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Acinetobacter baumannii is a gram-negative bacterium and a crucial

opportunistic pathogen in hospitals. A. baumannii infection has become a

challenging problem in clinical practice due to the increasing number of

multidrug-resistant strains and their prevalence worldwide. Vaccines are

effective tools to prevent and control A. baumannii infection. Many

researchers are studying subunit vaccines against A. baumannii. Subunit

vaccines have the advantages of high purity, safety, and stability, ease of

production, and highly targeted induced immune responses. To date, no A.

baumannii subunit vaccine candidate has entered clinical trials. This may be

related to the easy degradation of subunit vaccines in vivo and weak

immunogenicity. Using adjuvants or delivery vehicles to prepare subunit

vaccines can slow down degradation and improve immunogenicity. The

common immunization routes include intramuscular injection, subcutaneous

injection, intraperitoneal injection and mucosal vaccination. The appropriate

immunization method can also enhance the immune effect of subunit

vaccines. Therefore, selecting an appropriate adjuvant and immunization

method is essential for subunit vaccine research. This review summarizes the

past exploration of A. baumannii subunit vaccines, hoping to guide current and

future research on these vaccines.

KEYWORDS
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1 Introduction

Acinetobacter baumannii is a strictly aerobic gram-negative bacillus, that exists

widely in nature (1). A. baumannii is an opportunistic pathogen that can cause various

nosocomial infections, including pneumonia, sepsis, meningitis, posttraumatic infections

and urinary tract infections (2–4). This ESKAPE pathogen poses a significant threat to

global public health because of its widespread drug resistance (5–8). In 2019, A.

baumannii was responsible for more than 250 000 deaths associated with
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antimicrobial resistance (9). Effective antibiotic treatment is thus

complicated and alternative therapeutic strategies are urgently

needed, and vaccine is an effective tool to prevent and control A.

baumannii infection (10–12).

Many researchers are currently developing subunit vaccines

for A. baumannii. The subunit vaccine is a type of vaccine that

contains active fragments of the pathogen to stimulate a

protective immune response. Subunit vaccines have the

advantages of high purity, safety, and stability, ease of

production and highly targeted induced immune responses

(13). Most of the A. baumannii candidate subunit vaccines are

proteins, such as outer membrane protein A (OmpA).

Polysaccharides, and outer membrane vesicles (OMVs) can

also be used as subunit vaccines for A. baumannii (14).

However, the subunit antigen fragment is small and lacks the

tertiary structure of the protein. This fragment is easy to degrade

in vivo and has weak immunogenicity. The use of adjuvants or

delivery vehicles during subunit preparation can protect the

antigen from degradation and enhance its immune efficacy

(15, 16).

The development of reverse vaccinology, pan-genomics,

core genomics, proteomics, immunoinformatics, and

biophysical analyses have brought broad prospects in the

exploration of potential antigen candidates of the subunit

vaccine against A. baumannii (17–19). Afreenish Hassan et al.

analyzed genetic data for all strains of A. baumannii, known as

the pangenome, using proteomics and reverse vaccinology,

thirteen types of proteins with high antigenicity were found in

the conserved core genome (17). Among these four outer

membrane proteins were prioritized: TonB-dependent

siderphore receptor, OmpA family protein, type IV pilus

biogenesis stability protein, and OprD family outer membrane

porin (18). What’s more, recent vaccination trials used in silico

computational approaches a type of epitope mapping of antigens

to identify the prominent B-cell and T-cell epitopes (19, 20). To

improve the immunogenicity of the epitope vaccine, it is

important to combine multiple epitopes in series to form

multi-epitope vaccines. Biophysical analysis was used to build

a 3D model to test the stability of the vaccine and its ability to

bind with host MHC-I, MHC-II, and toll-like receptors 4 (TLR-

4) molecules on the surface of immune cells in the body (17, 18).

Till now, epitope vaccines for A. baumannii candidate antigens,

such as outer membrane protein 22, DcaP porin, MacB protein,

and PcTPRs1 have been studied (20–23).

A. baumannii subunit vaccines (Table 1) that provide partial

or complete protection have been previously studied. The

development of new vaccines generally takes decades or even

centuries (55). To date, no A. baumannii vaccine candidate has

entered clinical trials. With the increase in multidrug-resistant

strains and their prevalence worldwide, the development of new

vaccines to prevent A. baumannii infection is urgently needed

(5, 6). The general process for creating a subunit vaccine for A.

baumannii is shown in Figure 1. This review summarizes past
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provide guidance for current and future research on A.

baumannii subunit vaccines.
2 Candidate subunit vaccines for
Acinetobacter baumannii

Many subunit vaccine antigens for A. baumannii have been

explored with varying degree of success. Around twenty A.

baumannii subunit vaccines have been evaluated in vivo for

their immunogenicity and protective effects. Among them, the

most studied antigens are outer membrane proteins (OmpA,

Omp33-36, Omp22, OmpW, and Ata, et al.), fimbrial proteins

(CsuA/B and FimA), and capsular polysaccharide (11, 14, 56).

Outer membrane vesicles (OMVs) have been also studied in

recent years. In addition, over ten novel antigens, such as Pfsr,

LptE, OmpH, CarO and FimF, predicted by reverse vaccinology

are worthy of further exploration (57, 58). The candidate

antigens for A. baumannii subunit vaccines can be divided

into three categories: proteins, polysaccharides, and outer

membrane vesicles.
2.1 Proteins

2.1.1 Outer membrane proteins
2.1.1.1 OmpA

Outer membrane protein A (OmpA), also known as Omp38,

with a molecular weight of 38 kDa, is one of the most abundant

porins in the outer membrane of A. baumannii (59). OmpA

plays a key role in regulating the adhesion, invasiveness, biofilm

formation, apoptosis and the associated host immune response

of A. baumannii (60–65). Additionally, OmpA regulates

autophagy (66). In recent years, with improved understanding

of the natural structure of OmpA, researchers have found that

the amino acids of OmpA from various clinical isolates of A.

baumannii are highly conserved (>99%), and they are of a

different origin compared to the human proteome (24).

Some studies have shown that immunization with OmpA

can protect against A. baumannii infection. Mice were passively

immunized with a yolk antibody (IgY) specific to OmpA, which

provided partial protection. IgY prolonged the survival of mice

attacked by A. baumannii (67, 68). Mice were subcutaneously

immunized with recombinant OmpA (rOmpA). After challenge

with A. baumannii, the survival rate of actively immunized mice

was more than 40%, and that of passively immunized mice was

up to 90% (24). Increased doses of the rOmpA vaccine resulted

in enhanced type 2 immune responses, increased IL-4-induced

T-cell epitope spread and decreased levels of IFN-g-induced
epitopes (69). When mice were intranasally immunized with

rOmpA, anti-OmpA IgG was produced in the serum, and anti-
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TABLE 1 Candidate subunit vaccines for Acinetobacter baumannii.

Immunization schedule Challenge study

Observation days after
challenge

Survival Reference

28 days 50%
44.44%

(24)

15 days 50%
40%
60%
100%
70%

(25)

7 days 85.71%
66.6%
83.3%

(26)

4 days 42.85%-
80%

57.14%-
100%

(27)

7 days 42.86%
66.67%
42.86%

(28)

3 days 100%
0%

(29)

7 days 100%
33%
33%

(30)

7 days 83.33%
71.43%
66.67%
57.14%

(21)

8 days 66.7%
37.5%
25%

(31)

10 days 83.3%
41.7%
41.7%

(32)

7 days 100% (33)
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Immunogen Adjuvant Mice Day Dose Route Model Challenge
strains

Day Dose

OmpA (ATCC17978) Al(OH)3 BALB/c
(>6m;6-
10w)

0,21 3 mg s.c Sepsis (i.v) HUMC1 35 2×10^7

OmpA (ATCC19006) CT BALB/c
(6-8w)

0,21 10 mg i.n Sepsis (i.p) Strain A
Strain B
Strain C
Strain D
Strain E

28 5×10^8
2×10^8
5×10^7
3×10^8
3×10^7

OmpA+PKF
OmpA
PKF

Alhydrogel C57BL/6
(6-8w)

0,14,28 25 mg — Sepsis (i.p) ATCC19606 56 —

Omp33-36 Freund’s
adjuvant

BALB/c
(6-8w)

0.14,28 20 mg s.c Sepsis (i.p)
Pneumonia

(i.n)

ATCC19606
AB022

42 4.8×10^4

Omp33-36 (ATCC19606)
Omp33-36+BauA
BauA

Freund’s
adjuvant

BALB/c
(4-6w)

