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Introduction:Over the last decade, the field of systems vaccinology has emerged,

in which high throughput transcriptomics and other omics assays are used to

probe changes of the innate and adaptive immune system in response to

vaccination. The goal of this study was to benchmark key technical and

analytical parameters of RNA sequencing (RNA-seq) in the context of a multi-

site, double-blind randomized vaccine clinical trial.

Methods: We collected longitudinal peripheral blood mononuclear cell (PBMC)

samples from 10 subjects before and after vaccination with a live attenuated

Francisella tularensis vaccine and performed RNA-Seq at two different sites using

aliquots from the same sample to generate two replicate datasets (5 time points for

50 samples each). We evaluated the impact of (i) filtering lowly-expressed genes,

(ii) using external RNA controls, (iii) fold change and false discovery rate (FDR)

filtering, (iv) read length, and (v) sequencing depth on differential expressed genes

(DEGs) concordance between replicate datasets. Using synthetic mRNA spike-ins,

we developed a method for empirically establishing minimal read-count

thresholds for maintaining fold change accuracy on a per-experiment basis. We

defined a reference PBMC transcriptome by pooling sequence data and

established the impact of sequencing depth and gene filtering on transcriptome

representation. Lastly, we modeled statistical power to detect DEGs for a range of

sample sizes, effect sizes, and sequencing depths.
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Results and Discussion:Our results showed that (i) filtering lowly-expressed genes

is recommended to improve fold-change accuracy and inter-site agreement, if

possible guided by mRNA spike-ins (ii) read length did not have a major impact on

DEG detection, (iii) applying fold-change cutoffs for DEG detection reduced inter-

set agreement and should be used with caution, if at all, (iv) reduction in

sequencing depth had a minimal impact on statistical power but reduced the

identifiable fraction of the PBMC transcriptome, (v) after sample size, effect size (i.e.

the magnitude of fold change) was themost important driver of statistical power to

detect DEG. The results from this study provide RNA sequencing benchmarks and

guidelines for planning future similar vaccine studies.
KEYWORDS

RNA-Seq, statistical power, ERCC, tularemia vaccine (DVC-LVS), gene filtering,
sequencing depth, read length, reproducibility
1 Introduction

Since 2008, high-throughput technologies, primarily transcriptomics,

have been used to characterize the in vivo response to clinical vaccination

(1, 2). This approach referred to as “Systems Vaccinology,” has been

employed to investigate the molecular mechanisms regulating vaccine

activity (3), to identify correlates that predict antibody titer, breadth, or

persistence (4–7), and to predict responses to vaccination (8). Systems

vaccinology studies previously utilized microarray technology to identify

transcriptomes. However, microarrays have now been virtually replaced

by RNA-Seq technology due to its technical superiority (larger dynamic

range, no signal saturation, and no restriction to a static set of printed

probes) (9–12). Unlike microarrays, RNA-Seq is inherently flexible, and

several technical parameters can be tailored uniquely for each

experiment. The goal of this study was to establish parameters to

optimally apply RNA-Seq to clinical vaccine studies.

Some work has been done to benchmark RNA-Seq analyses and

understand how technical parameters influence experimental findings

(13–18). Quality metrics, methods to estimate reproducibility, and

algorithms to estimate statistical power have been developed for RNA-

Seq technology; however, these have almost exclusively been defined

using standardized reference samples (14, 19–22). Despite these efforts,

relatively little work has been done to benchmark the utility of reference

controls (Universal Human Reference RNA (UHRRs) and External

Reference Control Consortium (ERCC) synthetic RNA spike-ins) and

to assess the impact of the choice of sequencing depth and read length in

the context of “real-life” biological samples, or RNA-Seq-based clinical

immunology/vaccine studies (23–26).

In this study, we sought to empirically establish the impact of

these and other technical parameters on the ability to accurately assess

differentially expressed genes (DEGs) using samples collected for a

phase II clinical trial of a live attenuated tularemia vaccine. Tularemia

is a disease caused by infection with the Gram-negative, aerobic and

facultative intracellular bacterium, Francisella tularensis, transmitted

from a wide range of infected rodents and rabbits to humans by a tick

or other insect bites, direct skin contact with infected material, or

inhalation/ingestion. F. tularensis infects human monocytes/

macrophages, escapes the phagosome, and replicates within the
02
cytoplasm of infected cells. Because of its high infectivity, virulence,

and mortality after inhalation, tularemia is considered a Tier 1 Select

Agent with significant potential for use as an agent of bioterrorism. To

protect its troops, the US military developed a live, attenuated

tularemia vaccine which was evaluated in an NIAID-funded

Vaccine and Treatment Evaluation Unit (VTEU) network trial

before the COVID-19 pandemic. While we provide a high-level

summary of transcriptomic changes following vaccination, this

study was not intended to be a comprehensive biological

transcriptional characterization of Tularemia vaccination or to

identify correlates of Tularemia vaccine protection; these studies

recently have been published elsewhere (27, 28).

