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Myocardial infarction (MI) is a cardiovascular disease (CVD) with high morbidity

and mortality worldwide, often leading to adverse cardiac remodeling and

heart failure, which is a serious threat to human life and health. The immune

systemmakes an important contribution to the maintenance of normal cardiac

function. In the disease process of MI, necrotic cardiomyocytes release signals

that activate nonspecific immunity and trigger the action of specific immunity.

Complex immune cells play an important role in all stages of MI progression by

removing necrotic cardiomyocytes and tissue and promoting the healing of

damaged tissue cells. With the development of biomaterials, cardiac patches

have become an emerging method of repairing MI, and the development of

engineered cardiac patches through the construction of multiple animal

models of MI can help treat MI. This review introduces immune cells involved

in the development of MI, summarizes the commonly used animal models of

MI and the newly developed cardiac patch, so as to provide scientific reference

for the accurate diagnosis and effective treatment of MI.

KEYWORDS
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1 Introduction

Myocardial infarction (MI) is a major cardiovascular disease that may lead to death

(1). MI is permanent damage to the myocardium caused by prolonged ischemia, which

mainly occurs in the left ventricle, and will lead to diffuse discomfort from the chest to all

parts of the body (2, 3). MI mainly includes spontaneous MI caused by primary coronary

events, secondary MI caused by decreased oxygen supply or increased oxygen demand to

the myocardium, and unexpected sudden cardiac death such as cardiac arrest (3). MI can

be detected in several ways, the electrocardiogram shows the appearance of Q waves and
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dynamic changes in the ST-T segment waves, and damaged

cardiomyocytes release substances such as myoglobin, lactate

dehydrogenase, and creatine kinase (2).

The immune system is an inherent health defense system of

animals, an interactive network of lymphoid organs, immune

cells, and immunoreactive substances (4). The entire progression

of the heart is regulated by the body’s immune system, which

plays an important role in healing and remodeling after MI (5).

Immune cells are the essential elements that support the

immune system in its immune role. Immunity is divided into

nonspecific and specific immunity (6). Nonspecific immunity is

a natural immune defense developed during the long-term

evolution of organisms, providing immediate and conservative

host defense that may damage normal tissues because of its

nonspecific nature (6). Specific immunity is a kind of acquired

and precise immunity that mediates cellular and humoral

immunity through T and B cells respectively (7).

After MI occurs, myocardial cells die and necrosis occurs in

the tissue of the infarcted region, activating an inflammatory

response. Immune cells can both promote cardiomyocyte death

and inflammation, and facilitate the regeneration of damaged

heart muscle (8). Animal model is an important part of disease
Frontiers in Immunology 02
research, and the construction of animal models that match the

phenotype of human MI is essential for the in-depth study of the

mechanism of immune cells and therapeutic approaches (9).

The development of biological materials provides a new

platform for the treatment of MI and is one of the important

methods to achieve repair of the damaged heart (10). Engineered

heart patches have been the focus of research in recent years for

the development of materials that enable the damaged heart to

self-renew (11). This review will be useful in elucidating the

immune cells, animal models, and materials associated with MI.
2 Immune cell

Heart healing after MI goes through three successive stages

of development: inflammation, hyperplasia, and maturation (12)

(Supplementary Figure 1). Different immune cells infiltrate at

different stages of development in response to MI (Figure 1). In

the early stages of MI, necrotic myocytes release damage-

associated molecular patterns, cytokines, and autoantigens

(13). After the onset of MI, an inflammatory outbreak first

activates the immune response of nonspecific immune cells,
FIGURE 1

Immune cells in MI. The part with pink background on the left is immune cells differentiated to a pro-inflammatory phenotype after MI, and the
part with green background on the right is immune cells differentiated to an anti-inflammatory phenotype after MI.
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causing rapid entry of monocytes, neutrophils, and dendritic

cells from the peripheral vasculature into the infarcted area (14,

15). Subsequently, the infarcted myocardium continues to

recruit macrophages that polarize into anti-inflammatory

macrophages, which activate the repair of MI by secreting

anti-inflammatory cytokines, promoting the formation of

granulation tissue, and eliminating dead myocardial cells (16).

