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Single-cell profiling reveals
distinct subsets of CD14+
monocytes drive blood immune
signatures of active tuberculosis
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Introduction: Previous studies suggest that monocytes are an important

contributor to tuberculosis (TB)-specific immune signatures in blood.

Methods: Here, we carried out comprehensive single-cell profiling of

monocytes in paired blood samples of active TB (ATB) patients at diagnosis

and mid-treatment, and healthy controls.

Results: At diagnosis, ATB patients displayed increasedmonocyte-to-lymphocyte

ratio, increased frequency of CD14+CD16- and intermediate CD14+CD16+

monocytes, and upregulation of interferon signaling genes that significantly

overlapped with previously reported blood TB signatures in both CD14+ subsets.

In this cohort, we identified additional transcriptomic and functional changes in

intermediate CD14+CD16+monocytes, such as the upregulation of inflammatory

and MHC-II genes, and increased capacity to activate T cells, reflecting overall

increased activation in this population. Single-cell transcriptomics revealed that

distinct subsets of intermediate CD14+CD16+ monocytes were responsible for

each gene signature, indicating significant functional heterogeneity within this

population. Finally, we observed that changes in CD14+monocyteswere transient,
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as they were no longer observed in the same ATB patients mid-treatment,

suggesting they are associated with disease resolution.

Discussion: Together, our study demonstrates for the first time that both

intermediate and classical monocytes individually contribute to blood

immune signatures of ATB and identifies novel subsets and associated gene

signatures that may hold disease relevance.
KEYWORDS

tuberculosis, monocytes, transcriptomics (RNA-Seq), flow cytometry,
immune signatures
Introduction

Tuberculosis (TB) is a leading cause of mortality from

infectious diseases worldwide. The WHO estimates that one-

quarter of the world population is infected with Mtb, with 10

million new cases and 1.5 million deaths each year (1). In 2020,

the annual number of TB deaths has risen for the first time in

more than a decade, as many cases have gone undiagnosed or

untreated during the numerous COVID-19 related lockdowns

worldwide (1).

Upon infection with Mtb, most individuals are asymptomatic

and control bacilli within lung granulomas, or even eliminate the

infection altogether, whereas others will exhibit Mtb

multiplication primarily in the lung, causing active pulmonary

disease (2, 3). The asymptomatic stage ofMtb infection is typically

diagnosed with positive reactivity to Interferon Gamma Release

Assays (IGRA) tests in the blood (2). Active TB (ATB) is

associated with clinical symptoms, risk of transmission, and

high mortality (2). Research on host immune responses to Mtb

has been ongoing for decades, yet we still do not have a full

understanding of which cellular and molecular components

constitute a protective (associated with controlled infection, or

even sterilization) versus a pathologic (leading to the development

of active disease) immune response (4–6).

The transcriptomic analysis of immune cell populations is a

powerful approach for the identification of mechanistic

signatures of disease, including TB (7, 8). Numerous studies

have identified whole blood and peripheral blood mononuclear

cells (PBMC) signatures of TB, as reviewed in (9–11). Such

signatures have proven to be promising tools for improving

diagnosis of ATB, particularly in the presence of co-morbidities

such as HIV (12, 13), predicting which IGRA+ individuals will

progress to active disease (11, 14, 15), and predicting TB

treatment outcomes (16, 17). Different blood cell types are

likely responsible for different component of these signatures.

The seminal blood signature of ATB associated with IFN
02
signaling has been shown to be expressed by neutrophils and

to a lower extent by CD14+ monocytes (9, 18), which are present

in abundance in the blood. Conversely, blood signatures of early

progression from IGRA+ to ATB were enriched for NK cell and

T cell modules (15), and blood signatures of anti-TB treatment

shared between ATB and IGRA+ individuals at risk of

progression were associated with activated T cells (19).

There is evidence that monocytes can be directly infected by

Mtb in vitro (20), and participate in the host immune response to

infection (21, 22). Monocytes are also precursors to interstitial

macrophages that are recruited to the lung during Mtb infection

(22, 23). Moreover, total monocyte counts as well as monocyte to

lymphocyte ratio are increased in ATB compared to IGRA+ (24,

25), are prospective markers of ATB risk (26, 27), and are reduced

following TB therapy in ATB (25). Altogether, there is large

amount of evidence suggesting that monocytes are an important

contributing subset to blood immune signatures in TB.

Functionally, monocytes are known to possess phagocytic and

pathogen sensing abilities. In humans, three populations of

monocytes with unique functional properties can be identified by

surface expression of CD14 and CD16 (28). Classical monocytes

(CD14+CD16-) produce a multitude of pro-inflammatory

cytokines and are known for their superior phagocytic ability,

while non-classical monocytes (CD14-CD16+) are regarded for

their role in transendothelial crawling and adhesion, which aid in

anti-viral response (29, 30). The intermediate population,

commonly defined as CD14+CD16+, holds the highest antigen

presentation capability amongst monocytes, and can produce

reactive oxygen species and IL-12 (30).

In this study, we carried out a comprehensive cellular and

gene profiling of the circulating monocyte compartment in the

context ofMtb infection. Using flow cytometry, bulk and single-

cell RNA sequencing, we isolated and interrogated the

transcriptomic profile of monocyte subsets isolated from

PBMC in a cohort of ATB patients with paired sampling at

diagnosis and following treatment (i.e., two to six months after
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initiation of a standard six-month anti-TB therapy), as well as

fromMtb sensitized (IGRA+) and unsensitized (IGRA-) healthy

individuals. We aimed to compare the frequency and gene

signature of each subset in ATB at diagnosis (uncontrolled

infection) compared to treated ATB, IGRA+ (successful

control of infection), and IGRA- (no infection) to further

inform on the contribution of myeloid cells to blood TB

signatures and provide novel molecular insights into myeloid-

associated immune responses that may be associated with the

control of Mtb.
Results

The increased frequency of circulating
monocytes in ATB patients stems from
classical CD14+CD16- and intermediate
CD14+CD16+ monocytes

