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Chen-Ru Wei1, Li-Yu Zheng2, Yu Duan2, Wei Li1, Feng Zhu1,
Yu Sun1 and Guo-Sheng Wu1*

1Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University,
Shanghai, China, 2Translational Medicine Research Center, Medical Innovation Research Division
and Fourth Medical Center of the Chinese People’s Liberation Army (PLA) General Hospital,
Beijing, China
Objective: As a common yet intractable complication of severe sepsis, acute

respiratory distress syndrome (ARDS) is closely associated with poor clinical

outcomes and elevated medical expenses. The aim of the current study is to

generate a model combining transcriptional biomarkers and clinical

parameters to alarm the development of ARDS in septic patients.

Methods: Gene expression profile (GSE66890) was downloaded from the

Gene Expression Omnibus database and clinical data were extracted.

Differentially expressed genes (DEGs) from whole blood leukocytes were

identified between patients with sepsis alone and septic patients who

develop ARDS. ARDS prediction model was constructed using backward

stepwise regression and Akaike Information Criterion (AIC). Meanwhile, a

nomogram based on this model was established, with subsequent internal

validation.

Results: A total of 57 severe septic patients were enrolled in this study, and 28

(49.1%) developed ARDS. Based on the differential expression analysis, six DEGs

(BPI, OLFM4, LCN2, CD24, MMP8 and MME) were screened. According to the

outcome prediction model, six valuable risk factors (direct lung injury, shock,

tumor, BPI, MME and MMP8) were incorporated into a nomogram, which was

used to predict the onset of ARDS in septic patients. The calibration curves of

the nomogram showed good consistency between the probabilities and

observed values. The decision curve analysis also revealed the potential

clinical usefulness of the nomogram. The area under the receiver operating

characteristic (AUROC) for the prediction of ARDS occurrence in septic

patients by the nomogram was 0.86 (95% CI = 0.767-0.952). A sensitivity
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analysis showed that the AUROC for the prediction of ARDS development in

septic patients without direct lung injury was 0.967 (95% CI = 0.896-1.0).

Conclusions: The nomogram based on transcriptional biomarkers and clinical

parameters showed a good performance for the prediction of ARDS

occurrence in septic patients.
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Introduction

Acute respiratory distress syndrome (ARDS), a severe form

of lung injury, represents a common consequence of pneumonia,

trauma, shock, inhalation injury, acute pancreatitis and high-

risk surgery. Meanwhile, ARDS also remains a devastating

complication of severe sepsis, rendering septic patients at

greater risk of in-hospital death (1). It is estimated that there

are more than 210,000 cases of sepsis-induced ARDS (Se-ARDS)

annually in the United States. Notably, patients with Se-ARDS

have higher case fatality rates than those with ARDS caused by

other reasons (2). Therefore, early prediction, recognition, and

identification of Se-ARDS could prompt offering of optimal and

goal-directed therapy.

Numerous studies have examined the role of biomarkers in

ARDS from multiple dimensions, including diagnosis,

prognosis and prediction (3). It has been widely accepted

that a panel of biomarkers was superior to individual clinical

parameter or biomarker in predicting or diagnosing ARDS (4–

6). However, majority of earlier studies merely focused on

predictive value of clinical biochemical indexes, serum level

of inflammatory mediators, as well as protein molecules

correlating with endothelial and epithelial injury (3). In

addition, ARDS is a highly heterogeneous syndrome, and

biomarker levels have been shown to substantially differ

across ARDS resulted from disparate causes (7). Seldom

studies have explored the potential significance of a panel of

biomarkers in predicting the development of ARDS in patients

with severe sepsis (6).

