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Gliomas have an extremely poor prognosis in both adult and pediatric patient

populations as these tumors are known to grow aggressively and respond

poorly to standard of care treatment. Currently, treatment for gliomas involves

surgical resection followed by chemoradiation therapy. However, some

gliomas, such as diffuse midline glioma, have more limited treatment options

such as radiotherapy alone. Even with these interventions, the prognosis for

those diagnosed with a glioma remains poor. Immunotherapy is highly effective

for some cancers and there is great interest in the development of effective

immunotherapies for the treatment of gliomas. Clinical trials evaluating the

efficacy of immunotherapies targeted to gliomas have largely failed to date,

and we believe this is partially due to the poor choice in pre-clinical mouse

models that are used to evaluate these immunotherapies. A key consideration

in evaluating new immunotherapies is the selection of pre-clinical models that

mimic the glioma-immune response in humans. Multiple pre-clinical options

are currently available, each one with their own benefits and limitations.

Informed selection of pre-clinical models for testing can facilitate translation

of more promising immunotherapies in the clinical setting. In this review we

plan to present glioma cell lines and mouse models, as well as alternatives to

mouse models, that are available for pre-clinical glioma immunotherapy

studies. We plan to discuss considerations of model selection that should be

made for future studies as we hope this review can serve as a guide for

investigators as they choose which model is best suited for their study.
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Introduction

In adults, malignant brain tumors account for approximately

one-third of all CNS tumors with glioblastoma (GBM) and

diffuse low-grade gliomas (LGG) being the most common

subtypes (1). In children, brain tumors are the most common

form of solid malignancy and account for the majority of cancer

mortality (1, 2). Brainstem tumors account for 10% of all

pediatric tumors within the CNS with diffuse midline glioma

(DMG) being the most common subtype. The prognosis for

patients diagnosed with DMG is extremely poor as greater than

90% of patients die within 2 years of their initial diagnosis (2, 3).

Typical treatment of malignant gliomas involves surgical

resection (in surgically accessible tumors), as well as

chemotherapy and radiation therapy in lesions that are

deemed higher risk (4). Unfortunately, outcomes remain poor

despite this multi-modal approach and there is a dire need for

new therapeutic modalities (4–6).

Neoplastic cells are constantly generated throughout a

person’s lifetime, most of which are inevitably removed by the

host immune system through anti-tumor immunity. The few

neoplastic cells that manage to escape anti-tumor immunity

eventually become a tumor (7). The concept of immunotherapy

is the promotion of immune recognition, activation, and

elimination of neoplastic cells. Immunotherapy in the form of

immune checkpoint inhibitors (ICI) have radically transformed

the treatment paradigm of cancer. ICIs are able to induce

dramatic and durable response in many solid tumors and have

now become the first-line treatment for the treatment of

melanoma, colorectal cancer, and non-small cell lung cancer

(8). Other immunotherapy approaches include adoptive cell

transfer, cytokine/chemokine-based therapies, and tumor

vaccination. Given the lack of effective therapies in malignant

gliomas and the effectiveness of immunotherapy for other solid

malignancies, immunotherapy for malignant gliomas has

become an area of great interest.

Pre-clinical studies in animal models of malignant gliomas

have yielded many promising immunotherapy candidates, many

of which have eventually failed in clinical trials (9, 10). This

discrepancy between pre-clinical and clinical results, points to the

failure of pre-clinical models of malignant gliomas at

recapitulating the tumor immune cell interactions within the

tumor microenvironment. Many pre-clinical options are

currently available, each one with their own benefits and

limitations. Informed selection of pre-clinical models for testing

can facilitate translation of more promising immunotherapies in

the clinical setting. Here, we review commonly used and recently

developed glioma cell lines, mouse models, as well as alternative

animal models, in an effort to highlight which of these may be best

suited for immunotherapy studies.
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Key considerations for pre-clinical
models of glioma