For this study, we utilized cryopreserved PBMC of 20

healthy IGRA-, 40 IGRA+, and 25 ATB patients (collected at
Frontiers in Immunology 03
diagnosis, including 22 with a mid-treatment paired sample) as

described in the methods section and in Table S1. Mean age was

33, 39 and 34 years old for the IGRA-, IGRA+ and ATB cohorts,

respectively (Table S1). The proportion of female to male was

60%, 45% and 40% for the IGRA-, IGRA+ and ATB cohorts,

respectively (Table S1). To confirm previous findings that the M/

L ratio was elevated in ATB at diagnosis (24, 25), we first

quantified the proportion of monocytes and lymphocytes

using flow cytometry. Lymphocytes were identified as positive-

and monocytes were identified as negative for the expression of

any of the three major lymphocyte markers CD3, CD19 and

CD56 (lineage positive and lineage negative populations,

Figure 1A). The M/L ratio was calculated by dividing the

frequency of live lineage negative cells with the frequency of

live lineage positive cells. The M/L ratio was increased in PBMC

samples from ATB patients at diagnosis and to a lesser extent in

IGRA+ individuals, in comparison to the IGRA- healthy cohort

(Figure 1B). The high M/L ratio in ATB patients at diagnosis was

reduced in longitudinal samples collected mid-treatment,

reverting to levels similar to those in the IGRA- healthy cohort

(Figure 1B). The significance of this finding was confirmed using
B

C D

E F

A

FIGURE 1

Increased frequency of circulating classical CD14+CD16- and intermediate CD14+CD16+ monocytes in ATB at diagnosis. (A) Gating strategy to
calculate the monocyte to lymphocyte (M/L) ratio based on the negative or positive expression of lymphocyte lineage markers using flow
cytometry. (B) M/L ratio in active TB (ATB) at diagnosis, ATB mid-treatment, IGRA+ and IGRA- cohorts. (C) Gating strategy to identify CD14/
CD16 sub-populations from the lymphocyte lineage negative population identified in Figure 1A. (D) Frequency of lineage negative CD14+CD16-,
CD14+CD16+, CD14-CD16+ and CD14-CD16- cells in ATB diagnosis, ATB mid-treatment, IGRA+ and IGRA- cohorts. (E) Gating strategy to
identify CD14/CD16 sub-populations within intermediate CD14+CD16+ monocytes identified in Figure 1C. (F) Frequency of CD14hiCD16mid,
CD14hiCD16hi and CD14midCD16hi monocytes in ATB diagnosis, ATB mid-treatment, IGRA+ and IGRA- cohorts. Data was from cryopreserved
PBMC of 25 ATB subjects at diagnosis (with 22 paired mid-treatment samples), 40 IGRA+ and 20 IGRA- individuals. *p < 0.05, **p < 0.01, ***p <
0.001, ****p < 0.0001, nonparametric unpaired Mann-Whitney U test (black stars) and nonparametric paired Wilcoxon test (blue stars).
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a complementary gating strategy identifying monocytes and

lymphocytes using size and complexity parameters (FSC and

SSC), without taking in consideration the expression of lineage

markers (M/L size ratio, Figures S1A and S1B).

To investigate which monocyte subset contributed to the

elevated M/L ratio in ATB at diagnosis, we further identified

amongst lineage negative (CD3-CD19-CD56-) cells the four

major myeloid populations present in peripheral blood,

namely: classical CD14+CD16-, intermediate CD14+CD16+,

non-classical CD14-CD16+ monocytes, and CD14-CD16- cells

(a, b, c, and d in Figure 1C). The CD14-CD16- population is

expected to contain non-monocyte myeloid cells present in

PBMC, such as dendritic cells and granulocytes (e.g.,

basophils) (31, 32). The frequency of classical CD14+CD16-

and intermediate CD14+CD16+ monocytes was increased in

both ATB diagnosis and IGRA+ cohorts, compared to the

IGRA- cohort (Figure 1D). The frequency of intermediate

CD14+CD16+ monocytes was further increased in ATB at

diagnosis compared to IGRA+ (Figure 1D). In ATB patients,

the frequencies of classical CD14+CD16- and intermediate

CD14+CD16+ monocytes were reduced at mid-treatment

compared to diagnosis (Figure 1D). No significant changes in

the frequency of non-classical CD14-CD16+ monocytes or

CD14-CD16- myeloid cells were observed between cohorts or

during anti-TB therapy (Figure 1D).

Previous transcriptomic studies have shown that the

intermediate CD14+CD16+ monocyte population is

heterogeneous and overlaps with classical CD14+CD16- and

non-classical CD14-CD16+ monocytes (33). Since CD14 and

CD16 display a continuous ‘smeary’ expression in myeloid cells,

the CD14+CD16+ population may contain ‘contaminating’

CD14+CD16- or CD14-CD16+ monocytes depending on where

CD14 and CD16 positive expression gates are set (34). To

examine this possible ‘contamination’, we divided the

CD14+CD16+ population into three sub-populations:

CD14hiCD16mid, CD14hiCD16hi and CD14midCD16hi (e, f, and

g in Figure 1E). Both CD14midCD16hi and CD14hiCD16hi cell

subsets showed increased frequency in ATB patients at diagnosis

compared to mid-treatment and IGRA-/+ controls (Figure 1F).

The significance was stronger for CD14hiCD16hi cells, suggesting

that the increased frequency observed in intermediate

CD14+CD16+ monocytes in ATB at diagnosis is not due to a

poor separation between CD14/CD16 positive and negative

populations, but rather reflects a ‘true’ increased frequency of

cells co-expressing these two markers.

Taken together, our data show that the increased frequency

of circulating monocytes found in ATB patients at diagnosis

stems from classical CD14+CD16- and intermediate

CD14+CD16+ monocytes. These changes were reverted

following 2-3 months of anti-TB therapy.
Frontiers in Immunology 04
Identification of transcriptomic modules
that can distinguish classical
CD14+CD16- from intermediate
CD14+CD16+ monocytes and display
dysregulated expression in ATB
at diagnosis

Next, we aimed to identify whether the increased frequency in

classical CD14+CD16- and intermediate CD14+CD16+ monocytes

in ATB at diagnosis was only quantitative, or if we could also

identify qualitative transcriptomic changes in these two

populations. Using the same gating strategy as for flow

cytometry, classical CD14+CD16- and intermediate CD14+CD16+

monocytes were sorted and processed for bulk RNA sequencing. As

expected, principal component analysis (PCA) of the most variable

genes segregated samples by cell type (Figure 2A). The intermediate

CD14+CD16+ monocyte population showed higher diversity, as

indicated by its wider spread over the PC1 component, compared

to classical CD14+CD16- monocytes (Figure 2A).

Differential expression analysis identified thousands of genes

significantly dysregulated in ATB at diagnosis compared to other

cohorts, in both monocyte subsets. To reduce the analysis

dimensionality and identify gene clusters with consistent co-

expression patterns, we performed a modular analysis on the

dataset using the well-established WGCNA algorithm (35).