To date, transcriptomic-based research bring about

encouraging results in the field of infectious diseases, including

sepsis/Se-ARDS (8, 9). Bioinformatic studies especially on the

changes of gene expression network have revealed the differences

in gene expression between patients with sepsis alone and septic

patients complicated with ARDS (9–11). In the present study, we

screened the transcriptional indicators for the occurrence of

ARDS among septic patients using systemic and comprehensive

bioinformatics methods, followed by establishment of a

predictive model containing a small panel of transcriptional
02
and clinical biomarkers, thereby prompting the identification of

septic patients at greater risk for developing ARDS.
Materials and methods

Data source

This research included data of septic patients from a

previously published prospective study, which enrolled

critically ill patients admitted to a tertiary care hospital

intensive care unit (ICU) (12). The original trial was approved

by the Institutional Review Board of the University of California,

San Francisco. Informed consent was obtained as described in

another previous paper. Raw data (GSE66890) were available in

the Gene Expression Omnibus (GEO) database (https://www.

ncbi.nlm.nih.gov/geo/). The secondary analyses of the data were

approved by the ethics committee of the Changhai hospital.
Study population and data extraction

The patients were selected according to the inclusion and

exclusion criteria adopted by the original study. The details of the

criteria have been described clearly, in which sepsis was defined as

documented or suspected infection along with presence of two or

more characteristics of systemic inflammatory response syndrome

(SIRS) (12). Following demographic and laboratory data were

extracted: age, gender, etiology of lung injury, Acute Physiology

and Chronic Health Evaluation III (APACHE III), tumor,

presence of shock, absolute neutrophil count (ANC), white

blood cell count (WBC), and serum creatinine. All the data

were collected within 24 h of admission to the ICU.
Outcome measurement

The primary outcome of this study represented the

development of ARDS. In the present study, the Berlin
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definition of ARDS was applied. The secondary endpoint

represents 60-day mortality, which was defined as in-hospital

death up to day 60 of follow-up.
Microarray data

The original expression profile data of GSE66890 was

downloaded from the GEO database. Twenty-nine whole blood

samples collected from patients with sepsis alone and twenty-eight

samples from septic patients with ARDS were included in

GSE66890. Gene expression profiles were generated using

Affymetrix Human GeneChip Gene 1.0 ST array (Affymetrix,

Santa Clara, CA). Detailed methodologies on RNA extraction and

microarray hybridization can be found in the GEO database.
Identification of the differentially
expressed genes

Differentially expressed genes (DEGs) screening was performed

between the patients with sepsis alone and septic patients with

ARDS using ‘Limma’ package. A p value < 0.05 and |log fold change

(FC)| > 1 were considered as of statistical significance. The DEGs

were visualized using a volcano plot and a heatmap with ‘ggplot2’

and ‘pheatmap’ package, respectively. Upregulated and

downregulated DEGs were identified independently.
Construction of gene network and
functional annotation

To further explore latent biological function of these genes, a

gene network was constructed based on the Genemania database

(http://genemania.org/). The analysis parameters are as follows:

max resultant genes=20; max resultant attributes=10. Functional

annotation was carried out using Gene Ontology (GO) items.
Statistical analysis

Continuous data in normal distribution were expressed as

mean ± standard deviation, whereas non-normally distributed

continuous variables were summarized as median (interquartile

range). Categorical variables were presented as numbers or

percentage. Student’s t test, One-way analysis of variance

(ANOVA), Mann-Whitney U test, Chi-square test or Fisher’s

exact test were used as appropriate. Univariable logistic

regression analyses were performed and the statistically

significant variables with p value less than 0.05 were further

selected for multivariable logistic regression analyses. According

to the Akaike Information Criterion (AIC), the prediction model

corresponding to the minimum AIC value was selected. The
Frontiers in Immunology 03
calibration plot was adopted to assess the goodness of fit of the

model, and decision curve analysis (DCA) was applied to

evaluate the benefits. The concordance index (c-index) was

used to determine the discriminatory capacity of the model.

The Hosmer–Lemeshow goodness of fit test was conducted to

validate the calibration. The receiver operating characteristic

(ROC) curve was used to calculate the optimal diagnostic cut-off

value. All statistical analyses were carried out using R software

(version 4.1.3) and SPSS software (version 21.0). A two-tailed p

value less than 0.05 was deemed as of statistical significance.
Results

Baseline characteristics of
enrolled patients

The clinical characteristics of the included patients from

GSE66890 dataset was shown in Table 1. The mean age of this

cohort was 62.74 ± 20.01 years, of which 32 (56.1%) were males.

Among a total of 57 septic patients, 28 (49.1%) developed ARDS.

Of note, direct lung injury as an etiology of ARDS was more

prevalent in septic patients with ARDS (72.4%) than those without

ARDS (46.4%). ARDS was apt to occur in septic patients with

shock as well as those with higher APACHE III scores.