After the inflammatory phase, a specific immune response

initiates the repair of myocardial injury, the extracellular

matrix begins to reconstitute, and T and B lymphocytes

infiltrate the infarcted area in large numbers (17, 18). T cells

are activated by dendritic cells, and regulatory T cells produce

cytokines to induce macrophages to polarize and promote

myocardial healing (13). Insight into immune cells in MI

contributes to the identification of effective therapeutic targets.
2.1 Role of the mononuclear phagocytic
system in MI

The mononuclear phagocytic system is generated by bone

marrow progenitor cells and includes monocytes, macrophages,

and dendritic cells (DCs) (19). Monocytes and macrophages are

emerging therapeutic targets in cardiovascular disease and are

involved in immune response and inflammatory injury after MI

(20, 21). Monocytes/macrophages dominate cellular infiltration

during the first 2 weeks after MI and are involved in infarct

wound healing (22). In the early stages of MI, injury to the heart

causes monocytes to infiltrate the area of infarction and then

differentiate into macrophages (23). Macrophages are

heterogeneous in their differentiation and function, with M1

macrophages secreting proinflammatory factors and M2

macrophages secreting anti-inflammatory factors (24). Studies

have shown that healing after MI involves inflammatory

Ly-6Chigh and reparative Ly-6Clow biphasic accumulation of

monocytes/macrophages (20, 25). Ly-6Chigh monocytes are

most abundant on day three of MI and decline on day seven,

engulfing necrotic and apoptotic cardiomyocytes and reducing

the size of the infarct (25, 26). Ly-6Clow macrophages promote

scar formation, increase interleukin (IL) -21 receptor expression

and prevent early infarct expansion (27). Studies have shown

that treatment of myocardial infarcted mice with the CXC-motif

receptor 4 (CXCR4) blocker AMD3100 significantly reduces the

content of neutrophils and Ly-6Chigh monocytes, which

contributes to the acceleration of the inflammatory phase and

promotes the healing of myocardial infarcts (28). At 4-7 days of

MI, Ly-6Clow monocytes are recruited to the infarct region via C-

X3-C Motif Chemokine Receptor 1(CX3CR1) and promote the

repair process (20). C-C Motif Chemokine Receptor 2(CCR2)-

and CCR2+ macrophages coordinate monocyte recruitment

after myocardial injury (29, 30). Mesenchymal stromal cells

(MSCs) have anti-inflammatory effects and cardioprotective

functions. In a mouse model of MI, MSCs mediated the
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transformation from a proinflammatory phenotype to an anti-

inflammatory phenotype of macrophages in the infarcted region

via IL-10, reducing apoptosis of cardiomyocytes and improving

cardiac function (31). Treatment of a mouse model of MI with

CCR2 antagonists resulted in increased survival of MSCs in the

infarcted region and reduced cardiomyocyte death (32).

Targeting the recruitment and differentiation of monocytes

and macrophages at different stages of MI is an effective

strategy for the treatment of MI. DCs can control monocyte/

macrophage homeostasis during post-infarction healing, with

DCs levels peaking on day 7 of MI. Studies have shown that mice

exhibit left ventricular function deterioration and remodeling 7

days after DCs ablation, and MI disrupted by DCs enhances

monocyte/macrophage recruitment (33). Decreased DCs

numbers and increased macrophage infiltration play a

protective role in post-infarction inflammation and subsequent

healing, improving cardiac function and preventing adverse

cardiac remodeling (34). Interleukin-37 (IL-37), an inhibitor of

innate and adaptive immunity, enabled DCs to acquire the

characteristics of tolerogenic DCs (tDCs). IL-37 also can

induced regulatory T cells, attenuated inflammatory cell

infiltration in the infarcted heart, reduced myocardial fibrosis

and improved cardiac function, suggesting that modulation of

DCs could be a therapeutic strategy for MI (35, 36).
2.2 Role of granulocytes in MI