Modular analysis groups together genes with a similar expression

pattern within a given sample, into modules. Since it reduces the

dimensionality of the dataset from thousands of genes to a handful

of modules, it is also very useful to perform correlations with

categorical traits, such as a disease condition. Modular analysis on

the sorted CD14+ monocytes bulk RNA sequencing dataset

identified six modules (Figure 2B, individual gene list for each

module is available in Table S3). The turquoise (1,348 genes) and

red (39 genes) modules showed highest expression in classical

CD14+CD16- monocytes, whereas the brown (427 genes) and blue

(914 genes) modules showed the highest expression in

intermediate CD14+CD16+ monocytes (Figure 2B). The green

(46 genes) and yellow (65 genes) modules showed similar

expression levels across both subsets (Figure 2B). The remaining

161 genes were not classified into any module.

Next, we explored the association between each module and

our disease cohorts using a module-trait relationship analysis

(Figure 2C). We identified one module (brown) with positive

correlation with IGRA+ and negative correlation with ATB at

diagnosis and ATBmid-treatment (Pearson correlation coefficient

= 0.23, -0.24 and -0.14, and p value = 9e-05, 4e-05 and 0.02,

for IGRA+, ATB diagnosis and ATBmid-treatment, respectively).

Three modules (red, turquoise and yellow) showed a

positive correlation with ATB at diagnosis (Pearson correlation

coefficient = 0.19, 0.14 and 0.48 and p value = 0.001, 0.02 and 3e-
frontiersin.org
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18 for the red, turquoise and yellow module respectively) and a

negative correlation with the IGRA+ cohort (Pearson correlation

coefficient = -0.22, -0.12 and -0.22 and p value = 1e-04, 0.04 and

1e-04 for the red, turquoise and yellow module respectively). The

strongest correlation was between ATB at diagnosis and the

yellow module (Pearson correlation coefficient = 0.48 and p

value = 3e-18), and this module was also the only one showing

a significant negative correlation with the IGRA- cohort (Pearson

correlation coefficient = -0.26 and p value = 9e-06). The blue and

green modules showed no significant correlation with any cohort.

We then specifically looked at how the expression of each

module that significantly correlated with ATB at diagnosis

varied across both CD14+ monocyte subsets. The brown

module (negatively correlated with ATB at diagnosis) showed

decreased expression between ATB diagnosis and IGRA+/-

cohorts in both CD14+ monocyte populations (Figure 2D).

Similarly, the yellow module (positively correlated with ATB

at diagnosis) showed increased expression in ATB diagnosis

compared to IGRA+/- cohorts in both CD14+ monocyte

populations (Figure 2E). In contrast, the red and turquoise

modules (also positively correlated with ATB at diagnosis)

showed increased expression in ATB diagnosis compared to

IGRA+/- cohorts in intermediate CD14+CD16+ monocytes only

(Figure 2F). Looking at paired differences in ATB patients

between diagnosis and mid-treatment samples, we observed a
Frontiers in Immunology 05
reduced expression of the yellow and turquoise modules at mid-

treatment compared to diagnosis in both CD14+ monocyte

subsets (Figures 2E, F), and an increased expression of the

brown module in intermediate CD14+CD16+ monocytes

only (Figure 2D).

Taken together, these data identified transcriptomic modules

that could not only distinguish classical CD14+CD16- from

intermediate CD14+CD16+ monocytes, but also showed

significant expression changes in ATB patients at diagnosis

compared to the other cohorts. The intermediate CD14+CD16+

monocyte population showed the highest number of modules with

differential expression in ATB at diagnosis compared to the other

cohorts with three modules upregulated (yellow, turquoise and red)

and one module downregulated (brown).
In ATB at diagnosis, interferon signaling
genes are upregulated in both classical
CD14+CD16- and intermediate
CD14+CD16+ monocytes, and overlap
with previously reported blood
TB signatures

To further characterize the transcriptomic changes in CD14+

monocytes in ATB at diagnosis, we investigated the nature of the
B

C

D

E

F

G
A

FIGURE 2

The CD14+CD16+ population in ATB at diagnosis shows the highest transcriptomic changes compared to other cell populations and cohorts.
(A) Principal component analysis of the transcriptome of CD14+CD16+ and CD14+CD16- myeloid cells in active TB (ATB) at diagnosis, ATB mid-
treatment, IGRA+ and IGRA- cohorts using their combined 1,000 most variable genes. Cells were sorted as defined in Figure 1C and their
transcriptomic profile defined by RNA sequencing. (B) Modular analysis of CD14+CD16+ and CD14+CD6- cells using their combined 3,000 most
variable genes and the WGCNA package (35). (C) Module trait-relationship analysis showing the Pearson correlation coefficient (and associated
p-value in brackets) between each module and clinical cohort groups. Significant correlations are represented in bold. (D-F) Eigengene values
for each module in ATB diagnosis, ATB mid-treatment, IGRA+ and IGRA- cohorts in CD14+CD16+ and CD14+CD6- cells. Statistical comparisons
between eigengene values were performed with nonparametric unpaired Mann-Whitney U test (black stars) and nonparametric paired Wilcoxon
test (blue stars). (G) Pathway enrichment analysis for the yellow, turquoise, red and brown modules identified in Figure 2 which showed
significant changes in expression in ATB at diagnosis compared to IGRA+/- cohorts. The top 10 pathways are displayed, ranked by their
decreasing p-value and the full list of pathways for each module is available in Table S5. Data was from cryopreserved PBMC of 25 ATB subjects
at diagnosis (with 22 paired mid-treatment samples), 40 IGRA+ and 20 IGRA- individuals. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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genes contained within the modules that showed significant

expression changes in this cohort (i.e., brown, yellow, turquoise

and red modules, as identified in Figure 2). We ran a biological

pathway analysis on the top 50 weighed genes of each module

(see Table S4 for individual gene list), and selected the top 10

pathways for display (Figure 2G, full list in Table S5). The yellow

module (which showed increased expression in both CD14+

monocyte subsets in ATB at diagnosis) was associated with the

highest statistical significance for biological pathway

enrichment, with a strong enrichment for both type I and type

II interferon (IFN) signaling (Figure 2G). IFN signaling has been

repeatedly associated with blood transcriptomic signatures of

ATB, identified either for diagnostic or prognostic purposes (9,

11, 14, 16, 18). Specifically, 39 out of the top 50 genes in the

yellow module (including 22 of the 26 genes associated with IFN

signaling) were present in the seminal IFN-associated blood

signature of ATB identified by Berry et al. (Figure S2) (18). Thus,

our data demonstrate that both classical CD14+CD16- and

intermediate CD14+CD16+ monocytes contribute to the IFN-

associated gene signature previously identified in the blood of

ATB patients.
Intermediate CD14+CD16+ monocytes in
ATB patients at diagnosis displayed
increased expression of inflammatory
and MHC-II genes, and increased
capacity to activate T cells