1,14,28 20 mg s.c Sepsis (i.p) ABI022 56 4.76×10^

Omp33-36 Freund’s
adjuvant

BALB/c 0,14,28 20 mg s.c Sepsis (i.p) ATCC19606 — 5×10^7
10×10^7

Trx-Omp22 Alum ICR
(6-8w)

0,14,28 50 mg
20 mg
10 mg

s.c Sepsis (i.p) Ab1 49 1×10^6

CS-PLGA-rOmp22 CS, PLGA BALB/c
(6-8w)

0,14,28 40 mg s.c Pneumonia
(i.t)

ATCC19606
CS-MDR-AB

CRAB
PDR-AB

42 2×10^8
1×10^9
5×10^8
5×10^8

Omp22/OmpK
Omp22
OmpK

Freund’s
adjuvant

BALB/c
(6-8w)

1,14,21 20 mg s.c Sepsis (i.p) ATCC19606 42 2×10^8

Omp22/OmpK
Omp22
OmpK

MF59 BALB/c
(6-8w)

0,14,21 30 mg i.t Pneumonia
(i.t)

ATCC19606 49 1×10^8

Trx-OmpW Alum ICR
(6-8w)

0,14,28 50 mg s.c Sepsis (i.p) Ab1 49 1×10^6
4
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TABLE 1 Continued

Immunization schedule Challenge study

Dose Observation days after
challenge

Survival Reference

1.2×10^6
1.2×10^6
4 × 10^8

7 days 66.667%
66.667%
100%

(34)

2×10^7
2×10^7
4.9×10^7
4.5×10^7

7 days 70%
100%
90%
60%

(35)

1×10^8 7 days 20% (36)

1×10^9 7 days 80% (37)

2×10^6
7×10^6

4 days 100%
25%

(38)

1.8×10^6 7 days 100%
100%
83%
83%
67%
67%
50%

(39)

2×10^8.6 7 days 50%
33.3%

(22)

1×10^8 7 days 50% (40)

2×10^8 10 days 88.9% (41)

2×10^8.6 7 days 50%
40%

(20)

8×10^8 3 days 100% (42)

(Continued)
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Immunogen Adjuvant Mice Day Dose Route Model Challenge
strains

Day

Ata (rcAta263) Freund’s
adjuvant

BALA/c 0,14,28,42 20 mg s.c
i.p
i.n

Sepsis (i.p) ATCC19606 56

Ata-CTB CTB BALB/c
(6w)

0,14,28 40 mg s.c
i.p
s.c
s.c

Sepsis (i.p) ATCC17978
ATCC17978
ATCC17978

XH733

42

NucAb Freund’s
adjuvant

BALB/c
(6-8w)

0,14,21 25 mg i.p Pneumonia
(i.t)

ATCC19606 28

BamA Al(OH)3 BALB/c
(6-8w)

1,14,28 20 mg i.p Pneumonia
(i.n)

P-562 45

Oma87 (BamA) Freund’s
adjuvant

BALB/c
(6-8w)

0,14,28,42 20 mg s.c Sepsis (i.p) ATCC19606 —

BauA
Loop7
Loop875
Loop75
Loop85
Loop5
Loop8

Freund’s
adjuvant

BALB/c
(6-8w)

0,14,28 20 mg s.c Sepsis (i.p) ATCC19606 43

DcaP
multiple-epitope vaccine
of DcaP

Freund’s
adjuvant

BALB/c
(3-5w)

0,14,28 20 mg s.c Pneumonia
(i.n)

ATCC19606 —

FilF Freund’s
adjuvant

BALB/c
(6-8w)

0,14,21 20 mg s.c Pneumonia
(i.t)

ATCC19606 29

FilF + NucAb (rMEP) Freund’s
adjuvant

BALB/c
(6-8w)

0,14,21 30 mg s.c Pneumonia
(i.t)

ATCC19606 42

PcTPRs1
subunit fragment of
PcTPRs1

Freund’s
adjuvant

BALB/c
(4-5w)

0,14,28 20 mg s.c Pneumonia
(i.n)

ATCC19606 —

ABAYE2132 Freund’s
adjuvant

BALB/c
(4-6w)

— 20 mg s.c Sepsis (i.p) ATCC19606 —
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TABLE 1 Continued

Immunization schedule Challenge study

ose Observation days after
challenge

Survival Reference

2×10^6 7 days 62.5%
37.5%
50%

(43)

×10^8
×10^9
×10^10
×10^11
×10^12
×10^13

3 days 80%
100%
80%
80%
60%
60%

(44)

1.14 ×
10^5
7.5 ×
10^3
1.14 ×
10^5
1.14 ×
10^5

7 days 100%
85.71%
71.43%
42.86%

(45)

×10^8 7 days 60% (46)

2×10^6 7 days 33.3% (47)

9×10^8
4×10^8
2×10^8

3 days 100%
75%
0%

(48)

×10^7 14 days 0% (23)

2×10^5 7 days 80%
60%
60%

(49)

×10^8 10 days 100%
70%

(50)

(Continued)
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Immunogen Adjuvant Mice Day Dose Route Model Challenge
strains

Day D

CsuA/B + FimA
CsuA/B
FimA

Freund’s
adjuvant

BALB/c
(6-8w)

0,14,28 10+10
mg

20 mg
20 mg

s.c Sepsis (i.p) ATCC19606 49 1.

Bap Freund’s
adjuvant

BALB/c
(4-6w)

0,14,28 10 mg — Sepsis (i.p) Kh0060 35 1
1
1
1
1
1

OmpA + Bap
OmpA
Bap

Al(OH)3 C57BL/6
(6-8w)

0,14,28 75 mg
50 mg
25 mg

s.c Sepsis (i.p) ATCC19606
MDR AB-44
ATCC19606
ATCC19606

42

Blp1 Freund’s
adjuvant

BALB/c
(8-12w)

0,14,28 2 mg i.m Sepsis (i.p) AbIC I 42 1

VgrG Freund’s
adjuvant

BALB/c
(6-8w)

0,14,28 20 mg s.c Sepsis (i.p) ATCC19606 56 1.

VgrG Freund’s
adjuvant

BALB/c
(6-8w)

0,15,30 20 mg s.c Sepsis (i.p) ATCC19606 — 1.
2.
3.

MacB (RAE) Freund’s
adjuvant

BALB/c
(6w)

0,14,28,42 200 mg — Sepsis (i.p) ATCC17978 56 1

CipA + PBP-7/8
CipA
PBP-7/8

MPLA C57BL/6
(6w)

0,14,28 30 mg s.c Sepsis (i.p) ATCC19606 42 2.1

CPS Freund’s
adjuvant
calcium

phosphate

BALB/c
(6-8w)

0,14,28 50 mg s.c Sepsis (i.p) K9 42 1
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OmpA IgA was produced in saliva. After intraperitoneal

immunization of mice with rOmpA and stimulation with

different doses of A. baumannii, the 15-day survival rate of the

mice was 40%-100% (25). The total IgG concentration in the

serum of mice immunized with OmpA and the serine protease

PKF was significantly increased. This protein can provide

85.71% protection against A. baumannii (26). The serum IgG

antibody level was significantly increased in mice immunized

with OmpA and BauA. After stimulation with A. baumannii, the

bacterial loads in the lung, spleen and liver of immunized mice

were significantly lower than those in the control group (70).

OmpA is an important protein in A. baumannii. This protein is

highly conserved, exhibiting high immunogenicity and low

endotoxin levels after treatment. OmpA can induce a robust

protective effect against A. baumannii in mice. Therefore, OmpA

is considered the most promising subunit vaccine candidate and the

antigen with the most clinical translational value. However, OmpA

has not yet entered clinical trials which may be related to its toxicity.

Luo et al. used a detoxifying gel endotoxin removal column to

greatly reduce OmpA endotoxin level, but 1-4 EU/3mg of endotoxin
remained (24). The measurement of endotoxin level has been

limited to animal studies. Immune cell membranes coated or

fused with OmpA may neutralize OmpA toxicity and improve

OmpA immunogenicity.
2.1.1.2 Omp33-36

Outer membrane protein 33-36, known as Omp33 or

Omp34 in some Acinetobacter species, is another outer

membrane virulence factor involved in host cell adhesion.

Omp33-36, OmpA and TonB are collectively known as

fibronectin-binding proteins (FBPs) (71). Omp33-36 is

associated with the adhesion and invasion abilities, cytotoxicity

and metabolic adaptability of A. baumannii (72). Omp33-36 can

promote apoptosis and regulate autophagy in human cells

(73, 74).

Omp33-36 is recognized explicitly by IgM, IgA, and IgG

from patients infected with A. baumannii. Omp33-36 did not

cross-react with sera from patients infected with pathogens other

than A. baumannii (75). Omp33-36 sequences showed ≥98%

identity among more than 1670 strains of A. baumannii (76).