Granulocytes are mainly divided into neutrophils,

eosinophils, and basophils (37). Neutrophils include the

proinflammatory N1 subgroup and the anti-inflammatory N2

subgroup. The initial MI contained more N1 neutrophils, and

N2 expression was elevated during subsequent anti-

inflammatory repair (38). Studies have shown that neutrophil

deficiency leads to a decrease in Ly-6Chigh monocytes in mice

with macrophage polarization to the M2 phenotype, promoting

cardiac repair in MI (39). Reducing neutrophils during

inflammation is an effective therapeutic strategy in mice with

MI. Blockade of the proinflammatory factor S100A9 secreted by

neutrophils reduces the number of neutrophils and monocytes/

macrophages, providing an anti-inflammatory environment in

the infarcted region and significantly improving cardiac function

(40). Studies showed that immature CD10neg neutrophils

promote the immune response to inflammation in MI by

enhancing Interferon-gamma (IFN-g) production in CD4 T

cells (41). Additional studies have shown that gasdermin D

(GSDMD) deficiency in the infarcted heart reduces neutrophil

and monocyte content, decreases the extent of MI, and improves

cardiac function (42). It is suggested that upstream gene

regulation of neutrophils and monocytes is an effective way to

treat MI. Eosinophils (EOS) are toxic effector cells that are

significantly increased in the blood and heart of myocardial

infarcted mice compared to normal mice in the infarcted region.
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Besides, EOS reduces cardiomyocyte death by secreting

substances such as Th2 cytokines, reduces the accumulation of

pro-inflammatory cells, enhances neutrophil adhesion, and has a

cardioprotective function (43). Additionally, studies have shown

that in ST-segment elevation MI in patients and mice, activated

eosinophils are recruited to the infarct zone, resulting in a

decrease in the number of eosinophils in the blood,

attenuating the polarization of anti-inflammatory macrophages

and promoting the inflammatory phenotype of MI (44).

Crucially, interleukin (IL)-5 secreted by macrophages and

CD127+ cells mediate eosinophil development in peripheral

blood and infarcted myocardium, promoting recovery from

cardiac dysfunction after MI (45). Basophil levels are highest

between 3 and 7 days after MI (46). Basophils promote healing

and proper scar formation and regulate cardiac remodeling in

the late phase of MI by enhancing levels of reparative

macrophages and basophil-derived cardiac IL-4 and IL-13 in

the infarcted heart (46, 47).
2.3 Role of lymphocytes in MI

Specific immune responses are critical for wound healing

after MI, and after the onset of MI, a large number of T and B

cells are recruited in the area of cardiac injury (17). T cells exert

immune functions through lymphatic and blood circulation and

are mainly divided into CD4+ T cells, CD4+ T cells are mainly

divided into Helper T cells (Th), Regulatory T cells (Tregs), and

CD8+ T cells (Tc) (48, 49). The cells have multiple phenotypes

and play an immune role by activating other immune cells

involved in the regulation of MI (50–53). Tregs cells have an

immunosuppressive capacity and are enriched in myocardial

infarcted mice, inhibiting the proliferation of CD4 and CD8 T

cells and their IFN-g production, promoting infarct repair (54–

56). After MI, T cell activation is driven by recognition of the

heart’s antigens, and CD4+ T cells promote the healing of

myocardial infarct wounds (57, 58). Studies have shown that

CD4+ T cell-specific ablation promotes macrophage polarization

and contributes to reducing cardiac fibrosis and increasing

cardiomyocyte proliferation in young mice (59). After acute MI

in mice, CD8 T lymphocytes are recruited and activated in

ischemic heart tissue and release granzyme B, leading to

apoptosis, adverse ventricular remodeling, and deterioration of

myocardial function (60). Infarcted hearts with infiltration of

CD4(+)Foxp3(+)CD73(+) regulatory T cell help prevent adverse

ventricular remodeling and improve cardiac function after MI by

inhibiting inflammation and directly protecting cardiomyocytes

(54, 61). In addition, studies have shown that Treg cells reduce

the recruitment of IL-17+gdT cell and increase survival in mice

with MI (62). CXCR4 antagonist POL5551 attenuated

inflammatory gene expression in monocytes and macrophages

by enhancing the action of Treg cells and attenuated left

ventricular remodeling and systolic dysfunction, suggesting that
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enhancing Treg cell expression is important for restoring

myocardial function (63, 64).