Next, we focused on the gene expression changes specific to

the intermediate CD14+CD16+ monocyte population, namely

those associated with the turquoise and red modules. Both

modules were enriched for pathways associated with

metabolism (turquoise module: “glutathione metabolism”,

“chondroitin sulfate/dermatan sulfate degradation”, “lipid and

lipoprotein metabolism”, “pentose phosphate pathway”; red

module: “PIP2 hydrolysis”, “glycerolipid metabolism”,

“phosphoinositide signaling pathway”, “glycerophospholipid

metabolism) (Figure 2G). In addition, the turquoise module

was associated with i) inflammation (e.g., “leptin influence on

immune response” (BST1, CD36, CSF3R, IL1RN, LYZ, NCF4,

PTAFR) and “endogenous Toll-like receptor signaling” (CD14,

S100A8, S100A9, VCAN)), and ii) antigen presentation (“cross-

presentation of particulate endogenous antigens”) (Figure 2G

and Table S5). It has previously been reported that, in steady

state, intermediate CD14+CD16+ monocytes hold higher antigen

presentation capability compared to classical CD14+CD16-

monocytes (30). To test whether this observation may also

hold true in ATB, we looked more in depth for antigen

presentation genes in our transcriptomic dataset. Within the
Frontiers in Immunology 06
1,348 total genes present in the turquoise module (Table S3), we

identified 12 genes related to MHC-II, including CIITA, CD74,

and several HLA-DP, DQ, and DR genes (Figure 3A). Together,

these 12 genes were significantly upregulated in intermediate

CD14+CD16+ monocytes in ATB at diagnosis compared to

IGRA+/- cohorts, but not in classical CD14+CD16- monocytes

(combined gene score expression Figure 3B, and individual gene

expression Figure S3). All 12 MHC-II related genes were also

significantly downregulated in intermediate CD14+CD16+

monocytes in ATB patients sampled at diagnosis compared to

mid-treatment, whereas only CIITA, CTSB and CTSD showed

significant reduction in expression upon treatment in classical

CD14+CD16- monocytes (Figure S3).

To elucidate whether the upregulation of inflammatory and

MHC-II genes in intermediate CD14+CD16+ monocytes in ATB

patients at diagnosis were associated with functional changes, we

investigated the ability of this monocyte subset to activate T cells,

in the presence or absence of Mtb antigens. Similar to our

transcriptomic analysis, we sorted intermediate CD14+CD16+

monocytes from PBMC of ATB patients sampled at both

diagnosis and mid-treatment (gating strategy Figures 1A, C),

incubated them for five hours with Mtb lysate, and then added

autologous sorted CD4 T cells from the mid-treatment sample

(gating strategy Figure S1C). We elected to sort autologous T

cells only from the mid-treatment sample to correct for potential

changes in Mtb-specific T cell frequency and reactivity during

treatment. After 24 hours of co-culture, we looked for the co-

upregulation of Activation Induced Markers (AIM) OX40 and

PD-L1 on the surface of T cells by flow cytometry. These

markers were previously used to identify Mtb-reactive CD4 T

cells after in vitro simulation (36). As a control, we also sorted

classical CD14+CD16- monocytes in the same ATB patients at

both timepoints, which from our transcriptomic analysis did not

show upregulation of MHC-II related genes as observed in

intermediate CD14+CD16+ monocytes. For both CD14+

monocyte subsets, priming with Mtb lysate increased the

frequency of AIM+ CD4 T cells in comparison to no antigen

priming (Figure 3C). The frequency of AIM+ CD4 T cells

induced with Mtb-priming was superior when using

intermediate CD14+CD16+ monocytes compared to classical

CD14+CD16- monocytes (mean value of 2.9% vs 2.1% AIM+

CD4 T cells for intermediate monocytes vs classical monocytes,

respectively), and this effect was significantly greater at diagnosis

compared to mid-treatment (p value = 0.031, Figure 3D). Thus,

intermediate CD14+CD16+ monocytes isolated from ATB

patients at diagnosis have increased expression of genes

associated with metabolism, inflammation and MHC-II, and

increased capacity to activate T cells uponMtb antigen exposure,

and these characteristics dissipate following 2-3 months of

TB therapy.
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Single-cell transcriptomics reveals the
interferon, MHC-II, and inflammatory
gene signatures originates from
distinct subsets of intermediate
CD14+CD16+ monocytes

To further characterize the individual subsets responsible

for our newly identified gene signatures of ATB at diagnosis in

intermediate CD14+CD16+ monocytes, we analyzed this cell

population using single-cell RNA sequencing (scRNAseq).

Using the same gating strategy as for the bulk analysis, we

sorted CD14+CD16+ cells from cryopreserved PBMC of four

ATB patients sampled at diagnosis. For two of the patients, a

PBMC sample collected at the end of treatment (i.e., standard
Frontiers in Immunology 07
six-month anti-TB therapy) was also processed simultaneously.

Dimensionality reduction and clustering analysis identified 6

clusters within intermediate CD14+CD16+ monocytes

(Figure 4A), and each sample contributed to all 6 clusters,

confirming that there was no significant batch effect between

samples (Figure S5C). Each cluster was associated with a

distinct gene expression profile (Figure 4B and Table S6) and

a significant enrichment for biological pathways was found for

4 out of 6 clusters (clusters 0, 1, 3 and 4; adjusted p-value < 0.05;

Figure 4C and Table S7). Three of the six clusters contained

genes or pathways that were previously identified in our bulk

RNA analysis as differentially expressed in ATB at diagnosis

compared to the other cohorts. Cluster 1 was associated with

IFN signaling, cluster 3 was associated with the same
B

C

D

A

FIGURE 3

In ATB at diagnosis, intermediate CD14+CD16+ monocytes are associated with upregulation of MHC-II gene signatures and increased capacity
to activate T cells. (A) MHC-II related genes present in the turquoise module. (B) Combined MHC-II gene expression in CD14+CD16+ and
CD14+CD16- cells in ATB diagnosis, ATB mid-treatment, IGRA+ and IGRA- cohorts, calculated using a standard z-score formula. Individual gene
expression is shown in Figure S3. (C) Representative staining of OX40 and PDL1 expression in CD4 T cells after co-culture with autologous Mtb-
primed or unprimed CD14+CD16+ and CD14+CD16- cells sorted from one ATB subject at diagnosis. (D) Fold change in the frequency of
OX40+PDL1+ cells in CD4 T cells after co-coculture with autologous Mtb-primed CD14+CD16+ cells vs. CD14+CD16- cells sorted from ATB
subjects at diagnosis, or mid-treatment. The frequency of OX40+PDL1+ CD4 T cells induced after co-culture with unprimed CD14+CD16+ or
CD14+CD16- cells was used for background subtraction. (A, B) Data was from cryopreserved PBMC of 25 ATB subjects at diagnosis (with 22
paired mid-treatment samples), 40 IGRA+ and 20 IGRA- individuals. (C, D) Data was from cryopreserved PBMC of 7 ATB subjects with paired
samples collected at diagnosis and mid-treatment. *p < 0.05, ***p < 0.001, ****p < 0.0001, nonparametric unpaired Mann-Whitney U test (black
stars) and nonparametric paired Wilcoxon test (blue stars).
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inflammatory genes (i.e., CD14, CD36, S100A8, S100A9) and

pathways (i.e., “leptin influence on immune response” and

“endogenous TLR signaling”) identified in the turquoise

module, and cluster 4 was enriched for MHC-II related

genes (Figure 4C). Interestingly, these three clusters also

showed reduced frequency upon treatment in both patients

with paired sampling, whereas the other three clusters

(clusters 0, 2 and 5) had an increased frequency upon

treatment (Figure 4D).