Passive immunization with a yolk antibody (IgY) specific to

Omp33-36 successfully protected a mouse model from

pneumonia caused by A. baumannii (67, 68, 77). The

conserved exposure loop 3 of Omp33-36 combined with the

loopless-C-lobe (LCL) of TbpB of Neisseria meningitidis was

used to actively immunize mice. Mice were stimulated with

lethal doses of A. baumannii. In the sepsis model, the 96-hour

survival rate of mice was 42.85%-80%. In the pneumonia model,

the survival rate of mice was 57.14%-100% (27). The

immunogenic loops of Omp33-36 are nontoxic. Mice were

immunized with a hybrid antigen composed of BauA and

immunogenic loops of Omp33-36 and LCL. The 7-day
T
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survival rate of mice vaccinated with hybrid antigens (71.43%)

was higher than that of mice immunized with Omp33-36

immunogenic loop alone (42.86%) (28). The survival rate of

mice immunized with recombinant Omp33-36 (rOmp33-36)

was 100% under stimulation with A. baumannii (29).

Omp33-36 is highly conserved, nontoxic, and has high

immunogenicity in A. baumannii, providing partial or
Frontiers in Immunology 07
complete protection against A. baumannii infection. Omp33-36

has the potential for clinical transformation. This protein is under

preclinical study and may be related to its immunogenicity.

Omp33-36 does not provide complete protection in all kinds of

challenge models. Novel adjuvants, such as nanomaterials and

bacterial outer membrane vesicles, may improve the

immunogenicity of Omp33-36.
FIGURE 1

The general process of Acinetobacter baumannii subunit vaccine research. (s.c, subcutaneous; i.m, intramuscular; i.n, intranasal).
FIGURE 2

Subunit vaccines for Acinetobacter baumanni.
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2.1.1.3 Omp22

Outer membrane protein 22 (Omp22) is 217 amino acids in

length and exhibits >95% conservation among 851 A.

baumannii strains, showing little homology to human proteins

(30). Omp22 is slightly toxic to mammalian cells, and high doses

of Omp22 do not cause obvious pathological changes in mice.

Mice were immunized subcutaneously with a high dose of

recombinant Trx-Omp22 fusion protein. Survival reached

100% at 7 days after challenge with lethal doses of A.

baumannii, whereas low doses showed protection in one-third

of the mice (30). Recombinant Omp22 (rOmp22) was

encapsulated with chitosan (CS) and polylactic-co-glycolic acid

(PLGA) to form the CS-PLGA-rOmp22 nanovaccine. The 7-day

survival rate of mice immunized subcutaneously with CS-PLGA-

rOmp22 was 57.14%-83.3% in the pneumonia model (21). The

fusion protein Omp22/OmpK was formed by using Omp22 and

OmpK. Mice immunized subcutaneously with Omp22/OmpK

and Freund’s adjuvant had a survival rate of 66.7% under A.

baumannii attack (31). The combination of Omp22/OmpK and

MF59 was injected into the trachea of mice, and the protective

effect was found to be stronger than that of OmpK alone. The

survival rate was 83.3% at 10 days after stimulation (32). Omp22

is highly conserved with low toxicity and some immunogenicity.

Omp22 is not highly protective in mice, but its protective effect

can be improved by changing the type of adjuvant. Omp22 is a

valuable candidate for further study.

2.1.1.4 OmpW

Outer membrane protein W (OmpW) is an eight-stranded

b-barrel pore protein that forms a channel through the outer

membrane to absorb small hydrophobic molecules (78).

Hypoxia leads to downregulation of OmpW, resulting in

decreased adhesion and invasion of A. baumannii in human

lung epithelial cells and reduced biofilm formation (79). OmpW

is also involved in colistin binding and plays an important role in

regulating bacterial iron homeostasis (33, 80). The homology of

OmpW among 804 reported A. baumannii strains was > 91%.

OmpW had a slight inhibitory effect on 293FT and A549 cells,

indicating that OmpWmay affect the growth of normal cells and

tumor cells. In a sepsis model, both active and passive

immunization with recombinant Trx-OmpW protein were

remarkably effective against A. baumannii infection. Seven

days after A. baumannii challenge, the survival rate of actively

immunized mice was 100% and that of passively immunized

mice was 83.3% (33). OmpW is conserved among A. baumannii

strains and has high immunogenicity, with the ability to protect

against A. baumannii infection. OmpW is one of the candidate

subunit vaccines of A. baumannii. However, further research is

needed to eliminate or attenuate the virulence of OmpW, for

example, by selecting some reagents that can neutralize or

remove the toxin. Additional research is needed before the use

of OmpW can be translated to clinical trials.
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2.1.1.5 Ata

Acinetobacter trimeric autotransporter adhesin (Ata) belongs

to the superfamily of trimeric autotransporter adhesins, which

are crucial virulence factors in A. baumannii. Ata mediates

adhesion and invasion, induces apoptosis and contributes to

pathogenicity in vivo (81, 82). Ata also participates in biofilm

formation and binds to various extracellular matrix/basement

membrane (ECM/BM) components (82).

Ata is a potential vaccine target. The antibodies against Ata

have a strong opsonization effect on A. baumannii, with low to

moderate killing activity against four A. baumannii strains (83).

A conserved 263-amino-acid fragment from the C-terminus of

Ata could elicit specific antibody responses and protect against

challenges in mice. Mice were immunized with Ata fragments by

abdominal, subcutaneous, and nasal mucosal immunization.

When challenged with A. baumannii, the survival rate of mice

immunized in the abdominal and subcutaneous areas was 66%,

and that of mice immunized in the nasal mucosa was 100% (34).

A short peptide containing only 39 amino acids located in the

extracellular region of the C-terminal region of Ata was fused

with the B subunit of cholera toxin (CTB), and experiments

showed that this protein had no systemic toxicity. Subcutaneous

and intraperitoneal immunization of mice with the fusion

protein elicited T1 and T2 immune responses in vivo. When

challenged with A. baumannii, the survival rate of mice

immunized subcutaneously was 60% to 90% and that of mice

immunized intraperitoneally was 100% (35).

Ata has high immunogenicity, no toxicity, and good safety

and can prevent A. baumannii infection. Ata is one of the

candidate subunit vaccines for A. baumannii and has value in

clinical translation. Its effect on nasal mucosal immunity is

promising. Mice immunized with Ata via nasal mucosa had a

strong immune effect and strong protective effect on mice. The

long-term protective effects of Ata should be examined in future

studies. Research on the protective effect of nasally immunized

mice against various types of A. baumannii strains will be of

great significance.

2.1.1.6 NucAb

Outer membrane nuclease (NucAb) is a protein in the outer

membrane of A. baumannii. As the name suggests, this protein

has nuclease activity. Both gram-negative and gram-positive

bacteria can produce outer membrane nucleases, which may

be related to bacterial virulence and survival in harsh

environments (84–89). NucAb has all the characteristics of a

vaccine candidate, such as outer membrane localization, and

lack of homology to human proteins. The NucAb gene was

found to be highly conserved (100%) among 40 clinical isolates

of A. baumannii and showed more than 98% conservation

among sequenced Acinetobacter strains present in the NCBI

database (36). The endotoxin level of recombinant NucAb was

low (< 1 EU/ml). Mice immunized with recombinant NucAb
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showed significant inhibition of inflammation in lung

histopathological examination. Lung and serum levels of

proinflammatory cytokines (TNF-a and IL-6) were

significantly reduced, and those of anti-inflammatory (IL-10)

cytokines were increased. NucAb is a candidate subunit vaccine

against A. baumannii. NucAb is highly conserved, with good

safety and some immunogenicity. However, the survival rate was

only 20% in the group of actively immunized mice, and the

survival rate of passively immunized mice was approximately

40% after A. baumannii infection (36). Therefore, we think

NucAb has a low probability of being clinically translatable.

2.1.1.7 BamA

BamA is an outer membrane b-barrel assembly protein

responsible for organizing protein complex on the outer

membrane of bacteria (37, 90, 91). The formation and

assembly of outer membrane proteins on bacterial membranes

are related to the action of the Bam protein complex (91).

Among these proteins, BamA represents a potential target.