Conversely, ARDS was rarely observed in patients without

tumor. There was no difference in age, gender, ANC, WBC and

creatinine between septic patients with or without ARDS. The

incidence of end-stage renal disease (ESRD) and death at 60 days

were 10.3% and 31% in septic patients with ARDS and 17.9% and

17.9% in septic patients without ARDS, respectively.
Identification of the differently
expressed genes

The DEGs were screened by ‘limma’ package with R

software. The GSE66890 dataset contained six DEGs,

including five upregulated genes: bactericidal permeability

increasing protein (BPI), olfactomedin 4 (OLFM4), lipocalin 2

(LCN2), CD24, and matrix metallopeptidase 8 (MMP8), with

one downregulated gene: membrane metalloendopeptidase

(MME), as shown by the heatmap and volcano plot (Figure 1).

The expression levels of these genes between the two groups

were presented and compared in Figure 2. The septic patients

who develop ARDS during their late course have significantly

higher expression levels of BPI (7.27 ± 0.99 vs. 8.33 ± 1.35,

p=0.001), OLFM4 (7.42 ± 1.79 vs. 8.88 ± 1.91, p=0.004), LCN2

(8.6 ± 1.25 vs.9.73 ± 1.59, p=0.005), CD24 (5.76 ± 1.16 vs. 6.92 ±

1.86, p=0.007), MMP8 (8.56 ± 2.05 vs. 9.86 ± 2.29, p=0.027) and

lower levels of MME (9.42 ± 1.27 vs. 8.29 ± 1.99, p=0.014) than

those not developed ARDS. However, due to distinct time points

of sampling, there was no difference between septic patients and
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septic patients with ARDS (data from GSE10474 and GSE32707)

(Supplementary Figures 1, 2). Furthermore, we performed a

gene network analysis based on 6 identified DEGs. As shown in

Supplementary Figure 3, co-expressed and co-localized genes

was predominantly enriched in GO terms, including leukocyte

proliferation, defense response to bacterium and fugus,

g r anu lo cy t e m ig r a t i on a s we l l a s r e gu l a t i on o f

inflammation response.
Identifying indicators for the onset of
ARDS in septic patients

Thereafter, we applied univariate and multivariate

regression analysis to select potential risk factors of ARDS

occurrence in septic patients. As shown in Table 2, the
Frontiers in Immunology 04
univariate analysis results showed that the following variables

were significant risk factors: direct lung injury (Odds ratio [OR]

=3.029, 95% confidence interval [CI]=1.006-9.119, p=0.049),

shock (OR=3.5, 95%CI =1.158-10.579, p=0.026), APACHE III

scores (OR=1.025, 95%CI=1.008-1.042, p=0.003), WBC

(OR=0.916, 95%CI =0.84-0.998, p=0.044), tumor (OR=3.929,

95%CI=1.232-12.531, p=0.021), BPI (OR=2.078, 95%CI=1.271-

3.399, p=0.004), OLFM4 (OR=1.523, 95%CI=1.121-2.07,

p=0.007), LCN2 (OR=1.715, 95%CI=1.15-2.557, p=0.008),

CD24 (OR=1.648, 95%CI=1.115-2.435, p=0.012), MMP8

(OR=1.318, 95%CI=1.025-1.694, p=0.031), and MME

(OR=0.667, 95%CI=0.475-0.936, p=0.019). However,

multivariate regression analysis after adjusting for evaluated

factors substantiated that only direct lung injury (OR=15.52,

95%CI=2.12-238.45, p=0.02) was significantly associated with

the development of ARDS (Figure 3).
A B

FIGURE 1

Identification of differently expressed genes (DEGs) associated with the onset of ARDS in septic patients. Six DEGs were identified between
critically ill patients with sepsis alone and septic patients who developed ARDS, as visualized by volcano plot (A) as well as heatmap (B).
TABLE 1 Baseline characteristics, laboratory parameters and clinical outcomes stratified by the ARDS occurrence.