To further look at the association between the bulk and single-

cell transcriptomic datasets, we investigated the expression of each

of the transcriptomic signatures derived from our bulk RNA

sequencing modular analysis across the single-cell clusters. As

expected from its top expressed genes and associated biological

pathways, the ‘inflammation’ cluster 3 was associated with the

highest cumulative expression for the turquoise module
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(Figure 4E). Similarly, cluster 1 and cluster 4 displayed the

highest expression for the yellow module (which was associated

with IFN signaling) and for MHC-II genes, respectively

(Figures 4F, G), also matching the results from the biological

pathway enrichment analysis. In both ATB patients with paired

sampling, the turquoise module and the yellow module gene

signatures showed a reduction in expression within their

respective cluster between diagnosis and end-treatment, whereas

the expression level of MHC-II related genes in cluster 4 remained

unchanged upon treatment (Figure 4H).

Taken together, our results from the single-cell data analysis

demonstrate that each signature of ATB at diagnosis derived

from our bulk RNA sequencing analysis could be associated with

a distinct subset of intermediate CD14+CD16+ monocytes.

Clusters 1, 3 and 4 were responsible for the IFN,

inflammatory, and MHC-II gene signatures, respectively.
B
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FIGURE 4

Multiple subsets of intermediate CD14+CD16+ monocytes are contributing to the transcriptomic signature of ATB at diagnosis. (A) UMAP
analysis of single-cell RNA sequencing of CD14+CD16+ myeloid cells isolated from cryopreserved PBMC of ATB patients at diagnosis (n=4, visit
1) or end of treatment (n=2, visit 2, paired with visit 1). All cells were divided into six distinct clusters. (B) Dot plot showing the expression of the
selected top 10 genes for each of the six clusters identified in A). (C) Selected top biological pathways enriched and top genes expressed for
each cluster. Full list of genes and pathways for each cluster are available in Table S6 and S7. (D) Individual cluster frequency for each ATB
patient at diagnosis (Visit 1) and end of treatment (Visit 2). Expression of (E) The turquoise module, (F) The yellow module and (G) MHC-II related
genes, in each cluster. (H) Expression of the signatures shown in E-G split by sample visit (diagnosis vs end-treatment). For each signature,
expression was only shown for the cluster with highest expression as depicted in E-G (i.e., cluster 3 for the turquoise module, cluster 1 for the
yellow module, and cluster 4 for MHC-II related genes). The turquoise module, yellow module and MHC-II related gene signatures were
identified in our bulk RNA sequencing analysis as represented in Figures 2 and 3. Gene scores were calculated by summing all genes composing
the signature, or the top 50 genes for the modules. ****p < 0.0001, nonparametric unpaired Mann-Whitney U test.
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Discussion
Despite the importance of monocytes in blood immune

responses to Mtb infection, no study has systematically looked

at the global circulating monocyte compartment in the context

of active disease (ATB), asymptomatic infection (IGRA+), and

no infection (IGRA-). Here, we performed a comprehensive

single-cell profiling of circulating monocytes from IGRA+/-

healthy individuals and a longitudinal cohort of ATB patients

at diagnosis/mid-treatment in order to characterize quantitative

and qualitative changes associated with TB disease. This study

represents the largest exploratory analysis of the monocyte

compartment in TB published to date.

Several studies have shown increased M/L ratio in ATB

patients before the start of anti-TB therapy and highlight the

potential use of this parameter as a diagnostic tool (24, 37, 38).

Here, we confirmed that M/L ratio was significantly increased in

ATB patients at diagnosis, and subsequently decreased upon

initiation of anti-TB therapy. These results also corroborate the

usefulness of flow cytometry to measure M/L ratio within

cryopreserved PBMC, in contrast to the traditional full blood

count assay which can only be done on fresh blood, as previously

suggested in other studies (39).

Incrementally deepening the cellular level of our analysis, we

next identified that both classical CD14+CD16- and intermediate

CD14+CD16+ monocyte populations contributed to the

dysregulated M/L ratio in ATB patients, with increased

frequency at diagnosis and a reduction upon initiation of anti-

TB therapy. This is in line with previous studies which have

shown that ATB patients have an increased percentage of

circulating CD14+CD16+ monocytes in ATB as compared to

TST+/- healthy controls (40), and this effect is reduced following

anti-TB treatment (41). In addition to changes in monocyte

population frequencies, we also identified transcriptomic

differences in both CD14+ monocyte populations in ATB

patients at diagnosis, compared to IGRA+/- cohorts. Similarly

to the M/L ratio and monocyte frequencies, these changes were

transient, as they were no longer observed in the same ATB

patients following two to three months of anti-TB therapy. In

particular, we identified several transcriptomic modules with

distinct expression levels across both CD14+ monocyte subsets

that were dysregulated in ATB at diagnosis compared to the

other cohorts. These modules were associated with distinct

biologic pathways and functions.

We identified that the most prominent transcriptomic

changes across both classical CD14+CD16- and intermediate

CD14+CD16+ monocytes were associated with IFN signaling

(yellow module), and significantly overlapped with previously

published whole blood gene signatures of ATB. Identified by

Berry et al, the IFN gene signature in whole blood of ATB

patients at diagnosis was shown to be mostly expressed by

neutrophils, and to a lesser extent, CD14+ monocytes (18).
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Here we further show that, in ATB at diagnosis, both classical

CD14+CD16- and intermediate CD14+CD16+ monocytes

express this signature. Since CD14+ monocytes are at

increased frequency in the circulation in ATB patients at

diagnosis, it is likely that they contribute to the IFN gene

signature repeatedly observed in whole blood in this disease

cohort. The presence of an IFN signature in monocytes from

ATB patients has multiple biological implications. Both type I

and type II IFN have been shown to play a key role during Mtb

infection. Type I IFN can be produced by monocytes,

macrophages, and DC through recognition of Mtb by a wide

range of pattern recognition receptors (42). In ATB, there is

abundant evidence that type I IFN are deleterious by promoting

bacterial expansion and pathogenesis, but that they could also

provide a protective effect to the host at low levels or in absence

of IFNg (42). In contrast, the IFNg pathway is crucial for

protection against Mtb (43). IFNg is produced by Mtb-specific

T cells, and may be also responsible for the activation of IFN

signaling pathways in circulating immune cells expressing IFN

receptors, such as monocytes, in an antigen-independent

fashion. Finally, both type I and type II IFN drives emergency

myelopoiesis and recruitment to the lung in an interplayed

manner in ATB (44) and may thus be responsible for the

overall higher M/L ratio we (and others) have observed in the

blood of ATB patients.