BamA is anchored to the cell membrane and has a small

extracellular portion that can generate immunogenic epitopes

(92). The sequence identity of BamA in A. baumannii strains

was 92.3% to 99.9%. Mice immunized with recombinant BamA

produced IgG with high titers. In a mouse pneumonia model, the

7-day survival rate was 80% in actively immunized mice and

60% in passively immunized mice. Compared with

unimmunized mice, immunized mice had a lower bacterial

load in their lungs and significantly reduced the levels of the

serum proinflammatory factors IL-6 and IL-1b (37). In silico

analyses revealed that Oma87 is the same as BamA. Mice

immunized with recombinant Oma87 (rOma87) showed a

high specific IgG titer in serum. Immunized mice stimulated

with twice the lethal dose of A. baumannii had a survival rate of

100%. Mice immunized with seven times the lethal dose of A.

baumannii had a survival rate of 25% (38). As a candidate

subunit vaccine, BamA has high conservation and

immunogenicity and low toxicity. BamA can provide vital

protection to immunized mice, with potential for clinical

translation. The immunogenicity of BamA has room for

improvement. The T-cell and B-cell epitopes of BamA were

screened by bioinformatics, and the recombinant protein was

constructed to immunize mice, which may improve the

immunogenicity of BamA.

2.1.1.8 BauA

Baumannii acinetobactin utilization (BauA) is the most

important member of the iron-regulated outer membrane

proteins (IROMPs) family of A. baumannii. BauA plays a key

role in the absorption of acinetobactin and iron complexes under

iron-restricted conditions (93, 94). This protein is a monomer,

composed of the cork and the b-barrel domains. The barrel is

composed of 22 antiparallel transmembrane b-chains. The N-
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terminal domain, called the cork occludes the b-barrel (95).
BauA is conserved among members of Acinetobacter genus (96).

The antibody titers in the serum of mice immunized with

recombinant BauA (rBauA) were significantly higher than

those in the control group (97, 98). Exposure loop 7 of BauA

was combined with LCL to form a hybrid antigen. Immunizing

mice with hybrid antigens resulted in rather high antigen titers.

BauA can provide complete protection against A. baumannii

and is a promising candidate subunit vaccine (39).

2.1.1.9 DcaP

DcaP is a porin of A. baumannii that is involved in biofilm

formation (99). This protein is the most abundant dispersal

channel for A. baumannii during rodent infection. The X-ray

crystal structure of DcaP showed a trimeric pore structure. DcaP

may be involved in the uptake of clinically relevant negatively

charged b-lactamase inhibitors, such as sulbactam and

tazobactam (100). The DcaP sequence was more than 90%

identical among the 1450 A. baumannii strains studied. There

was no similarity between DcaP and human or mouse proteins.

The survival rates of active and passive DcaP-immunized mice

infected with two times the lethal dose of A. baumannii strains

were 50% and 66.7%, respectively. Mice actively and passively

immunized with the multiepitope vaccine of DcaP showed

33.3% and 50% survival after challenge with twice the lethal

dose of A. baumannii (22). DcaP, a candidate subunit vaccine, is

highly conserved and has a different origin from human

proteins. This protein exhibits some immunogenicity and is

not a toxin or an allergen. DcaP did not provide sufficient

protection to immunized mice, and the survival rate of

immunized mice stimulated by A. baumannii was not high.

The prospects for clinical translation of DcaP are low.

2.1.1.10 FilF

FilF is a putative pilus assembly protein located in the outer

membrane of A. baumannii. It is highly conserved among A.

baumannii strains, but its function remains unclear (40). This

protein contains 641 amino acids, 20 of which form signal

peptides for localization to the outer membrane. The level of

FilF endotoxin was less than 1 EU/ml. Immunization of mice

with FilF by subcutaneous injection induced specific IgG

production and significantly decreased the levels of the

proinflammatory factors TNF-a, IL-6, IL-33, IFN-g, and IL-

1b. When treated with lethal doses of A. baumannii, the bacterial

load in the lung tissue of mice was significantly reduced

compared with that in the control group, and the survival rate

of mice was up to 50%, indicating that FilF provided

immunological protection against A. baumannii infection (40).

The T-cell and B-cell epitopes of FilF and NucAb were screened

by bioinformatics software to generate the recombinant

multiepitope assembly peptide (rMEP). Immunizing mice with

rMEP could induce high levels of IgG antibodies and provide
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effective protection (88.9%) against a lethal dose of A. baumannii

(41). FilF is conserved, immunogenic, and weakly toxic. FilF has

a weak protective effect on mice, and the survival rate of mice

under A. baumannii attack is not very high. Therefore, the

possibility of clinical translation is low.

2.1.1.11 PcTPRs1

PcTPRs1 is a protein containing a tetrapeptide repeat (TPR)

that is associated with bacterial pathogenicity and virulence (20,

101, 102). PcTPRs1 is also involved in a variety of biological

processes, such as gene regulation, cell cycle regulation, transfer

of bacterial virulence factors to host cells, binding to host cells,

and inhibition of phagolysosome maturation (103–105).

PcTPRs1 is an outer membrane protein that is very highly

conserved (identity>90%) in A. baumannii. Mice immunized

with PcTPRs1 and its subunits had survival rates of 50% and

40%, respectively, after stimulation with twice the lethal dose of

A. baumannii. Immunized mice produce specific IgG antibodies.

Mice passively immunized with PcTPRs1 and its subunits had

survival rates of 66.7% and 50%, respectively (20). PcTPRs1, a

candidate subunit vaccine of A. baumannii, is very highly

conserved and is immunogenic. PcTPRs1 did not have a

strong protective effect on mice. Therefore, the probability of

clinical translation is low.

2.1.2 Fimbrial proteins
2.1.2.1 ABAYE2132

ABAYE2132 is a fimbrial protein associated with the

adhesion, invasion, biofilm formation and motility of A.

baumannii. When ABAYE2132-resistant serum was cultured

with A. baumannii and A549 cells, the adhesion of A. baumannii

to A549 cells was reduced by 40% (42). ABAYE2132 is highly

conserved, with an identity of more than 99% (42, 106). The full-

length protein sequence consists of 209 amino acids. Immunized

of mice with ABAYE2132 provided complete protection against

A. baumannii stimulation, and the bacterial loads in the lungs,

liver and spleen of the immunized mice were significantly lower

than those in the control group (42).

2.1.2.2 CsuA/B and FimA

Chaperone-Usher (CU) pili is a virulence factor involved in

bacterial adhesion; CsuA/B and FimA are important

components of CU pili (107–110). CsuA/B and FimA are

highly conserved among A. baumannii strains. The identity of

CsuA/B in 2927 A. baumannii strains was ≥99.44%, and the

query coverage (QC) was ≥98%. The QC of FimA among 2300

strains of A. baumannii was 100% (43). The two antigens, CsuA/

B and FimA, are safe and do not cause toxicity to mammalian

cells. Mice immunized with CsuA/B had a survival rate of only

37% when challenged with sublethal doses of A. baumannii (43).

The survival rate of mice vaccinated with FimA was up to 50%

when the mice were challenged with sublethal doses of A.
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baumannii (43). Mice immunized with recombinant of CsuA/

B and FimA proteins had a survival rate of 62.5%, which was

higher than that of mice immunized with CsuA/B or FimA alone

(43). CsuA/B and FimA are candidate subunit vaccines against

A. baumannii that are highly conserved and have

immunogenicity without toxicity. CsuA/B and FimA did not

had a strong protective effect on mice, and the probability of

clinical translation is low.

2.1.3 Other types of proteins
2.1.3.1 Bap

Biofilm-associated protein (Bap) is found on the surface of

bacteria, confers the ability to form biofilms, and plays a relevant

role during bacterial infection (111). Bap is a specific bacterial

surface protein directly involved in biofilm formation in A.

baumannii and is involved in intercellular adhesion in mature

biofilms (112, 113). Bap is one of the largest bacterial proteins

described to date and contains 8621 amino acids. Its predicted

isoelectric point (pI) is 2.9, making it one of the most acidic

bacterial proteins (112). Bap is composed of seven tandem repeat

modules, which are the main components of functional and

conserved regions (114). The mice were passively immunized

with IgY specifically targeting Bap to prevent A. baumannii

infection (115). Mice immunized with the recombinant Bap

subunit produced high titers of antibodies, which were able to

prevent A. baumannii infection. The 3-day survival rate of the

immunized mice was 60% to 100% (44). Intranasally

immunizing mice with chitosan-loaded Bap increased the

specific IgG and IgA levels in serum, lung and fecal samples

(116). The combined OmpA and Bap vaccines were more

potent, with a seven-day survival rate of more than 80%

observed in mice when challenged with A. baumannii (45).

Bap is a candidate subunit vaccine for A. baumannii. This

protein has high immunogenicity and can protect against A.

baumannii attack. There is a lack of research on the toxicity of

Bap, which is critical for subunit vaccine research.
2.1.3.2 Blp1

The structure of the A. baumannii Blp1 protein is similar to

that of the giant A. baumannii protein Bap. Blp1 is related to the

adhesion, virulence and biofilm formation of A. baumannii (46,

117). The Blp1 proteins encoded in the genomes of the IC I and

IC II strains share 71-74% identity. Purified Blp1 was mildly

toxic to lung epithelial cells. Blp1 has a tripartite structure

consisting of C-terminal and N-terminal domains with a

repetitive region containing multiple motif combinations in

the middle. Immunization with the C-terminal fragment of the

Blp1 protein protected mice from lethal doses of A. baumannii.