Immunotherapy is a catch-all term that includes a wide

variety of approaches of manipulating the host immune system

to eliminate cancer. As such, there is no one perfect pre-clinical

model to evaluate the different immunotherapy approaches in

gliomas. We propose several key considerations that

investigators should take when selecting pre-clinical models of

glioma for evaluation of immunotherapy.
Tumor origin

The first and perhaps the most impactful decision the

investigator has to make is the origin of the tumor. They can be

from the same species as the model animal (allogeneic) or patient-

derived (xenograft). Allogeneic tumors can be generated from

spontaneously occurring tumors, carcinogen mutagenesis, genetic

engineering, and transposon mutagenesis. Xenograft tumors are

patient-derived cell lines and cancer stem cells (CSCs). Allogeneic

tumors can be implanted on immunocompetent mice whereas

xenograft models can only be implanted in immunocompromised

or humanized mice.
Tumor antigen expression

Therapeutic approaches such as CAR-T and tumor vaccines

require that animal models express some of the same tumor neo-

antigens as the human tumor. In this respect, genetically

engineered mouse models (GEMMs) of gliomas are not always

the best choice. GEMM does a good job at recapitulating driver

mutations, however, these tumors poorly express tumor

neoantigens that are expressed by gliomas, limiting the

usefulness of this model when evaluating immune therapies.
Tumor mutational burden

For some tumors residing outside the CNS, it has been

observed that tumors having a higher mutational burden are

better candidates for immunotherapy. This higher mutational

burden often leads to the production of more tumor neoantigens

which can be targeted by the immune system. This observation

has been made in colorectal cancer, as well as other cancers

outside the CNS (11, 12). However, the opposite has been

observed in gliomas, where a higher tumor mutational burden

is often associated with worse survival (12, 13). These findings

highlight the need for paying close attention to tumor
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mutational burden when choosing a pre-clinical model for

glioma immunotherapy studies as models having very high

tumor mutational burden may not be best suited for

immunotherapy studies.
Growth rate

Gliomas are known as aggressive malignancies that are

known to grow quickly. It has been reported that GBM

specifically has a median specific growth rate of 1.4% per day,

with an equivalent volume doubling time of 49.6 days (14).

Choosing a pre-clinical model that has a high growth rate is

crucial for immunotherapy studies as these tumors grow quickly

in patients. Additionally, GBM as well as other gliomas, grow in

an infiltrative manner unlike most CNS tumors (15). Given these

findings, it is crucial for investigators performing glioma

immunotherapy studies to choose pre-clinical models that

possess high growth rates and closely parallel glioma growth

patterns as this will best replicate what is observed in patients.
Cell lines and mouse models
of glioma

GL261

GL261 is an allogeneic tumor cell line that was originally

created by intracranially injecting C57BL/6 mice with a known

carcinogen, that being, 3-methylcholantrene (16). Small pieces

of the tumor were taken and subjected to serial passaging over

time which is believed to be one of the reasons that GL261 lacks

important glial differentiation markers (17). The growth of

intracranial GL261 tumors has been described in the literature

as rapid with a slightly invasive growth pattern. Additionally, it

has been noted that lymphocyte infiltration is extremely low in

these tumors. Szatmári and colleagues found that after

intracranially implanting 1 × 105, 1 × 104, 1 × 103 and 1 × 102

GL261 cells into immunocompetent mice, the mean survival

time was 25, 27, 36 and 55 days respectively (16). It has been

noted that a higher level of MHC1 antigens can be detected in

wildtype GL261 tumors when compared to healthy brain, and it

has been noted that MHC1 is upregulated in cells exposed to

interferon-gamma (16). Compared to other tumor lines, GL261

has a higher mutational burden as whole exome sequencing has

shown in vitro GL261 to have 212 frameshift and 4766 missense

mutations (18). In the same study, it was shown that in vitro

SB28 had 67 frameshift and 41 missense mutations (18).

Commonly, GL261 cells are administered to mice via

intracranial injection, but these tumors can also be grown in

the subcutaneous space by injecting mice with GL261 cells in

the flank.
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SMA-560

After H. Fraser and colleagues observed the first incidences of

mice developing spontaneous gliomas, Serano and colleagues

developed the SMA-560 cell line after performing a serial

transplantation of spontaneous murine astrocytoma (19).