In addition to IFN signaling, we identified in intermediate

CD14+CD16+ monocytes several novel transcriptomic

signatures that were specifically dysregulated in ATB patients.

Specifically, intermediate CD14+CD16+ monocytes isolated

from ATB patients showed increased expression of genes

associated with metabolism, inflammation, and MHC-II. These

changes were more prominent at diagnosis, and decreased upon

initiation of anti-TB therapy. All three gene categories are

known to be expressed by activated immune cells. Upon

activation, immune cells undergo metabolic reprogramming,

which is critical for their proliferation, differentiation and

function (45). Similarly, the expression of inflammatory genes

is a hallmark for immune cell activation, and antigen-presenting

cells upregulate MHC-II genes upon activation (46). Finally, we

observed that intermediate CD14+CD16+ monocytes isolated

from ATB patients at diagnosis had increased capacity to

activate T cells in vitro in the presence of Mtb antigens, in

comparison to classical CD14+CD16- monocytes. Taken

together, our results demonstrate that in ATB at diagnosis, the

circulating intermediate CD14+CD16+ monocyte population is

not only increased in frequency, but is also in a heightened

activation state.

To gain an unprecedented level of information on

intermediate CD14+CD16+ monocytes in ATB at diagnosis, we

further analyzed this cell population using single-cell

transcriptomics. Surprisingly, our analysis identified that the

IFN, the MHC-II and the inflammatory gene signatures

identified in our bulk transcriptomic analysis were not co-
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expressed but rather carried by three distinct subsets of

CD14+CD16+ cells. Thus, we identified novel subsets of

CD14+CD16+ monocytes with distinct transcriptomic

signatures and associated biological pathways that may hold

important immune functions in ATB. The protective role of each

subset and their relationship to each other, how their frequency

and phenotype may vary upon treatment, vaccination and in

other TB cohorts such as resistors and progressors, are yet to be

defined. Indeed, it was previously found that ATB diabetic

patients have a higher level of monocyte activation markers in

their plasma compared to ATB only, and that circulating

monocytes have reduced HLA-DR expression in diabetic

patients. But together, our data illustrate the heterogeneity of

intermediate CD14+CD16+ monocytes in human blood and

suggest that each subset may hold distinct immune functions

in ATB.

As reviewed in our introduction, the myeloid population

present in PBMC with a CD14+CD16+ phenotype is expected to

be intermediate monocytes. A recent single-cell transcriptomic

study highlighted the limitation of this phenotypic definition by

demonstrating high heterogeneity of human blood myeloid cells,

with subsets of DC and monocytes presenting phenotypic and

transcriptomic overlaps, such as the expression of CD14 (47).

DC are also generally regarded as professional antigen

presenting cells, with superior antigen presentation capability

and constitutive high expression of MHC-II genes in

comparison to monocytes (48). Here, we observed that in ATB

patients at diagnosis, intermediate CD14+CD16+ monocytes

upregulated several MHC-II related genes and hold increased

capability to activate T cells upon antigen exposure.

Additionally, the inflammatory gene signature we identified as

upregulated in a subset of intermediate CD14+CD16+

monocytes in ATB patients at diagnosis significantly

overlapped with the gene signature of a pro-inflammatory

subset of DC3, namely CD14+CD163+ DC3, as recently

reported in a comprehensive single-cell high dimensional

analysis of myeloid cell subsets in human blood (47) (p value

of overlap = 4.1e-11, Figure S4A). Specifically, CD163 gene

expression was strongly upregulated in ATB patients at

diagnosis compared to both IGRA+ and IGRA- cohorts in

CD14+CD16+ but not CD14+CD16- cells (Figure S4B).

Furthermore, the gene signature of CD14+CD163+ DC3

defined by Dutertre et al. (47) could separate ATB diagnosis

from IGRA+/- cohorts in intermediate CD14+CD16+

monocytes, but not in classical CD14+CD16- monocytes

(Figure S4C), and showed the highest cumulative expression in

the inflammatory cluster 3 from the single-cell analysis of

CD14+CD16+ cells in ATB (Figure S4D). Based on these

observations, a logical question arising would be whether

subsets of DC, in particular pro-inflammatory DC3, could be

present in the intermediate CD14+CD16+ monocyte population

in ATB patients at diagnosis, and contribute to the MHC-II and

inflammatory gene signatures identified herein. Dutertre et al.
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identified CD88 (C5AR1) and FCER1A as constitutive and

specific markers of monocytes and DC, respectively (47). In

our scRNAseq dataset, we found little to no expression of

FCER1A and uniform expression of C5AR1 across all 6

clusters of CD14+CD16+ myeloid cells (Figures S4E, F). Thus,

despite transcriptomic and functional overlaps with subsets of

DC, the inflammatory andMHC-II subsets within CD14+CD16+

myeloid cells isolated from ATB patients at diagnosis are bona

fide intermediate monocytes and not DC.

In conclusion, we demonstrated that quantitative and

qualitative changes are occurring in circulating monocytes

during ATB. We showed that the increase in M/L ratio in

ATB at diagnosis stemmed from classical CD14+CD16- and

intermediate CD14+CD16+ monocytes, and that the most

prominent transcriptomic changes in these two monocyte

subsets were upregulation of IFN-associated genes that

significantly overlapped with previously characterized blood

signatures of ATB. Additional transcriptomic and functional

changes were present in intermediate CD14+CD16+ monocytes

in ATB at diagnosis, such as the expression of inflammatory

genes, MHC-II genes, and increased capacity to activate T cells,

overall reflecting a more prominent activation in this monocyte

population. Single-cell transcriptomics revealed that distinct

subsets of intermediate CD14+CD16+ monocytes were

responsible for each of these signatures. Together, our study

demonstrates the heterogeneity of circulating CD14+ monocytes

and their important contribution to blood immune signatures

in ATB.
Material and methods

Participants and samples

Cohorts’ description and demographics is available in Table

S1. Mtb sensitization status was confirmed in participants by a

positive IFNg–release assay (QuantiFERON-TB Gold In-Tube;