Immunized mice produced specific IgG antibodies. Mice were

injected with a lethal dose of A. baumannii intraperitoneally.

The seven-day survival rate of actively immunized mice was

60%. Passive immunization by intraperitoneal injection of serum
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from Blp1-immunized mice provided complete protection to

mice (46). Blp1, one of the candidate subunits of A. baumannii,

is less well conserved than other antigens. Blp1 has some

immunogenicity and low toxicity. Blp1-immunized mice

showed some protection against A. baumannii infection. The

probability of clinical translation of Blp1 is not particularly high.

2.1.3.3 VgrG

The type VI secretory system (T6SS) is associated with the

virulence and drug resistance of A. baumannii. Valine-glycine

repeat protein G (VgrG), the core component of the T6SS, is a

potent mediator of A. baumannii pathogenicity (118, 119). The

selected regions of VgrG were conserved in 118 strains of A.

baumannii (identity ≥97.63%) (47). VgrG is toxic to monocytes

and A549 cells. The VgrG1263-1608 sequence was incorporated

into the LCL of N. meningitidis for surface display and exposure

to functional epitopes. The recombinant protein LCL-VgrG was

expressed and purified. Mice immunized with LCL-VgrG

produced specific IgG antibodies. After challenge with a lethal

dose of A. baumannii, the survival rates of the mice were 33.3%

and 66.6% in the actively and passively immunized groups,

respectively (47). Under attack by A. baumannii, mice

immunized with recombinant VgrG (rVgrG) had higher

serum IgG levels, lower bacterial loads in the lungs and spleen,

and a 3-day survival rate of 75% (48).

2.1.3.4 MacB

MacAB-tolC is an ABC-type efflux pump responsible for

conferring resistance to several antibiotics in bacteria. MacB is

an essential control hub in the network and plays a crucial role in

the MacAB-tolC efflux pump (120, 121). The MacB protein

contains 664 amino acid residues, and 99 homologous sequences

were found in Acinetobacter, with query coverage and identity

greater than 95%. Three epitopes of MacB were screened to form

a recombinant epitope (RAE). Mice immunized with RAE

produced specific IgG and exhibited increased serum IFN-g
levels. After intraperitoneal injection with A. baumannii, the

longest survival time of the immunized mice was 14 days, which

was significantly higher than that of the control group (23).

MacB, a candidate subunit vaccine for A. baumannii, is highly

conserved and exhibits some immunogenicity. MacB prolonged

the survival of infected mice, but did not prevent death,

exhibiting little clinical translational value.

2.1.3.5 TolB

TolB is associated with bacterial growth kinetics, motility,

and virulence, and is involved in maintaining the integrity of the

bacterial envelope (122, 123). TolB is an allosteric b-propeller
protein that acts in the bacterial periplasmic space and may

interact with other proteins (124–126). Song et al. used

bioinformatics software to predict the structure of the TolB

protein and indicated that TolB is a potential vaccine antigen.
Frontiers in Immunology 11
The gene segments of four strains of A. baumannii were

sequenced, and the similarity of the TolB protein was 96.2%.

The T-cell and B-cell epitopes on TolB were screened and

reconstituted, and an excellent epitope was designed and

verified by experiments (123).

2.1.3.6 CipA and PBP-7/8

CipA and PBP-7/8 are serum drug resistance factors that

play a crucial role in the pathogenesis of A. baumannii (127,

128). CipA is a plasminogen binding protein. CipA binds to

plasminogen and converts it to the active serine protease

plasmin, which degrades fibrinogen and complements C3b.

CipA directly inhibits the alternative pathway of complement

in vitro (127). Penicillin-binding protein 7/8 (PGP-7/8) plays a

role in cell wall remodeling. Moreover, PBP-7/8 directly or

indirectly affects serum drug resistance (128). Seven-day

survival rates of mice immunized with CipA, PBP-7/8, and

CipA+PBP-7/8 were 60%, 60%, and 80%, respectively, in the

A. baumannii sepsis model. Immunized mice had higher serum

total IgG levels and lower bacterial loads in their spleens than

control mice (49). CipA and PBP-7/8 are candidate subunit

vaccines against A. baumannii that have high immunogenicity

and can protect mice against infection. However, its toxicity and

conservation remain to be explored.
2.1.4 Novel predicted subunit vaccine
candidate proteins

Ahmad et al. used a virome-based reverse vaccinology

method to screen two vaccine candidates, polysaccharide

export outer membrane protein (EpsA) and chaperone-usher

pathway protein B (CsuB). EpsA and CsuB are toxic, antigenic,

nonallergenic, and highly conserved (129). Fereshteh et al.

showed that Dcap-like proteins and HP2 could be used as

vaccine candidates by a reverse vaccinology approach and B-

cell epitope analysis. Dcap-like protein and HP-2 have highly

conserved surface-exposed epitopes (130). Zadeh Hosseingholi

et al. used bioinformatics analysis and found that four

hypothetical proteins, HP4, HP6, HP8, and HP15, had the

characteristics of vaccine candidates (131). Beiranvand et al.

used bioinformatics methods, reverse vaccinology, and

subtractive genomics to select five vaccine candidates, namely,

Pfsr, LptE, OmpH, CarO and FimF, which have appropriate

antigenicity, solubility, and immunogenicity (57, 58).
2.2 Polysaccharides

Capsular polysaccharide (CPS) produced by A. baumannii

surrounds the outer membrane. Composed of repetitive

oligosaccharide units (K Units), CPS is a major virulence

factor that protects bacteria from environmental damage (132–

134). CPS participates in host cell interactions and provides
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protection against phagocytosis and complement-mediated

bactericidal effects (135, 136). CPS can help bacteria evade

host immune responses. The pathogen-covering CPS is

different from mammalian glycans and therefore unlikely to

trigger autoimmunity or allergies in humans (133). Yang et al.

passively immunized mice with rabbit polyclonal CPS antibody,

which provided 50% protection against A. baumannii challenge

(136). Three inert carrier proteins were coupled to the type K9

CPS fragment of A. baumannii. Immunizing mice with the

conjugate induced high levels of IgG antibodies in serum and

stimulated the production of IL-10, IL-17A, and TNF-a. Mice

immunized with the conjugate together with Freund’s adjuvant

and calcium phosphate adjuvant, had 100% and 70% survival

after stimulation with A. baumannii, respectively (50). Li et al.

created a vaccine the glycoprotein CTB4573C‐CPS (C‐CPS)

against A. baumannii by introducing the O-linked

glycosylation system into the host strain. Mice immunized

with C-CPS showed a significant increase in the serum-specific

IgG antibody level. The survival rate of immunized mice under

attack by different A. baumannii strains was 70% to 100% (51).

CPS has good immunogenicity and can provide protection

against A. baumannii stimulation, so it is a promising

candidate subunit vaccine. Further research is needed on the

toxicity of CPS.
2.3 Outer membrane vesicles

Outer membrane vesicles (OMVs) are spherical vesicles

produced by gram-negative bacteria (137). OMVs play a role in

pathogenesis, intercellular communication, and stress responses,

as well as in immune regulation and the establishment and

balance of the gut microbiota (138). OMVs consist of various

proteins (such as OmpA), lipopolysaccharides (LPS),

phospholipids, DNA and RNA (139–141). They are naturally

occurring candidate subunit vaccines containing multiple

candidate vaccine components. Micheal et al. immunized mice

with OMVs produced by A. baumannii ATCC19606 and

produced specific IgG and IgM in serum. In the A. baumannii

sepsis model, the survival rate of immunized mice was 87.5% to

100%. The bacterial loads in the lungs and proinflammatory

factor levels in the serum of immunized mice were reduced

compared with those in the control (52). Huang et al. immunized

mice with OMVs derived from clinically multi-resistant A.

baumannii strains. In the sepsis model, the survival rate of

actively immunized mice was 73.3% and that of passively

immunized mice was 100% (53). Marina et al. immunized mice

with LPS-free OMVs. Under challenge with A. baumannii, 10 mg
of OMVs provided 75% protection, and 100 mg of OMV provided

complete protection (54).

