN-induced autophagy and IFN-related apoptosis

during RVFV infection is still needed.

TCF/b-catenin complexes can upregulate the level of IFN-b
expression in response to RVFV infection, which is antagonized

by the virulence factor NSs. In addition, Wnt/b-catenin signals

are shown to regulate the polyamine metabolic pathway in

aggressive prostate cancer, reducing the concentrations of

citrate and spermine (84). b-catenin signals also promote fatty

acid b-oxidation as energy resources for osteoblast metabolism

(85). Given that polyamine depletion and fatty acid synthesis

inhibition could shut off viral replication and stimulate IFN-

induced innate immune responses, it is a promising strategy to

target the Wnt/b-catenin pathway and produce a combined

action to limit the progress of RVFV infection.

NSs is a key virulence factor of phenuiviruses as an antiviral

immune antagonist, but NSs in these viruses have slight

differences in anti-immune mechanisms and corresponding

cellular effects. Unlike RVFV filamentous NSs in the nucleus,

SFTSV, Toscana virus (TOSV) and Uukuniemi virus (UUKV)

NSs proteins localize only in the cytoplasm, so they could not

directly inhibit host transcription. Besides the unique

cytoplasmic granules generated by SFTSV NSs to sequester

numerous host factors, TOSV NSs degrades PKR to facilitate

viral translation similarly with RVFV, but TOSV NSs could also

degrade RIG-I to suppress IFN-b signal activation with its E3
Frontiers in Immunology 07
ubiquitin ligase activity (86, 87). NSs of the Punta Toro virus

(PTV) can inhibit host transcription, but the nuclear NSs does

not form a filamentous structure (88). Sandfly fever virus (SFV)

NSs blocks downstream IFN-I signals by inhibiting Jak1

phosphorylation (89). In general, despite the genetic diversity

of NSs among different phenuiviruses, it is of great significance

to find out their highly conserved IFN-inhibitory activity in

immune evasion to drive the development of broad-spectrum

drugs and effective vaccines.

From what has been discussed above, most studies have

concentrated on how the virus works to counteract the innate

immune response, which is the body’s initial and first line of

defense. However, RVFV has also developed additional means of

attacking various cellular processes, like the cytopathic effects

and pro-apoptosis. These methods contribute to viral

pathogenicity and should be further investigated in the future.
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