Cellestis or T-SPOT.TB; Oxford Immunotec) and the absence of

symptoms consistent with TB, or other clinical/radiographic

signs of ATB (healthy IGRA+ cohort). ATB was defined as 1)

presence of clinical symptoms and/or radiological/histological

evidence of pulmonary TB, and 2) microbiologically confirmed

by Mtb-specific molecular testing on sputum. IGRA- uninfected

controls had no past medical history of TB, nor exposure toMtb

or evidence of Mtb sensitization as confirmed by a negative

IFNg–release assay. All participants were confirmed negative for

human immunodeficiency virus (HIV) infection. For ATB

subjects, blood samples were obtained at diagnosis and at 2-3

months upon initiation of anti-TB therapy. Anti-TB therapy was

a standard regimen for drug susceptible Mtb consisting of an

intensive phase of 2 months of isoniazid (INH), rifampin (RIF),

pyrazinamide (PZA), and ethambutol (EMB) followed by a

continuation phase of 4 months of INH and RIF (49).
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Peripheral blood mononuclear cells (PBMC) were obtained by

density gradient centrifugation (Ficoll-Hypaque, GE Healthcare)

from leukapheresis or whole-blood samples, according to the

manufacturer’s instructions. Cells were resuspended at 50–100

million cells per milliliter in FBS (Gemini Bio-Products)

containing 10% DMSO (Sigma) and cryopreserved in

liquid nitrogen.
PBMC thawing

Cryopreserved PBMC were quickly thawed by incubating

each cryovial at 37°C for 2 min, and cells transferred into 9 ml of

cold medium (RPMI 1640 with L-Glutamine and 25 mM Hepes

(Omega Scientific), supplemented with 5% human AB serum

(GemCell), 1% Penicillin Streptomycin (Gibco), 1% Glutamax

(Gibco)), and 20 U/mL Benzonase Nuclease (Millipore). Cells

were centrifuged and resuspended in medium to determine cell

concentration and viability using Trypan blue and a

hematocytometer. Cells were then kept at 4°C until use for

flow cytometry or cell sorting.
Flow cytometry

Flow cytometry experiments were performed as previously

described (36, 50). For surface staining, up to 0.5x106 cells were

incubated with 10% FBS in 1X PBS for 10 minutes. Cells were

then stained with 100 ml of PBS containing 0.1 ml fixable viability
dye eFluor506 (eBioscience, corresponding to 1:1000 dilution of

the stock, as per the manufacturer’s recommendation), 2 ml of
FcR blocking reagent (Biolegend, corresponding to 1:50 dilution

of the stock; we validated internally that this dilution is

performing equally to the manufacturer’s recommended

dilution of 1:20), and various combinations of the antibodies

listed in Table S2 for 20 min at room temperature. For single-cell

RNA sequencing, TotalSeq™-C oligonucleotide-conjugated

antibodies (Biolegend) were also added at this step at 0.01mg/

mL final concentration. After two washes in PBS, cells were

resuspended into 100 ml of MACS buffer (PBS containing 2mM

EDTA (pH 8.0) and 0.5% BSA) and stored at 4°C protected from

light for up to 4 hours until flow cytometry acquisition.
Cell sorting

After PBMC thawing, 10x106 cells were stained with fixable

viability dye eFluor 506 (eBioscience) and with anti-human

CD56, CD19, CD3, CD14 and CD16 (Table S2 for antibody

details), as described in the flow cytometry section above. Cell

sorting was performed on a BD FACSAria III cell sorter (Becton

Dickinson). Lineage negative CD14+CD16- and CD14+CD16+
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monocytes were identified as described in Figures 1A, C. For

bulk RNA sequencing, a total of 100,000 cells for each

population was sorted into TRIzol LS reagent (Invitrogen) and

used for bulk RNA sequencing. For single-cell RNA sequencing,

15,000 cells of each cell population were sorted into low-

retention 1.5-ml collection tubes (Thermo Fisher Scientific),

containing 0.5 ml of a 1:1 solution of phosphate-buffered

saline (PBS):FBS supplemented with ribonuclease inhibitor

(1:100; Takara Bio). For the T cell antigen presentation assay,

up to 20,000 cells for each CD14+ monocyte subset (gating

strategy Figure 1A, C) and up to 4 x 106 CD4 T cells (defined as

CD3+CD4+CD8- in the live singlet gate population, see gating

strategy Figure S1C) were sorted in MACS buffer (PBS

containing 2mM EDTA (pH 8.0) and 0.5% BSA) and kept on

ice until in vitro culture.
T cell antigen presentation assay

Immediately following sorting, CD4 T cells were plated at 1 x

106 cells per well in HR5 media (RPMI 1640 containing 5%

human serum, 1% GlutaMAX 100x (Gibco), and 1% Pen-Strep)

and each well was supplemented with 0.02 U/mL of recombinant

human IL-2 (Prospec). In parallel, sorted CD14+CD16- and

CD14+CD16+ myeloid cells were resuspended in HR5 media

and plated separately at 10,000 cells per well. Both CD4 T cells

and myeloid cells cultures were incubated at 37°C. At the 19-

hour timepoint, myeloid cells were primed with 10 mg/mL of

whole cell Mtb lysate (strain H37Rv, BEI Resources) or left

unprimed. At the 24-hour timepoint, CD4 T cells were

resuspended in fresh HR5 media, and added to myeloid cells

in a 1:25 (myeloid to T cell) ratio and co-cultures were further

incubated for 24 hours at 37°C. At the 48-hour timepoint, cells

were stained for flow cytometry, as described above, for T cell

lineage markers CD3 and CD4, and T cell activation markers

OX40 and PD-L1 (antibody list in Table S2).
Bulk RNA sequencing

RNA sequencing was performed as described previously

(36). In brief, total RNA was purified using an miRNeasy

Micro Kit (QIAGEN) and quantified by quantitative PCR, as

described previously (51). Purified total RNA (1–5 ng) was

amplified following the Smart-Seq2 protocol (16 cycles of

cDNA amplification) (52). cDNA was purified using AMPure

XP beads (Beckman Coulter). From this step, 1 ng of cDNA was

used to prepare a standard Nextera XT sequencing library

(Nextera XT DNA sample preparation kit and index kit,

Illumina). Whole-transcriptome amplification and sequencing

library preparations were performed in a 96-well format to

reduce assay-to-assay variability. Quality-control steps were
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1087010
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hillman et al. 10.3389/fimmu.2022.1087010
included to determine total RNA quality and quantity, the