B cells can influence inflammation and remodeling after MI,

and the recruitment of pro-inflammatory monocytes into the heart

by mature B lymphocytes leads to increased infarct size and

worsening cardiac function and can be a promising target for MI

therapy (50). Studies have shown that depletion of mature B

lymphocytes in mice with MI effectively inhibits C-C Motif

Chemokine Ligand 7(CCL7)production and Ly6Chigh monocyte

recruitment, improving cardiac function and treating myocardial

injury (65). Rituximab is a monoclonal anti-CD20 antibody

targeting human B cells (66). MI patients with peak depletion of

B cells by rituximab injection on the sixth day after infarction

significantly improved myocardial injury and promoted recovery

of cardiac function (67). Regulatory B cells (Bregs) have therapeutic

potential in a mouse MI model by reducing CCR2-mediated Ly-

6Chigh monocyte infiltration, inhibiting cardiac recruitment of

proinflammatory monocytes, and improving cardiac function

(68). Bone marrow B-cell proliferation ceases within 24 hours of

MI, and increasing the level of B cells from bone marrow

significantly improves cardiac function and reduces infarct size

after MI (69). The complexity of the role of lymphocytes in MI

brings difficulties to the treatment. It is necessary to accurately

detect the time point of MI in order to determine the role of

lymphocytes in targeted and effective therapy.
3 Animals model of MI

In cardiovascular disease research, animal models are widely

used in the exploration of pathogenesis and drug development. The

establishment of experimental animal models ofMI is important for

the in-depth study of the pathology and treatment-related

mechanisms of MI (9). The study of animal models that are

highly consistent with the phenotype of human MI can provide a

more comprehensive understanding of the progression of immune

responses and the function of immune cells in MI and contribute to

the therapeutic research of MI (70). Currently, the animals

commonly used to make models of MI are mice, rats, rabbits,

pigs, and monkeys (9, 71–73). Coronary artery ligation is the most

commonly used method for modeling MI (Figure 2A) (9, 71, 73).

The coronary artery stenosis or occlusion caused by ligation leads to

ischemia and necrosis of the coronary artery feeding myocardium,

which leads to MI in animal models, and produces the same

pathological process and immune response as human MI. Real-

timemonitoring and evaluation of the modeling process through an

electrocardiogram, pathology, and serum enzymology can achieve

better clinical application (9, 71, 73).

Most studies have used mice for coronary artery ligation

to construct animal models of MI (73). Studies have generally

used 8-12-week-old female BALB/c mice (74), male C57BL/6 mice

(75), and C57BL/6J mice to induce MI (65). Other studies have

used 9-13-week-old adult male C57BL/6J mice (76) or female
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10-12-week-old NOD-SCID IL2Rgamma (null) mice (31)

to construct the MI models. It was shown that unlike male

C57BL/6 mice in the same experiment, female MI mice did not

exhibit the corresponding EOS deficient phenotype (43).

Therefore, it is necessary to distinguish between male and

female animals when selecting animals. For rat MI models,

studies have generally used 7-10-week-old female Wistar-Kyoto

(WKY) rats (70), adult female Wistar rats (72), 5-7-week-old

female Sprague-Dawley (SD) rats (77), male SD rats (78), andmale

SD rats (79). Moreover, most models of MI in rabbits have been

performed on New Zealand White rabbits using coronary artery

ligation (80). Studies have also been performed in New Zealand

White rabbits using thrombogenic coils placed in circumflex

arteries to induce closed thoracic MI, describing post-infarction

remodeling in small animal models for the first time in which the

pericardium remains intact after coronary artery occlusion,

providing a more physiologically and clinically consistent in a

vivo detection system for left ventricular dysfunction after MI (71).