Specifically, tumor tissue underwent homogenization, in vitro

culturing, and subsequent transplantation into VM/Dk mice (19).

The median survival for animals bearing SMA-560 tumors

following injection with 1×104 tumor cells/5 ml has been reported

to be approximately 26 days (20). Notably, SMA-560 has high

expression of glial fibrillary acid protein (GFAP) and the astrocyte

marker glutamine synthetase, and low expression of S-100 proteins

(21, 22). Additionally, it has been noted that while MHC1

expression is low in SMA-560 at baseline, it is upregulated in

cells exposed to interferon-gamma (23). In a study by Johanns and

colleagues, it was observed that SMA-560 had 2171 non-

synonymous exome mutations as compared to 4,932 for GL261

(24). SMA-560 cells can be administered to mice via intracranial

injection, but these tumors can also be grown in the subcutaneous

space by injecting mice with SMA-560 cells in the flank.
CT-2A

CT-2A is an allogeneic cell line that was generated from a

malignant astrocytoma that was formed in C57BL/6J mice that were

injected in the cerebrum with a known carcinogen, that being, 20-

methylcholanthrene (25). These cells have a high tumorigenicity as

mice have a median survival of 20 days after intracranial injection

with 1x104 cells (23). This tumor is known to have high levels of

complex gangliosides and very low distribution of GM3

(monosialodihexosylganglioside) which has been classified as an

anti-angiogenic ganglioside (26, 27). Additionally, CT-2A cells are

known to be deficient in the tumor suppressor PTEN and are wild-

type for p53. These tumors have a high mitotic index and unlike

many other tumors, demonstrate high levels of microvascular

proliferation (25, 28). Commonly, CT-2A cells are administered

to mice via intracranial injection, but these tumors can also be

grown in the subcutaneous space by injectingmice with CT-2A cells

in the flank.
SB-28

SB28 is an allogeneic cell line that was generated by using

sleeping beauty transposons to insert constructs capable of targeting

the P53, RAS and PDGF pathways. These sleeping beauty

transposon flanked pT2/CAG-NRasV12 and pT2/shp53/mPDGF

constructs were then injected into the right ventricle of C57L/6mice

(23). It has been noted that SB28 bearing mice have extremely low

MHC1 expression and limited CD8 T cell infiltration posing a
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challenge for immunotherapy-based studies using this cell line (18).

The median overall survival for mice injected with 1x104 SB28 cells

is 19 days and whole exome sequencing has demonstrated these

cells have just 108 mutations as compared to the over 4900

mutations present in GL261 (18, 24). This cell line can be

injected intracranially, but these tumors can also be grown in the

subcutaneous space by injecting mice with SB28 cells in the flank.
U251

U251 is a xenograft cell line that was derived from a

glioblastoma multiforme using explant technique (29). These

cells must be injected into immunocompromised mice and the

median overall survival for tumor bearing mice is 22 days (30). It

has been noted in previous studies that B7-H4 expression is

upregulated in U251 glioma stem-like cells and while U251 cells

do not carry an IDH1 mutation, these cells do carry mutations in

hTERT, PTEN and p53 (31). Additionally, these cells have a

methylated MGMT status (31). These cells must be injected into

immunocompromised mice, limiting their usability in

immunotherapy-based studies.
U87

U87 is a xenograft cell line that was derived from a GBM in a

female patient. Immunocompromised mice bearing U87 tumors

have a median survival of 28.6 days following tumor implantation

(30). Interestingly, it has been observed that U87 and U251 tumors

only grow to kill their hosts when 1,000,000 or 1,500,000 cells,

respectively, are injected in the striatum of nude mice (30). It has

been shown that injecting less cells leads to a lack of tumor growth

and avoidance of death of the host. It has been noted that U87 cells

possess hTERT, ATRX and PTEN mutations, however, these cells

do not carry p53 or IDH1 mutations (31). Additionally, these cells

have a methylated MGMT status (32). These cells must be injected

into immunocompromised mice and can be injected intracranially

or into the flank region.
Qk/Trp53/PTEN (QPP) Triple-knockout
glioma model

QPP is an immunocompetent murine spontaneous GBM

model, in which three common patient-relevant tumor

suppressor genes, Quaking (Qk in mouse and QKI in human),

Trp53, and PTEN, were deleted (33). The tumors that were

derived from this model displayed histopathological and

transcriptomic heterogeneity, which can manifest the subtypes

of GBM (33). The cell line QPP7, isolated from this model, was

used to establish the syngeneic orthotopic glioma in C57L/6

mice with genetic manipulations in previous research (34).
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Importantly, this syngeneic mouse glioma demonstrated the