Characteristics Total With ARDS No ARDS p value

Age 62.74 ± 20.01 58.62 ± 19.12 67.0 ± 20.32 0.882

Male 32 16 (55.2%) 16 (57.1) 0.881

Direct lung injury* 34 21 (72.4%) 13 (46.4%) 0.046

Shock 33 21 (72.4%) 12 (42.9%) 0.024

APACHE III 103.58 ± 39.43 119.76 ± 29.88 86.82 ± 31.66 0.041

ANC 11.28 ± 6.95 9.82 ± 7.09 12.8 ± 6.59 0.897

WBC 12.78 ± 7.17 10.81 ± 6.97 14.81 ± 6.91 0.733

Creatinine 1.37 (0.87, 2.5) 1.45 (0.96,2.49) 1.13 (0.85,3.27) 0.497

Tumor# 21 15 (51.7%) 6 (21.4%) 0.018

ESRD 8 3 (10.3%) 5 (17.9%) 0.47

60-day mortality 14 9 (31.0%) 5 (17.9%) 0.248

APACHE, acute physiology and chronic health evaluation; ANC, absolute neutrophil count; WBC, white blood count; ESRD, end-stage renal disease; * Direct lung injury is defined as
ARDS risk factor of pneumonia or aspiration; #Includes: solid metastatic, solid nonmetastatic, leukemia, lymphoma, and multiple myeloma.
fron
tiersin.org

https://doi.org/10.3389/fimmu.2022.1084568
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yao et al. 10.3389/fimmu.2022.1084568
Establishment of the nomogram for
ARDS prediction in septic patients

We fitted several multinomial logistic regression models of

ARDS prediction using a backward stepwise selection method.

The AIC of each model was presented in Table 3, in which the

best-performing model corresponding to the minimum AIC was
Frontiers in Immunology 05
selected. According to the outcome prediction model, six

valuable risk factors (direct lung injury, shock, tumor, BPI,

MME and MMP8) were incorporated into the nomogram,

which was used to predict the occurrence of ARDS in septic

patients (Figure 4). The decision curve analysis and calibration

curves were carried out to determine net benefit and predictive

capacity of the nomogram. As shown in Figure 5, if the threshold

probability is over 0.05, the septic patients who developed ARDS

would benefit more from using this nomogram than the treating

all or treating none scenarios. Besides, the calibration curve

exhibited good consistency between predicted probability and

observed probability, indicating optimal goodness of fit.

Meanwhile, the c-index of the nomogram was 0.86, with a p

value of 0.581 for Hosmer–Lemeshow goodness of fit test.
Verifying the performance of the
nomogram in predicting ARDS

A point for each patient was calculated based on the nomogram

and evaluated by ROC curve. As shown in Figure 6A, the area

under the ROC (AUROC) for the prediction of ARDS occurrence

in septic patients by the nomogram was 0.86 (95% CI=0.767-0.952).

When the optimal cutoff point was set at 14.29, the corresponding

specificity and sensitivity values were 89.29% and 65.52%,

respectively. Furthermore, the discriminatory capacity of the
FIGURE 2

Comparison of DEGs expression between two groups. The
expression level of DEGs were compared between patients with
sepsis and patients with sepsis-induced ARDS (Se-ARDS),
including BPI, OLFM4, LCN2, CD24, MMP8 and MME. Statistics
are by Student’s t test. A two-tailed p value less than 0.05 is
deemed as of statistical significance. *p < 0.05, **p < 0.01.
TABLE 2 Univariate analysis of the predictors for the development of ARDS.

Variables OR 95%CI p

Age 0.978 0.951-1.006 0.118

Gender (male vs. female) 0.923 0.324-2.629 0.881

Direct lung injury* 3.029 1.006-9.119 0.049

Shock 3.5 1.158-10.579 0.026

APACHE III 1.025 1.008-1.042 0.003

ANC 0.935 0.861-1.016 0.113

WBC 0.916 0.84-0.998 0.044

Creatinine 0.991 0.8-1.226 0.932

ESRD 0.531 0.114-2.469 0.419

Tumor# 3.929 1.232-12.531 0.021

BPI 2.078 1.271-3.399 0.004

OLFM4 1.523 1.121-2.07 0.007

LCN2 1.715 1.15-2.557 0.008

CD24 1.648 1.115-2.435 0.012

MMP8 1.318 1.025-1.694 0.031

MME 0.667 0.475-0.936 0.019

APACHE, Acute Physiology and Chronic Health Evaluation; ANC, absolute neutrophil count; WBC, white blood count; ESRD, end-stage renal disease; * Direct lung injury is defined as
ARDS risk factor of pneumonia or aspiration; #Includes: solid metastatic, solid nonmetastatic, leukemia, lymphoma, and multiple myeloma.
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nomogram was evidently superior than that of sole use of miRNA.