Rodent models have physiological features similar to human

cardiac anatomy but are smaller in size (81). The cardiac anatomy
Frontiers in Immunology 05
and physiology of pigs are more similar to humans, especially the

structure, size, and distribution of the coronary arteries, and can

accurately mimic the phenotype of human MI (82, 83). In some

studies, female and male crossbreed Landrace X Large White pigs

were used to induce MI by double ligation of the first marginal

branch of the left circumrotation artery 1.5 cm distal to the

atrioventricular sulcus after left thoracotomy (84). In addition,

studies on adult female Yucatan mini-pigs (70) or Mangalica pigs

(85) in which MI was induced by balloon catheter occlusion of

the coronary arteries for 90 minutes. There are also studies in

which MI models were constructed in female Yorkshire pigs by

open-heart surgery and LAD ligation of the distal second

diagonal branch (77). Rhesus monkeys are genetically and

physiologically similar to humans (86). The distribution of the

heart and coronary arteries in rhesus monkeys is highly similar to

humans, making them one of the best choices for preparing

models of MI (87, 88). Studies generally construct MI models by

ligating the left anterior descending coronary artery in 2-3 year

old rhesus monkeys (88, 89). One study has used the gene-edited

pig heart and xenotransplant it into a baboon, managing the
A

B

FIGURE 2

Overview of modeling and uses of animal models of MI. (A) The modeling method of the MI model was characterized using mice as an
example. First, the mouse was anesthetized and fixed, exposed the heart, and ligated the anterior descending branch of the cardiac coronary
artery using sutures to obtain the MI mouse model. Myocardial infarct mice had necrosis of cardiomyocytes and blocked blood vessels. (B)
Mice, rats and rabbits have small hearts and cannot be used for human heart transplantation. They can be used to prepare models of MI for
research such as drug development. The hearts of monkeys and pigs are highly similar to humans, and gene editing techniques can be used to
reduce or avoid immune rejection in human organ transplants.
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severe immune rejection that occurs with xenotransplants and

keeping the baboon alive for more than two years (90). Rodent

models of MI can be used for research on biopharmaceuticals,

monkeys can be used for research in translational medicine, and

pigs have the potential to be used for heart xenotransplantation.

Furthermore, the application of gene editing technology to MI

mapping and allogeneic organ transplantation in heart can

effectively control the occurrence of immune rejection

(Figure 2B). In the studies of the mechanisms and pathways of

MI, the selection of appropriate animals for modeling according

to different research purposes and practical situations can help to

explore the research methods of MI.
4 Biomaterials for MI repair

Cardiac tissue engineering and related biomaterials are

emerging tools in the treatment of myocardial infarction

(Supplementary Table 1) (91, 92). Basic cardiac tissue

engineering involves the inoculation of cardiomyocytes or stem

cells onto synthetic or natural biocompatible materials in vitro and

transplantation into infarcted areas of the heart to promote repair

of myocardial damage, with the scaffold degrading as the cells

integrate with the organism’s tissue (91, 93). As an emerging

strategy in tissue engineering, cardiac patches are a focus of

research in myocardial tissue repair engineering (94). Cardiac

patches are artificial materials that deliver regenerable cells or

bioactive molecules to the site of MI for cardiac repair such as

myocardial regeneration and can be used as a novel delivery

system for cellular therapies and MI repair factors, with almost

no immune rejection when implanted in vivo (95). Studies have

embedded therapeutic synthetic cardiac stromal cells (synCSC)

into the decellularized myocardial extracellular matrix (myoECM)

to generate an artificial cardiac patch (artCP) with therapeutic

characteristics of stem cells. The artCPs significantly reduced

fibrosis and infarct size, increased surviving myocardial tissue,

and improved cardiac function in rat and pig models of MI,

overcoming the limitations of using live stem cells and

representing a very promising therapeutic strategy (77).

Electrical conduction abnormalities in infarcted myocardium

induce adverse myocardial remodeling, causes almost no

immune rejection, and limit the action of cardiac regenerative

drugs (96). A study has developed a combination of

electrospinning of gelatin methacryloyl (GelMA) electrospinning

and choline-based bio-ionic liquid (Bio-IL) to construct the

cardiac patch, GelMA/Bio-IL, which has a mechanical and

electrical conductivity similar to that of native myocardium (97).

GelMA/Bio-IL is tightly coupled tomouse myocardium to provide

stable mechanical properties to the damaged myocardium and

restore electromechanical coupling at the site of MI, reducing

cardiac remodeling and maintaining normal function (97).

Besides, another study developed an electroactive engineered

cardiac patch, silk fibroin, and polypyrrole engineered cardiac
Frontiers in Immunology 06
patch (SP50 ECP), which significantly expressed cardiac marker

proteins with good contractility and electrocoupling properties.