The OMVs produced by A. baumannii are toxic. LPS-

deficient OMVs have low toxicity, high safety, and high

immunogenicity and can protect against A. baumannii attacks.
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LPS-deficient OMVs are promising subunit vaccine candidates

with the potential for clinical translation. However, LPS-

deficient OMVs are less immunogenic than those produced by

wild-type A. baumannii. Improving the immunogenicity of LPS-

deficient OMVs is a priority. Fusion of immune cell membranes,

such as those of neutrophils, with LPS-deficient OMVs may

eliminate their toxicity and improve their immunogenicity

(142, 143).
3 Adjuvants

Adjuvants are a class of substances added to vaccine

preparations that improve the immunogenicity of vaccine

antigens (144). Reasonable addition of different adjuvants can

improve the immune efficacy of vaccines and regulate the

immune balance of the body. Adjuvants used in FDA-licensed

human vaccines include aluminum salts, MF59, AS01B, AS03,

AS04, and CpG ODN (145).

Aluminum adjuvants were the earliest adjuvants to be

developed and are the most widely used adjuvants. These

adjuvants mainly stimulate humoral immunity, produce a high

titer of IgG, and activate Th2 cells (146, 147). Aluminum

adjuvants are dispersed in colloidal form in liquids, which is

unsuitable for membrane filtration; therefore, membrane

filtration cannot guarantee sterility. Aluminum adjuvants also

cannot be frozen or lyophilized. Freund’s adjuvant is a water-in-

oil emulsion that can cause granulomas and have other adverse

effects after injection, so it cannot be used in the manufacture of

human vaccines (148). Freund’s adjuvant is still widely used in

animal experiments because of its strong adjuvant effect and

affordable cost (27, 50, 149). MF59 and AS03 are oil-in-water

adjuvants that overcome the shortcomings of Freund’s adjuvant

and are effective adjuvants in many vaccines. The fundamental

mechanism of action of oil-in-water adjuvant is chemokine-

driven cellular immune cell recruitment. MF59 can induce

cellular and humoral immunity and produce functional

antibodies with high titers. AS03 stimulates the immune

system by activating NF-kB, producing proinflammatory

cytokines and chemokines, recruiting immune cells

(monocytes and macrophages), and inducing high antibody

titers (148, 150). CpG ODN is an immune booster that

enhances the antibody response and polarizes to the Th1

profile (151, 152). AS01 and AS04 are complex adjuvants,

which are combinations of different adjuvants, that enhance

the immune response (148). Heat-labile enterotoxin (LT) and

cholera toxin (CT) are bacterial toxins extracted from bacteria

and are the most promising mucosal adjuvants.

With further in-depth study of adjuvants, especially the

development of materials science, the diversity of available

adjuvants has greatly increased. Freund’s adjuvant and aluminum

adjuvants were the first to be studied, followed composite adjuvants

and cytokine adjuvants. Nanomaterials such as CS, PLGA, gold
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nanoparticles, silver nanoparticles and mesoporous silica have also

been shown to have special adjuvant effects (153–158). Bacterial

OMVs are natural functional nanomaterials that can be used as

drug carriers and adjuvants (159, 160). The OMVs of plants are

rarely studied and may also have adjuvant effects. The role of

adjuvants has changed from simply inducing innate immunity at

the beginning to regulating the level and type of immunity in a

systematic manner. Our research team has also explored in A.

baumannii nanovaccines. The CS-PLGA-rOmp22 nanovaccine

was constructed by combining CS, PLGA, and rOmp22 of A.

baumannii. Immunizing mice with CS-PLGA-rOmp22 greatly

enhanced the immune effect (21). Nanomaterials have great

application prospects in subunit vaccines and are worthy of

further exploration.
4 Common immune routes

The common routes of vaccine immunization are intramuscular

injection, subcutaneous injection, intraperitoneal injection and

mucosal immunization. Muscle tissue is tight, body fluid levels

are moderate, and blood vessels are abundant, and these features

are conducive to antigen and adjuvant residence. Antigen-

induced proinflammatory factors rapidly recruit leukocytes in

the blood and lymphatic circulation to infiltrate the injection site

(161). Intramuscular injection is easy to perform and widely

applicable. Many vaccines are administered intramuscularly,

such as the hepatitis B vaccine, and tetanus vaccine. The

subcutaneous injection site is located in the connective tissue

of the fat layer below the dermis, and the presence of fat can play

a significant role in the storage of vaccines (162, 163). Dermal

tissue is rich in dendritic cells, macrophages, and a large number

of memory T and B cells. Immune cells can take up antigens in

subcutaneous tissue through cellular osmosis and present them

to the skin for induction of immunity (164, 165). Subcutaneous

immunization is suitable for vaccines with a slightly higher dose

and a slightly higher risk of adverse reactions. The common

vaccines that confer immunity through subcutaneous

administration include the inactivated plague vaccine and

varicella attenuated live vaccine. The abdominal cavity can

accommodate large-volume injections, which are more

common for vaccines in animal immunity experiments.

The mucosal immune system is the largest component of the

immune system and plays an extremely important role in the

process of fighting infection (166). Both mucosal and systemic

immune responses can be produced during induction of

mucosal immunity. Not only can specific IgA be produced

locally but also specific IgG and IgM can be produced in

serum (25, 167). A quadrivalent live attenuated influenza

vaccine (QLAIV), FluMist/Fluenz, was approved for use in the

United States of America (USA) in 2012 and the European

Union (EU) in 2013 (168, 169). This representative mucosal

vaccine is a nasal spray vaccine. The protective effects of the
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COVID-19 vaccine and Pseudomonas aeruginosa vaccine after

nasal mucosal immunization are strong (170–172). Mucosal

immunity has the advantages of ease of operation, good safety,

relatively few adverse reactions, low cost, and good compliance

(173). Mucosal immunity is a promising immunization route,

and has been widely studied.
5 Animal models

The most relevant experimental animal model should satisfy

several key conditions. First, it should offer a heterogeneous

immunogenic response. Second, its genetic background should

be well defined. BALB/c mice are the most common animals

used to evaluate the immunogenicity and protection effects of A.

baumannii subunit vaccines, C57BL/6, and ICR mice are also

used in some research (Table 1) (24–26, 30). Some studies have

proved that BALB/c and C57BL/6 mice have different immune

responses after vaccine administration, Th1 immune response

and IFN-g production dominated in C57BL/6 mice, while BALB/

c easily triggered Th2 immune response (174). Floris Fransen

et al. indicated that BALB/c, but not C57BL/6 mice had genetic

predisposition to produce polyreactive IgAs, has a strong impact

on the generation of antigen-specific IgAs (175). We speculate

that BALB/c mice are more suitable for A. baumannii mucosal

immunization vaccine development. It is better to select both

BALB/c and C57BL/c mouse models for a more comprehensive

assessment of the efficacy of the vaccine.

The specific animal experimental process is shown in Figure 1.

After immunizing mice subcutaneously, intramuscularly or

intranasally with A. baumannii subunit vaccine, serum and

saliva were collected to detect specific antibodies, immune cells

from spleen and lymph nodes were analyzed by flow cytometry,

and various cytokines (IFN-g, IL-4, IL-17) in the spleen

supernatant were detected. To test the protective effect of the

subunit vaccine, the immunized mice were challenged with A.

baumannii strains. Common used A. baumannii infection models

include pneumonia, bloodstream infection, and wound infection

models. Clinically, lung infections are more common, such as

those contracted during ventilator use, tracheal intubation, and

mechanical ventilation. Therefore, the pneumonia model has

better application prospects, and it is more meaningful for

researchers to use the pneumonia model. After challenged with

A. baumannii strains, survival rate, weight change, clinical score of

the immunized and non-immunized mice, as well as bacterial load

and pathology of each organ are observed as protective indicators

of A. baumannii subunit vaccines.

Bacterial load and pathology injury are important indicators

to evaluate the protective efficacy of vaccine. In the pneumonia

model, bacterial load in blood and lung tissue and the degree of

inflammation in the lung tissue are usually measured. In

bloodstream infection model, which is a systemic infection,

could affect the main organs, bacterial load in blood, lung,
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spleen, liver, kidney and heart, and the pathology of lung, spleen

and liver are often detected (Figure 1). A. baumannii

bloodstream infection probably causes bacterial endocarditis

and produces bacterial valve growth. Although there was no

study has examined the pathology of endocarditis, studies

indicate that the heart bacterial load in the immunized group

was significantly lower than that in the non-immunized group

(143, 176). Therefore, selection of indicators based on different

infection model is of great significance for the comprehensive

evaluation of the protective efficacy of the vaccine.
6 Conclusion and prospects

A. baumannii, as an ESKAPE pathogen, has caused serious

harm to global public health (5–8). Vaccines are effective tools to

prevent and control A. baumannii infection (10). As shown in

Figure 3, vaccine immunization could induce cellular immunity

and humoral immunity, Th1 and Th2 cells secrete IL-4, IL-10,

and so on, which activate B cells and induce them to secrete

specific antibodies. Meanwhile, a large number of memory T and

B cells are generated, which can induce a rapid immune response

when exposed to A. baumannii again. Subunit vaccines have

been widely studied because of their high purity, safety, and

stability, ease of production and strong targeted immune
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response (13). Because of the high cost and time investment

associated with the A. baumannii subunit vaccine, novel

research results have been obtained. Several candidate subunit

vaccines have been studied and found to provide partial or

complete protection. OmpA, Omp33-36, Ata, LPS-deficient

OMVs and BamA are safe, immunogenic and have strong

protective effects against A. baumannii infection, exhibiting

prospects for further development and research.