Since direct lung injury represents one of common causes of ARDS,

which may overlap with the contribution of sepsis, we therefore

performed a sensitivity analysis evaluating the performance of this

nomogram among septic patients without direct lung injury. As

shown in Figure 6B, the AUROC for the prediction of ARDS in

septic patients without direct lung injury was 0.967 (95% CI=0.896-

1.0). To validate the robustness of our model, we repeated

the analysis in predicting the 60-day mortality for all septic

patients, in which the nomogram had an AUROC of 0.796 (95%

CI = 0.66-0.932), indicating an acceptable performance

(Supplementary Figure 4).
Discussion

In the present study, by analyzing the microarray data of

whole blood samples collected from critically ill septic patients

with and without ARDS development, we identified several

genes that were differentially expressed upon ICU admission.
Frontiers in Immunology 06
As the samples were collected before the development of ARDS

in this cohort, we identified that the septic patients who would

develop ARDS lately had increased expression of BPI, OLFM4,

LCN2, CD24, MMP8 and decreased expression of MME at early

time. Moreover, we combined significant clinical indicators

(direct lung injury, shock and tumor) and genetic biomarkers

(BPI, MME and MMP8) to generate a predictive model of ARDS

in patients with sepsis, which showed good performance in

terms of discriminatory capacity and goodness of fit.

Based on the public data GSE32707 dataset from GEO, Ming

et al. identified SIGLEC9, TSPO, CKS1B, and PTTG3P as top

ranking DEGs between patients with sole sepsis and those with

Se-ARDS (9). Chen et al. screened out twelve DEGs by

comparing chip data containing samples of acute lung injury

with sepsis and samples of sepsis alone from GSE10474 dataset.

Using the “limma” package for differential expression analysis,

we identified six DEGs between patients with sepsis and those

developing Se-ARDS. Different from previous studies, the blood

samples in the present study were collected in septic patients

before the development of ARDS, which partially explained why
FIGURE 3

Multivariate analysis in identifying the predictors of ARDS. Forest plot showed the results of multivariate regression analysis after incorporating
statistically significant factors in the univariate analysis, in which direct lung injury was identified as independent risk factor.
TABLE 3 Comparison of the performance across different models.

Models AIC

Direct lung injury* + Shock + APACHE III + Tumor# + WBC+ OLFM4+ BPI+ LCN2+ CD24+ MME+ MMP8 70.85

Direct lung injury + Shock + APACHE III + Tumor + WBC+ OLFM4+ BPI+ LCN2+ MME+ MMP8 69.0

Direct lung injury + Shock + APACHE III + Tumor + WBC+ OLFM4+ BPI+ MME+ MMP8 67.58

Direct lung injury + Shock + APACHE III + Tumor + OLFM4+ BPI+ MME+ MMP8 66.41

Direct lung injury + Shock + APACHE III + Tumor + BPI+ MME+ MMP8 65.56

Direct lung injury + Shock + Tumor + BPI+ MME+ MMP8 64.83

APACHE, Acute Physiology and Chronic Health Evaluation; WBC, white blood count; * Direct lung injury is defined as ARDS risk factor of pneumonia or aspiration; # Includes: solid
metastatic, solid nonmetastatic, leukemia, lymphoma, and multiple myeloma.
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we failed to validate the expressions of these six DEGs using the

GSE32707 and GSE10474 datasets. This divergency implied that

these DEGs in our findings might critically involve in

progression process to ARDS in sepsis.