SP50 ECP can effectively improve left ventricular remodeling in

MI, restore ejection function (EF) and other cardiac functions,

promote synchronous contraction of CM in the normal scar area

of the myocardium, and effectively reduce the susceptibility to the

arrhythmia in the rats withMI (98). DuringMI episodes, ischemia

and hypoxia lead tomyocardial cell damage and necrosis, inducing

an increase in reactive oxygen species (ROS) that exacerbate

tissue damage and cardiac remodeling (99). ROS-responsive

biomaterials are considered promising antioxidant candidates for

MI therapy, and attenuating oxidative stress in MI is beneficial for

reducing inflammation and protecting cardiac tissue. Some studies

have designed PFTU/gelatin (PFTU/Gt) fibrous patches with

excellent antioxidant activity and ROS-responsive degradability

to effectively attenuate oxidative stress in the unfavorable

tissue microenvironment in vivo after MI in rats, and PFTU/Gt

also can inhibit apoptosis, reduce the expression of

proinflammatory-related genes, improve cardiac function and

angiogenesis, and attenuate poor left ventricular remodeling

(100). Currently, microneedle patch is a novel MI treatment that

attenuates left ventricle remodeling by mechanical support and is

compatible with minimally invasive implantation. Some studies

have developed microneedle patches inspired by honeybee venom

stings with unidirectional posterior barbs that firmly self-lock on

the heart to provide mechanical support to the myocardium of

infarcted rats and pigs, significantly reducing wall stress and strain

in the infarcted region and maintaining cardiac function and left

ventricular morphology (101). Studies of cardiac patches have

avoided the harm to the organism from immune rejection,

broadened the boundaries of MI therapy, opened up the new

direction of subsequent research.
5 Discussion

MI has a complex inflammatory response and damage to

cardiomyocytes, and immune cells play a very crucial role in the

infarcted area. After the onset of MI, monocytes, macrophages, and

other cells accumulate in the infarcted region activate and polarize

at different times, produce pro- or anti-inflammatory factors,

regulate cardiomyocyte proliferation and apoptosis, and influence

cardiac remodeling and healing (102). T lymphocytes and B

lymphocytes are recruited to the infarcted region after the onset

of the nonspecific immune response and participate in the

clearance and repair of damaged cells and tissues (59, 65).

The anatomical structure of the rodent cardiac model is

significantly different from that of the human hearts in size, but

the structure of pigs and rhesus monkeys’ hearts is basically the

same as that of the human heart. The MI model constructed from

pigs and rhesus monkeys can be effectively used for the

development of clinical treatment (81–83, 88). With the progress

of gene editing technology, studies have already been done to
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genetically edit pigs to make them resistant to human antibodies

and immune cell killing, almost completely avoiding immune

rejection from allogeneic organ transplants (90, 103). The pigs

breeding cost is far lower than the monkeys, therefore, pig hearts

hold the potential for use in allogeneic organ transplants in humans

suffering from severe MI. In the development of biomaterials,

artificially prepared engineered cardiac patches offer promising

new approaches for the treatment and prognosis of MI (101). By

optimizing cardiac patch materials loaded with self-proliferating

cells or biologic factors with therapeutic benefits, immune rejection

is minimized, repair of the infarct site is improved, and integration

of the patch with host heart survival and function is promoted,

providing damaged regeneration of the heart with mechanical

support (95). Targeted modulation of immune cells in MI is a

promising strategy, and based on the dual role of many immune

cells, there is a need to explore the mechanism of action of immune

cells in MI using suitable animal models, and combine

bioengineering tools such as cardiac patches to investigate in

depth the treatment and repair of human MI.
6 Conclusion

In this review, we summarize the recruitment and

differentiation of major immune cells in nonspecific and

specific immunity in MI and elucidate that immune cells of

different typologies have different functions in various periods of

MI. Additionally, this review also summarizes the current

technologically mature animal models of MI and the potential

clinical applications of the emerging cardiac patch in the

treatment of MI. The in-depth exploration of immune cells

provides effective approaches for the treatment of MI.
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