More and more antigen candidates for the A. baumannii

subunit vaccine have been predicted and discovered by using

proteomics, reverse vaccinology, pan-genomics, core genomics,

immunoinformatics, and biophysical analyses (17, 18). Different

candidate antigens, such as pure OMPs and detoxified LPS,

combined to form a new antigen that can enhance the immune

efficacy of vaccines, which is a new idea for vaccine design (19).

For particular clinical strains, some unique proteins and

metabolic systems involved in the immune escape, nutrient

acquisition mechanism, and community interaction of A.

baumannii may affect the survival of the bacteria. Using these

proteins as candidate antigens also offers potential for the

development of subunit vaccines (177, 178).

Adjuvants used in FDA-licensed human vaccines include

aluminum salts, MF59, AS01B, AS03, AS04, and CpG ODN

(145). Freund’s adjuvant is a water-in-oil emulsion that can

cause granulomas and other adverse effects after injection, so
FIGURE 3

Protective mechanism of Acinetobacter baumannii subunit vaccine. Antigens can be taken up and digested into fragments by APC. These
antigen fragments are recognized by TCR on CD4+ T cells, which activates cellular immunity to lysis target cells. In parallel, subunit vaccines or
cytokines could activate B cells to induce humoral immunity. Once A. baumannii invades the body again, memory T cells and B cells could
induce rapid and effective immune responses. (APC, Antigen-presenting cell; CTL, Cytotoxic T lymphocyte; MHC, Major histocompatibility
complex; TCR, T cell receptor).
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Freund’s adjuvant cannot be used in the manufacture of human

vaccines (148). Freund’s adjuvant is still widely used in animal

experiments due to its strong adjuvant effect, immunological

enhancement and affordable cost. LT and CT are the most

commonly used and promising mucosal adjuvants.

Nanomaterials, such as CS, PLGA, gold nanoparticles, silver

nanoparticles, mesoporous silicon, and bacterial OMVs, have

special adjuvant effects and have attracted the attention of many

researchers. The application of nanomaterials as adjuvants in

vaccine research is a new and promising direction.

The common methods of vaccine immunization are

intramuscular injection, subcutaneous injection, intraperitoneal

injection and mucosal immunization. Based on the characteristics

of the vaccine, different immunization routes should be chosen.

Mucosal immunity is an emerging research hotspot. Mucosal

immunity can induce not only the mucosal immune response but

also the humoral immune response (25, 167). Mucosal immunity

has the advantages of ease of operation, good safety, relatively few

adverse reactions, low cost, and good compliance (173).

BALB/c mice, C57BL/6 mice, and ICR mice are three

experimental mice of the A. baumannii subunit vaccine.

Common used animal infection models for A. baumannii

include pneumonia, bloodstream infection, and wound

infection models. Based on the actual situation, different

researchers use different animals, infection models and

adjuvants. This review summarized the adjuvants, infection

models and immunization routes used by different vaccine

candidates. By using the same animal, same adjuvant, and

same infection model, the immune effects of different vaccines

could be compared.

In conclusion, subunit vaccine is one of the effective methods

to prevent and control A. baumannii infection. So far, no A.

baumannii subunit vaccine candidate has entered clinical trials.

Emerging approaches such as bioinformatics, proteomics,

immunoinformatics, biophysical analyses, and reverse

vaccinology have played an important role in vaccine

candidate screening, protein epitope selection, vaccine spatial

structure construction, and vaccine immunogenicity detection.

In this review, we summarized the candidate antigens, adjuvants,

immunization routes, and animal models for the research of A.
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baumannii subunit vaccines. We also provide opinions and

suggestions on novel vaccine development, hoping to guide

current and future research on A. baumannii subunit vaccines.
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150. Garçon N VD, Didierlaurent AM. Development and evaluation of AS03,
an adjuvant system containing a-tocopherol and squalene in an oil-in-water
emulsion. Expert Rev Vaccines (2012) 11(3):349–66. doi: 10.1586/erv.11.192

151. Hartmann G, Battiany J, Poeck H, Wagner M, Kerkmann M, Lubenow N,
et al. Rational design of new CpG oligonucleotides that combine b cell activation
with high IFN-alpha induction in plasmacytoid dendritic cells. Eur J Immunol
(2003) 33(6):1633–41. doi: 10.1002/eji.200323813

152. Marshall JD, Hessel EM, Gregorio J, Abbate C, Yee P, Chu M, et al. Novel
chimer ic immunomodulatory compounds conta in ing short CpG
oligodeoxyribonucleotides have differential activities in human cells. Nucleic
Acids Res (2003) 31(17):5122–33. doi: 10.1093/nar/gkg700

153. Carroll EC, Jin L, Mori A, Munoz-Wolf N, Oleszycka E, Moran HBT, et al.
The vaccine adjuvant chitosan promotes cellular immunity via DNA sensor cGAS-
Frontiers in Immunology 19
STING-Dependent induction of type I interferons. Immunity (2016) 44(3):597–
608. doi: 10.1016/j.immuni.2016.02.004

154. Vasiliev YM. Chitosan-based vaccine adjuvants: Incomplete
characterization complicates preclinical and clinical evaluation. Expert Rev
Vaccines (2015) 14(1):37–53. doi: 10.1586/14760584.2015.956729

155. Macho Fernandez E, Chang J, Fontaine J, Bialecki E, Rodriguez F,
Werkmeister E, et al. Activation of invariant natural killer T lymphocytes in
response to the alpha-galactosylceramide analogue KRN7000 encapsulated in
PLGA-based nanoparticles and microparticles. Int J Pharm (2012) 423(1):45–54.
doi: 10.1016/j.ijpharm.2011.04.068

156. Dykman LA. Gold nanoparticles for preparation of antibodies and vaccines
against infectious diseases. Expert Rev Vaccines (2020) 19(5):465–77. doi: 10.1080/
14760584.2020.1758070

157. Xu L, Wang YY, Huang J, Chen CY, Wang ZX, Xie H. Silver nanoparticles:
Synthesis, medical applications and biosafety. Theranostics (2020) 10(20):8996–
9031. doi: 10.7150/thno.45413

158. Li Q, Liu Q, Li H, Dong L, Zhou Y, Zhu J, et al. Modified hollow
mesoporous silica nanoparticles as immune adjuvant-nanocarriers for
photodynamically enhanced cancer immunotherapy. Front Bioeng Biotechnol
(2022) 10:1039154. doi: 10.3389/fbioe.2022.1039154

159. Prior JT, Davitt C, Kurtz J, Gellings P, McLachlan JB, Morici LA. Bacterial-
derived outer membrane vesicles are potent adjuvants that drive humoral and
cellular immune responses. Pharmaceutics (2021) 13(2). doi: 10.3390/
pharmaceutics13020131

160. Banstola A, Jeong JH, Yook S. Immunoadjuvants for cancer
immunotherapy: A review of recent developments. Acta Biomater (2020)
114:16–30. doi: 10.1016/j.actbio.2020.07.063

161. Kuklin N DM, Karem K, Manickan E, Rouse BT. Induction of mucosal
immunity against herpes simplex virus by plasmid DNA immunization. J Virol
(1997) 71(4):3138–45. doi: 10.1128/jvi.71.4.3138-3145.1997

162. Lambert PH, Laurent PE. Intradermal vaccine delivery: will new delivery
systems transform vaccine administration? Vaccine (2008) 26(26):3197–208. doi:
10.1016/j.vaccine.2008.03.095

163. Nicolas JF, Guy B. Intradermal, epidermal and transcutaneous vaccination:
from immunology to clinical practice. Expert Rev Vaccines (2008) 7(8):1201–14.
doi: 10.1586/14760584.7.8.1201

164. Kupper TS, Fuhlbrigge RC. Immune surveillance in the skin: mechanisms
and clinical consequences. Nat Rev Immunol (2004) 4(3):211–22. doi: 10.1038/
nri1310