landscape of the tumor immune microenvironment, including

M1/M2-like macrophages, T cells, NK cells, and myeloid-

derived suppressor cells (MDSCs) (34). Based on immune

profiling and single-cell sequencing analyses, a most recent

study reported that both implanted and spontaneous QPP

models recapitulate the immunosuppressive myeloid dominant

nature of the tumor microenvironment of human gliomas (35).
Cre-LoxP transgenic glioblastoma
mouse model

The Cre-LoxP system allows for the targeting of tumor genes in

mouse brain tissue of interest which provides for insight into the

genetic drivers of GBM and the differences in genetic drivers

between primary and secondary GBMs (36). To create this

model, a mouse strain known as the “Cre driver strain” which

has Cre recombinase with a promoter, and amouse strain known as

the “LoxP floxed strain” that has LoxP floxed exons of the target

gene, were bred together (36). By breeding these strains together this

would result in a deletion of the floxed region and a subsequent

inactivation of the gene in the desired brain tissue of interest, leaving

the target gene active in tissues outside this region (36). Specifically,

this model has been used to test the role of p53 and PTEN function

in GFAP positive GBM. In a study by Zheng and colleagues, the

research team created a p53 and PTEN double knockout mouse

where this knockout was targeted to astrocytes specifically (37). The

research team found that a loss of both p53 and PTEN would

regulate Myc levels and subsequently control NSC self-renewal and

differentiation (37, 38). The Cre-LoxP mouse model is extremely

valuable for testing immunotherapy applications as this model can

activate or inactivate genes that can impact the tumor

microenvironment, and this system has also been used to control

the cytotoxic potential of CAR-T cells (39).
Humanized glioma mouse
model (HGMM)

The HGMMmodel was developed by Huang and colleagues to

better understand the role of CCL18 which is expressed in humans

but not in rodents (40). Specifically, the research team developed

this model to study the interaction of human glioma cells with

human microglia. To create this model, the research team depleted

intrinsic microglia from murine organotypic brain slices and then

injected either human glioma cells into these slices, or injected both

human glioma cells and human stem cell derived microglial cells

into these slices (40). Interestingly, the research team found that in

slices injected with both human glioma cells and human stem cell

derived microglial cells, human stem cell derived microglial cells

showed higher levels of sphericity and cell body volume

highlighting how the tumor microenvironment impacts the
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morphology of these cells (40). Additionally, the research team

assessed whether the presence of human stem cell derived

microglial cells with human glioma cells created an increase in

the expression level of genes known to be upregulated by the glioma

environment. The research team found that there was an

upregulation in IL-10, Osteopontin, MMP14, VEGF, TGF b, and
CCL18 in samples containing both human stem cell derived

microglial cells with human glioma cells, as opposed to samples

containing human glioma cells alone (40).

Ultimately, this model highlights that the presence of human

stem cell derived microglial cells with human glioma cells results

in not only larger tumors but also an upregulation of genes

similar to those known to be upregulated in certain gliomas (40–

45). Recent findings have begun to shed light on how GBM can

use microglia to induce immunosuppression within the tumor

microenvironment. This model will be valuable in developing a

deeper understanding of this hijacking and potentially enable

therapeutic exploitation of this mechanism (46).
Alternative animal models of glioma

While glioma mouse models are beneficial to use in

immunotherapy studies due to their low cost and availability,

these models certainly have their limitations (47–49). Some of the

limitations of mouse models include the lack of a highly

immunosuppressive glioma microenvironment that is

commonly observed in human gliomas, and that patient derived

xenografts often must be transplanted into immunocompromised

rodents (47, 48, 50). These limitations along with others highlight

the need for creating alternative models that can be used in pre-

clinical glioma immunotherapy studies.