optimal number of PCR preamplification cycles, and fragment

size selection. Samples that failed quality control were eliminated

from further downstream steps. Barcoded Illumina sequencing

libraries (Nextera; Illumina) were generated using the automated

platform (Biomek FXp). Libraries were sequenced on a HiSeq

2500 Illumina platform to obtain 50-bp single-end reads

(TruSeq Rapid kit; Illumina). Mapping was performed as

previously described (36). Briefly, the single-end reads that

passed Illumina filters were filtered for reads aligning to tRNA,

rRNA, adapter sequences, and spike-in controls. The reads were

then aligned to UCSC hg19 reference genome using TopHat (v

1.4.1) (53). DUST scores were calculated with PRINSEQ Lite (v

0.20.3) (54), and low-complexity reads (DUST>4) were removed

from the BAM files. The alignment results were parsed via

SAMtools (55) to generate SAM files. Read counts for each

genomic feature were obtained with the htseq-count program (v

0.6.0) (56) using the “union” option. After removing absent

features (zero counts in all samples), the raw counts were

imported to R/Bioconductor package DESeq2 (57) to identify

differentially expressed genes among samples.
Bulk RNA sequencing analysis

Raw counts were filtered to remove outlier samples, as well

as any genes that had an average TPM of less than 1.

Normalization was then performed using DESeq2 (57) and

data was transformed by variance stabilizing transformation.

The SVA ComBat package was used to correct for batch effects.

Differential expression analysis was performed using DESeq2

(57). For the modular analysis, normalized counts were sorted by

COV and the top 3,000 genes with highest variation were

selected, and gene modules identified with the R package

WGCNA (35). A power of 17 was used when creating the

adjacency matrix and the module distance threshold was 0.15.

To determine the top 50 genes for each module, hub genes with

high intramodular connectivity, i.e., genes that tend to have high

correlation with other genes within the module, were identified

with a minimum correlation of 0.75, and the top 50 of these hub

genes from each module were retained. For each module, a

module eigengene value was also calculated for each sample,

summarizing the expression of all genes within that module for a

sample into a single point representing the first principal

component. Statistical enrichment for biological pathways was

performed by interrogating the BioPlanet database (2019

version) using the online server Enrichr. Principal Component

Analysis (PCA) and heatmaps were performed using vst

normalized expression values using R and the software

Qlucore. MHC-II related gene score was calculated for each

sample using a standard z-score formula, by summing the

normalized expression values for all MHC-II related genes
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identified in the turquoise module, and correcting for the

average and standard deviation of the sums across all samples,

as well as the number of samples.
Single-cell RNA sequencing

Single-cell RNA sequencing was performed using the droplet

based 10x genomics platform according to the manufacturer’s

instructions. Lineage negative CD14+CD16- and CD14+CD16+

monocytes (15,000 cells per population) were sorted from 6

different PBMC samples (4 ATB patients at diagnosis, including

two with a paired sample collected at end of treatment) and

pooled together. Each PBMC sample was stained with a distinct

hashtag oligonucleotide antibody as described in the flow

cytometry section, in order to determinate the sample origin

for each cell after sequencing. Following cell sorting, cells were

washed with ice-cold PBS, centrifuged for 10 min (600g at 4°C),

gently resuspended in ice-cold PBS supplemented with 0.04%

ultrapure bovine serum albumin (Sigma-Aldrich). The library

preparation was performed using a 10x Genomics 5′ Tag v2

chemistry kit with dual indexes and feature barcoding

technology for cell surface proteins. The amplification of

complementary DNA was carried out with 13 cycles of

amplification; the 5′ Tag gene expression libraries and the

corresponding hashtag libraries were generated separately with

13 and 8 cycles of amplification, respectively. The libraries were

sequenced using the Illumina NovaSeq 6000 sequencing

platform with the following read lengths: read 1, 101 cycles;

read 2, 101 cycles; i7 index, 10 cycles; i5 index, 10 cycles.
Single-cell RNA sequencing analysis

The reads from the scRNAseq library were demultiplexed,

aligned, and collapsed into Unique Molecular Identifier (UMI)

counts using the software cell Ranger (v5.0.0) from 10x

Genomics and the human genome reference GRCh38

(GENCODE v32/Ensembl 98). Mapped read counts were then

analyzed using the Seurat package (v4.0.2) in R (58). Sample

barcode assignment to each cell was performed using the HTO

demultiplexing function (HTOdemux), and events classified as

“negative” or “doublet” were excluded. To further eliminate

intraindividual doublets and cells with low quality RNA, only

HTO classified “singlet” cells with a percentage of mitochondrial

genes lower than 6%, a total number of genes comprised between

500 and 3,500, and a total number of reads lower than 10,000

were retained. Normalization was performed using the

SCTransform function, and correcting for batch effect across

samples. Dimensionality reduction and clustering analysis was

performed with the following command lines and parameters

(runPCA: npcs = 50; FindNeighbors: dims = 1:30, k.param =
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200; FindClusters: resolution = 0.6; RunUMAP: dims = 1:30).

Our initial analysis identified a significant proportion of

lymphoid-like cells (based on positive expression of CD2, CD3

and lack of C5AR1 expression), fairly distant from the remaining

group of cells (cluster 2 in Figure S5A). Since our analysis was

exclusively focused on myeloid cells, we excluded this cell cluster

in our downstream analysis. Myeloid-like cells were then

separated into CD16+ and CD16- subsets based on FCGR3A

expression (Figure S5B), yielding a similar number of cells in

both groups (as expected, since a similar number of

CD14+CD16- and CD14+CD16+ cells were initially sorted and

pooled together for sequencing). Dimensionality reduction and

clustering analysis of CD14+CD16+ cells was performed with the

same command lines and parameters as described for our initial

analysis of all cells, with the exception of the RunClusters

resolution adjusted to 1. Top genes for each cluster were

extracted using the FindAllMarkers function with parameters

min.pct = 0.25, logfc.threshold = 0.25, return.thresh = 0.05,

test.use = ‘MAST’, selecting only the positive genes. Graphic

visualization of the results (UMAP plots, violin plots and dot

expression plots) were all performed with the Seurat package

(v4.0.2) in R (58).
Statistics

Statistical analyses were performed using GraphPad Prism

Software, version 9. Paired datasets were compared using the

nonparametric Wilcoxon test, while unpaired datasets were

compared using the nonparametric Mann-Whitney U test. P

values less than 0.05 were considered significant and 2-tailed

analyses were performed. Statistical significance of overlap

between the top 50 gene list in the turquoise module and the

previously reported CD14+CD163+ DC3 gene signature was

calculated using the hypergeometric distribution test and

considering all 15,643 genes that were detected across

CD14+CD16- and CD14+CD16+ cell populations as the total

number of genes.
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