In the original study, Kangelaris et al. have demonstrated that

these DEGs were neutrophil-related genes andmediators of innate

immune response, in consistent with our findings in gene network

analysis (12). The role of these DEGs in sepsis or ARDS have been

investigated and described previously. BPI is a cationic protein

isolated from human neutrophils that binds lipopolysaccharide

(LPS), thereby neutralizing many of the effects of LPS and

ameliorating endotoxin effects (13, 14). Although autoantibodies

targeting both the N-terminal domain and C-terminal domain of

BPI could inhibit the functional activity of BPI, targeting the hinge

region of BPI could enhance bacterial clearance (15). In a previous

study, recombinant BPI treatment was shown to inhibit

endotoxin-induced activation of circulating neutrophil and

diminish the production of inflammatory cytokines, thereby

alleviating acute lung injury (16). Correspondingly, it suggested
Frontiers in Immunology 07
a therapeutic potential of targeting BPI for the treatment of ARDS

patients. OLFM4, an important regulator of inflammatory and

immune responses, is highly expressed in various inflammatory

diseases (17). In an LPS-challenge rat model, blockage of OLFM4

expression was confirmed to mitigate lung tissue damage and

hyperinflammatory response (18). Additionally, Higher

percentages of OLFM4+ neutrophils were shown to be

associated with worsening clinical outcomes in patients with

sepsis, blunt traumatic injuries, and ARDS (19, 20). LCN2, also

known as neutrophil gelatinase-associated lipocalin (NGAL), has

been identified as a key player in antimicrobial process, oxidative

stress and inflammation (21, 22). Studies have revealed that LCN2

inhibition or silencing could exert protective effect on LPS-

induced ARDS model via inhibition of ferroptosis-related

inflammation and oxidative stress (23). Meanwhile, LCN2 was

significantly elevated and positively correlated with disease

severity in patients with influenza or COVID-19 (24).

Interestingly, LCN2 expression is markedly upregulated in septic

ALI mice compared with those without ALI, which is consistence

with our findings (25). These results implied that LCN2 might

play a pivotal role in the pathogenesis of ARDS. The CD24

molecule represents the neutrophil ligand of P-selectin, which is

deemed as a regulator of heterotypic neutrophil-platelet and

platelet-endothelial cell interactions. The expression of CD24

may serve as an indicator of vascular inflammation in ARDS

(26, 27). MMP8, belongs to the member of the MMP family, is

expressed predominantly by neutrophils. Quintero et al. showed

that MMP8 regulated the accumulation of neutrophils and

macrophages in the lung tissue during LPS-induced lung injury

(28). Furthermore, inhibiting MMP8 activity or reduction in

expression level of MMP8 in the lungs could restrain lung

fibrotic responses to injury (29). In pediatric patients with

ARDS, MMP8 expression levels were elevated, in association

with deteriorative outcomes (30–32). MME, also known as

neutral endopeptidase (NEP), is an enzyme that cleaves

inflammatory bioactive peptides. Emerging evidence revealed

that NEP played an protective role in ARDS, pharmacological
A B

FIGURE 5

Testifying the net benefit and fitting of the nomogram. Calibration and decision curve analysis was used to determine the goodness of fit and
net benefit of the nomogram, respectively. (A) Calibration plot of the nomogram. (B) DCA curve of the nomogram.
FIGURE 4

Establishment of the nomogram predicting ARDS in septic
patients. Nomogram involving direct lung injury, shock, tumor,
BPI, MME and MMP8 was visualized and applied for the
prediction of ARDS among critically ill patients with sepsis.
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inhibition of which exacerbated lung vascular leakage inmice with

smoke inhalation injury (33), also evidenced by exaggerated acute

pancreatitis-associated lung injury in NEP-deficient mice (34).

Similar to our results, Hashimoto et al. found a substantial

decrease in the peripheral activity of NEP. However, they found

its intra-alveolar activity was significantly increased (35).