Drosophila melanogaster is one alternative to glioma mouse

models as 75% of human genes share functional orthologs with

drosophila (50, 51). This finding makes drosophila a useful model

for studying gliomagenesis as gliomas can be induced in this model

using the GAL4/upstream activation sequence system (50, 52, 53).

Additionally, this model is valuable for studying centromere

dysfunction which has been shown to lead to tumor development

as a result of perturbation of stem cell division (50, 54). However, it

is important to note that this model lacks an adaptive immune

system and relies on humoral and cell-mediated innate immunity

for its defense against pathogens, limiting this models role in

immunotherapy-based studies (55–57).

Canine brain tumor models are an exciting large animal

model that have recently been developed for neuro-oncology

studies (58). It has been demonstrated that intracranial gliomas

spontaneously arise in canines and that these tumors share similar

morphological and immunological characteristics with human

gliomas (50, 59). Additionally, molecular characterization of

canine gliomas has shown that these tumor share similar

somatic alterations that are known drivers of human gliomas

such as mutations in Tp53 and IDH (60–62). Immunotherapy
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studies in glioma-bearing canines are limited at this time as this

model is still new to the neuro-oncology space and a limited

number of canines develop gliomas on an annual basis (63).

However, the limited number of studies that have occurred in

glioma-bearing canines have highlighted the promise associated

with this model (63–66).

Danio rerio (zebrafish) is a final alternative model that should

be considered for glioma immunotherapy studies as zebrafish lack

an adaptive immune system until six weeks of age, allowing for the

implantation of human glioma cells that lead to an invasive glioma

(50, 67, 68). Additionally, this model has a similar

microenvironment with regards to density, to what is observed

in the human brain (50). Limitations of this model include

differences in the tumor microenvironment compared to that of

humans, and that the optimal temperature for human cells is 37°C

compared to fish cells which is 28°C (50, 69). Recently, a zebrafish

model has been developed that can engraft human tumors at 37°C

(70). It will be interesting to observe whether this model can be

used in future immunotherapy studies.
Conclusion

In this manuscript we present glioma cell lines and mouse

models, as well as alternative glioma animal models that can be

used in immunotherapy studies. Additionally, we discuss some

of the benefits and limitations associated with these animal

models (see Table 1). When choosing a model we believe it is

first crucial to assess where the tumor is derived from.

Specifically, some allogeneic models such as GL261, CT2A, etc.

were created by administering known carcinogens to mice,

which is believed to be dissimilar to how gliomas arise within

humans. Models created via carcinogens do not replicate the

developmental biology of gliomas to the fullest extent and as

such may not be best suited for immunotherapy studies as these

models do not entirely possess the immunosuppressive

mechanisms observed in human gliomas (9, 10, 91).

Tumor antigen expression and mutational burden are also

important considerations when choosing a brain tumor model for

pre-clinical brain tumor immunotherapy studies. Many gliomas,

especially GBM and DMG, are known as “immunologically cold”

tumors as these malignancies express few antigens and have low

mutational burdens. Many allogeneic mouse models and some

patient derived xenografts such as U87 have increased antigen

expression and/or tumor mutational burden. This is problematic

for pre-clinical immunotherapy studies as findings showing

efficacy in these pre-clinical models may largely be due to there

being more antigenic targets than there should be and/or an

increased mutational burden, suggesting that a therapy is fit for

clinical trial when it truly is not. Canine and zebrafish models may

be beneficial in future glioma immunotherapy studies as canines

spontaneously generate gliomas, and zebrafish can undergo

transplantation with patient derived xenografts prior to their
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generation of an adaptive immune system. Ultimately however,

we believe that selecting a model that is both patient derived, and

“immunologically cold” is crucial for future pre-clinical glioma

immunotherapy studies as we believe this will help reduce the

number of failed immunotherapy clinical trials observed in the

neuro-oncology space.
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