165. Ochoa MT, Loncaric A, Krutzik SR, Becker TC, Modlin RL. "Dermal
dendritic cells" comprise two distinct populations: CD1+ dendritic cells and CD209
+ macrophages. J Invest Dermatol (2008) 128(9):2225–31. doi: 10.1038/jid.2008.56

166. Kim SH, Jang YS. Recent insights into cellular crosstalk in respiratory and
gastrointestinal mucosal immune systems. Immune Netw (2020) 20(6):e44. doi:
10.4110/in.2020.20.e4

167. Russell MW, Moldoveanu Z, Ogra PL, Mestecky J. Mucosal immunity in
COVID-19: A neglected but critical aspect of SARS-CoV-2 infection. Front
Immunol (2020) 11:611337. doi: 10.3389/fimmu.2020.611337

168. Dempsey R, Tamburrino G, Schewe KE, Crowe J, Nuccitelli A, Dibben O.
Haemagglutinin substitutions N125D, D127E, D222G and R223Q improve
replicative fitness and vaccine effectiveness of an A/H1N1pdm09 live attenuated
influenza vaccine virus by enhancing alpha-2,6 receptor binding. PloS Pathog
(2022) 18(5):e1010585. doi: 10.1371/journal.ppat.1010585

169. Carter NJ, Curran MP. Live attenuated influenza vaccine (FluMist®;
fluenz™) a review of its use in the prevention of seasonal influenza in children
and adults. Drugs (2011) 71(12):1591–622. doi: 10.2165/11206860-000000000-
00000

170. Tiboni M, Casettari L, Illum L. Nasal vaccination against SARS-CoV-2:
Synergistic or alternative to intramuscular vaccines? Int J Pharm (2021)
603:120686. doi: 10.1016/j.ijpharm.2021.120686

171. Cabral MP, Correia A, Vilanova M, Gartner F, Moscoso M, Garcia P, et al.
A live auxotrophic vaccine confers mucosal immunity and protection against lethal
pneumonia caused by pseudomonas aeruginosa. PloS Pathog (2020) 16(2):
e1008311. doi: 10.1371/journal.ppat.1008311

172. Blackwood CB, Sen-Kilic E, Boehm DT, Hall JM, Varney ME, Wong TY,
et al. Innate and adaptive immune responses against bordetella pertussis and
pseudomonas aeruginosa in a murine model of mucosal vaccination against
respiratory infection. Vaccines (Basel) (2020) 8(4). doi: 10.3390/vaccines8040647

173. Xu H, Cai L, Hufnagel S, Cui Z. Intranasal vaccine: Factors to consider in
research and development. Int J Pharm (2021) 609:121180. doi: 10.1016/
j.ijpharm.2021.121180

174. Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM. M-1/M-2
macrophages and the Th1/Th2 paradigm. J Immunol (2000) 164(12):6166–73.
doi: 10.4049/jimmunol.164.12.6166
frontiersin.org

https://doi.org/10.1371/journal.ppat.1009291
https://doi.org/10.1371/journal.ppat.1009291
https://doi.org/10.1128/IAI.00366-10
https://doi.org/10.1128/IAI.00366-10
https://doi.org/10.1093/glycob/cwv168
https://doi.org/10.1128/IAI.01184-12
https://doi.org/10.1016/j.vaccine.2017.01.060
https://doi.org/10.1128/JB.00498-06
https://doi.org/10.1146/annurev-micro-052821-031444
https://doi.org/10.1186/s12866-020-1722-1
https://doi.org/10.1111/j.1574-6968.2009.01669.x
https://doi.org/10.1002/mas.20175
https://doi.org/10.1002/mas.20175
https://doi.org/10.1021/acs.bioconjchem.7b00692
https://doi.org/10.1021/acs.nanolett.2c01948
https://doi.org/10.1021/acs.nanolett.2c01948
https://doi.org/10.1038/nm.3409
https://doi.org/10.1016/j.vaccine.2019.04.055
https://doi.org/10.1080/21645515.2014.1004026
https://doi.org/10.1016/j.morpho.2016.01.002
https://doi.org/10.1016/j.morpho.2016.01.002
https://doi.org/10.1155/2016/1459394
https://doi.org/10.1093/ilar.46.3.280
https://doi.org/10.1586/erv.11.192
https://doi.org/10.1002/eji.200323813
https://doi.org/10.1093/nar/gkg700
https://doi.org/10.1016/j.immuni.2016.02.004
https://doi.org/10.1586/14760584.2015.956729
https://doi.org/10.1016/j.ijpharm.2011.04.068
https://doi.org/10.1080/14760584.2020.1758070
https://doi.org/10.1080/14760584.2020.1758070
https://doi.org/10.7150/thno.45413
https://doi.org/10.3389/fbioe.2022.1039154
https://doi.org/10.3390/pharmaceutics13020131
https://doi.org/10.3390/pharmaceutics13020131
https://doi.org/10.1016/j.actbio.2020.07.063
https://doi.org/10.1128/jvi.71.4.3138-3145.1997
https://doi.org/10.1016/j.vaccine.2008.03.095
https://doi.org/10.1586/14760584.7.8.1201
https://doi.org/10.1038/nri1310
https://doi.org/10.1038/nri1310
https://doi.org/10.1038/jid.2008.56
https://doi.org/10.4110/in.2020.20.e4
https://doi.org/10.3389/fimmu.2020.611337
https://doi.org/10.1371/journal.ppat.1010585
https://doi.org/10.2165/11206860-000000000-00000
https://doi.org/10.2165/11206860-000000000-00000
https://doi.org/10.1016/j.ijpharm.2021.120686
https://doi.org/10.1371/journal.ppat.1008311
https://doi.org/10.3390/vaccines8040647
https://doi.org/10.1016/j.ijpharm.2021.121180
https://doi.org/10.1016/j.ijpharm.2021.121180
https://doi.org/10.4049/jimmunol.164.12.6166
https://doi.org/10.3389/fimmu.2022.1088130
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yang et al. 10.3389/fimmu.2022.1088130
175. Fransen F, Zagato E, Mazzini E, Fosso B, Manzari C, El Aidy S, et al. BALB/
c and C57BL/6 mice differ in polyreactive IgA abundance, which impacts the
generation of antigen-specific IgA and microbiota diversity. Immunity (2015) 43
(3):527–40. doi: 10.1016/j.immuni.2015.08.011

176. Zhou J KN, Guo Z, Ventura CJ, Holay M, Zhang Q,Wei X, et al. Nanotoxoid
vaccination protects against opportunistic bacterial infections arising from
immunodeficiency. Sci Adv (2022) 8(35):eabq5492. doi: 10.1126/sciadv.abq5492
Frontiers in Immunology 20
177. Morris FC, Dexter C, Kostoulias X, Uddin MI, Peleg AY. The mechanisms
of disease caused by acinetobacter baumannii. Front Microbiol (2019) 10:1601. doi:
10.3389/fmicb.2019.01601

178. Ramirez MS, Penwell WF, Traglia GM, Zimbler DL, Gaddy JA, Nikolaidis
N, et al. Identification of potential virulence factors in the model strain
acinetobacter baumannii A118. Front Microbiol (2019) 10:1599. doi: 10.3389/
fmicb.2019.01599
frontiersin.org

https://doi.org/10.1016/j.immuni.2015.08.011
https://doi.org/10.1126/sciadv.abq5492
https://doi.org/10.3389/fmicb.2019.01601
https://doi.org/10.3389/fmicb.2019.01599
https://doi.org/10.3389/fmicb.2019.01599
https://doi.org/10.3389/fimmu.2022.1088130
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Subunit vaccines for Acinetobacter baumannii
	1 Introduction
	2 Candidate subunit vaccines for Acinetobacter baumannii
	2.1 Proteins
	2.1.1 Outer membrane proteins
	2.1.1.1 OmpA
	2.1.1.2 Omp33-36
	2.1.1.3 Omp22
	2.1.1.4 OmpW
	2.1.1.5 Ata
	2.1.1.6 NucAb
	2.1.1.7 BamA
	2.1.1.8 BauA
	2.1.1.9 DcaP
	2.1.1.10 FilF
	2.1.1.11 PcTPRs1

	2.1.2 Fimbrial proteins
	2.1.2.1 ABAYE2132
	2.1.2.2 CsuA/B and FimA

	2.1.3 Other types of proteins
	2.1.3.1 Bap
	2.1.3.2 Blp1
	2.1.3.3 VgrG
	2.1.3.4 MacB
	2.1.3.5 TolB
	2.1.3.6 CipA and PBP-7/8

	2.1.4 Novel predicted subunit vaccine candidate proteins

	2.2 Polysaccharides
	2.3 Outer membrane vesicles

	3 Adjuvants
	4 Common immune routes
	5 Animal models
	6 Conclusion and prospects
	Author contributions
	Funding
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