Although there were numerous studies exploring the

biomarkers for prediction of the onset of ARDS, none has been

universally accepted. There is an agreement that the combination of

indicators results in better performance than the sole use of

biomarkers. Fremont et al. reported a panel of seven cytokines,

including receptor for advanced glycation end-products (RAGE),

procollagen peptide III (PCPIII), brain natriuretic peptide (BNP),

angiopoietin-2 (Ang-2), interleukin-10 (IL-10), tumor necrosis

factor alpha (TNF-a) and interleukin-8 (IL-8), with high

diagnostic accuracy for ARDS occurrence (4). Likewise, Villar

et al. constructed a predictive model by combining RAGE, C-X-C

Motif Chemokine Ligand 16 (CXCL16), Ang-2 and PaO2/FiO2,

facilitating ARDS prediction among septic patients (36). In

considering of the cost-effectiveness and multicollinearity of the

incorporated biomarkers reflecting similar pathophysiology, Fu

et al. recently found that the diagnostic value of ARDS improved

when combining C-reactive protein (CRP), Ang-2, clara cell

secretory protein (CC16), high mobility group protein 1

(HMGB1) and PaO2/FiO2 (37). However, exclusively inclusion of

known protein biomarkers may inevitably lead to the limitations of

the advances in biomarkers research and clinical application

progress on ARDS. To comprehensively enhance predictive

accuracy and develop a multi-parametric prediction, the current

study applied bioinformatics analysis by combining demographics

and clinicopathological features with transcriptomic data. The

microarray data and bioinformatics analysis help uncovering the

in-depth pathogenesis and advancing the discovery of new
Frontiers in Immunology 08
biomarkers. Unexpectedly, according to multivariate regression

analysis, only direct lung injury was demonstrated to be an

independent risk factor for the onset of ARDS. Since

multicollinearity across distinct indicators may exist, holistic

incorporation of parameters that are of statistically significant in

univariate regression analysis into a single model could inevitably

eliminate their potential in predicting endpoints. To avoiding

underfitting and overfitting of the model, we therefore

constructed and screened multinomial logistic regression models

using backward stepwise selection method in line with the AIC

principle, followed by visualization using a nomogram (38).

Consequently, our results showed that the nomogram based on

direct lung injury, shock, tumor, BPI, MME and MMP8, had

incremental predictive value compared to that of the single

indicators. The nomogram performs well in recognizing the

complication of ARDS in septic patients, with a c-index of 0.860,

indicating a satisfactory discriminatory capacity. The Hosmer-

Lemeshow goodness of fit test showed a good consistency

(p=0.581). Moreover, after excluding septic patients with direct

lung injury, the nomogram also showed an acceptable performance

in predicting ARDS.

We acknowledged several limitations when interpretating key

findings in the present study. Firstly, since this is a secondary

analysis based on previously reported dataset, we have no access to

the detailed patient records and may not account for other factors

associated with ARDS occurrence. Secondly, the sample size is

relatively modest, which may increase the opportunity underlying

the influence of confounding factors. Thirdly, the genes were

detected only in circulating leukocytes but not in other cells

known to be involved in the pathogenesis of lung injury. Future

studies assessing single cell transcriptomics of other cells such as

endothelial and epithelial cells are clearly warranted. Most

importantly, the findings of this study require further validation
A B

FIGURE 6

Validating the predictive value of the nomogram. Receiver operating characteristic (ROC) curve was adopted to verify the discriminatory
capacity of the nomogram and sole use of each DEG in predicting ARDS incidence in septic patients. (A) ROC curve of the nomogram and each
DEG in predicting ARDS occurrence among all septic patients. (B) ROC curve of the nomogram for ARDS prediction in septic patients without
direct lung injury.
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in an independent and external datasets. Despite these limitations,

the striking capacity of this nomogram in predicting the

development of ARDS among septic patients highlights the

superiority of generating a model combining transcriptional

biomarkers and clinical parameters.

In summary, we identified six genes that were differentially

expressed upon ICU admission between septic patients with or

without the development of ARDS. A nomogram combining

transcriptional biomarkers and clinical parameters was

established and showed a favorable performance in predicting

the onset of ARDS in patients with sepsis.
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Comparing the expression levels of BPI, OLFM4, LCN2, CD24, MMP8, and
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Analysis of the expression levels of BPI, OLFM4, LCN2, CD24, MMP8, and
MME in GSE32707.

SUPPLEMENTARY FIGURE 3

Gene network analysis based on DEGs. Gene network was constructed
based on 6 identified DEGs, including BPI, OLFM4, LCN2, CD24, MMP8,

and MME, showing co-expressed and co-localized genes, with functional

annotation in line with Gene Ontology (GO) category.

SUPPLEMENTARY FIGURE 4

ROC curve showing the discriminatory capacity of the nomogram in

predicting 60-day mortality for septic patients.
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