Specifically, our main goals were to (i) assess the reproducibility of

gene expression measurements and the ability to detect the same

DEGs in two different laboratories using technical replicate samples;

(ii) assess the impact of various sequencing depths on gene

representation for which we approximated an ultra-deeply

sequenced PBMC transcriptome by pooling all hundred samples

sequenced; (iii) estimate statistical power to determine DEGs as a

function of effect size, sequencing depth, and sample size; (iv) define

the impact of changes in technical parameters (sequencing depth and

read length) on the identification of DEGs; (v) assess the accuracy of

fold-change estimates using synthetic mRNA spike-ins for varying

read-count filtering cutoffs; (vi) determine an empirical read-count

cutoff for filtering out lowly-expressed genes, and (vii) establish

recommendations for RNA-Seq analyses conducted in clinical

vaccine studies. It is also important to note that the goals of this

study were not to perform an exhaustive comparison of established

analytical methods to quantify gene expression or detect DEGs, or to

compare the performance of these tools, as these comparisons already

exist in the literature (29). The replication of the study at different

sites was performed in a manner similar to that described in the

influential “SEQC/MAQ-III” studies that sequenced a small number

of technical replicates at multiple sites (16). The rationale for

replicating this benchmarking experiment on the same sample sets

(parallel aliquots of PBMCs from the same subjects and time points)

run in two separate laboratories was to firmly establish if the findings

could be validated using “real world” clinical trial samples.
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2 Results

2.1 Experimental design

The RNA-Seq benchmarking study described here utilized

samples from a Phase 2, multi-center, double-blind randomized

trial comparing the immunogenicity of two live attenuated vaccines

against Francisella tularensis: an aging stock used for decades by the

United States Army Medical Research Institute of Infectious Diseases

(USAMRIID-LVS) and a novel lot produced by the Dynport Vaccine

Company, DVC-LVS, intended to be its replacement (30) (Figure 1)

(registered at ClinicalTrials.gov NCT01150695). Replicate aliquots of

the same PBMC sample from each subject time point were used to

evaluate the agreement between laboratory RNA-Seq results

(Figure 1B). Briefly, RNA was extracted from PBMCs from 10

healthy subjects at Days 0 (pre-vaccination), 1, 2, 7, and 14

following DVC-LVS vaccination at both sites (referred to as Site 1

and Site 2). Samples were prepared for sequencing using poly A

selection followed by mRNA fragmentation, reverse transcription,

adapter ligation, and amplification at two different sequencing

facilities; Site 1 employed Illumina TruSeq and Site 2 utilized a

similar “in-house” protocol(see Materials & Methods). A single

operator at each site extracted the RNA, conducted the library

preparation, and performed CBot clustering and loading of pooled

libraries onto Illumina HiSeq 3000 sequencers. Internal (ERCC) and

external (UHRR) RNA controls were included in each experiment to

estimate the dynamic range and fold change accuracy, as well as to

evaluate the suitability of external RNA references for inter-site

normalization. RNA sequencing was performed at each site by

distributing the libraries for 53 samples evenly across 5 lanes of the

respective Illumina HiSeq 3000 devices at each site (Figure 1B).

Sequences were aligned to the GRCh38 reference genome.
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2.2 Sequencing statistics

A summary of the reference alignment statistics is listed in

Table 1. Site 1 data was sequenced at 151 nt singled ended (SE) to a

median total sequencing depth of 31.8 x 106 reads, with 28.1 x 106

(93.8%) uniquely mapping reads, whereas Site 2 data was sequenced

at 100 nt SE and had a median total and unique sequencing depth of

34.9 x 106 and 28.8 x 106 (88.1%), respectively (Figure 1C and

Table 1). When reads were mapped against known gene models, a

median of 22.4 x 106 and 20.1 x 106 reads were uniquely counted in

the expression quantification step for Site 1 and Site 2 data,

respectively. The majority (median of 86.6% for Site 1 and 76.6%

for Site 2) of tags (i.e. spliced reads) mapped to known exonic regions,

and fewer mapped to intronic (12.6% and 22.2%, respectively), and

intergenic regions (0.9% and 1.2%, respectively) (Table 1). The GC

content in sequenced libraries was comparable between sites

(medians 49.3, 50.5 for Site 1 and Site 2 data, respectively). Of note,

one baseline (pre-vaccination) sample at Site 1 showed substantial GC

content bias with a median GC of 55.6% and was identified as an

outlier in principal component analysis (PCA). This sample was

removed from downstream analyses unless otherwise specified.

Taken together, these summary statistics demonstrated that, in

general, the replicate samples were sequenced effectively at each site.

However, despite using replicate PBMC samples as starting material

and identical sequencing platforms, sequencing depth metrics and

mapping statistics varied. Variation was less pronounced for the 3

external UHRR control samples whose sequences were combined

prior to processing (Figure 1) indicating that variability in RNA

content between paired samples may have contributed to this. In

addition, read lengths differed between protocols (151 vs. 101 nt).

Except for read length, we considered these differences between

datasets to reflect true variability introduced by different operators
B

CA

FIGURE 1

Experimental design of RNA-Seq benchmarking for the clinical vaccine study. (A) The samples utilized in this benchmarking experiment were obtained
from parent study DMID 08-006 (ClinicalTrials.gov NCT01150695), of which 42 patients had RNA samples collected for microarray analysis. (B) RNA
from five time points taken from 10 volunteers, for a total of 50 samples, at both Site 1 and Site 2. Each biological sample was spiked with either ERCC
mix 1 or mix 2, for 25 replicate spike-ins of each mix. Samples were sequenced as single-ended 151 or 100 bp reads on an Illumina HiSeq3000 at each
Site, with multiplexing targeting a sequencing depth of 30 M reads. At each site, an additional set of three RNA samples from UHRR controls were
included for an independent reference. (C) Median sequencing metrics for all samples at each site. The yellow bar indicates the median total sequencing
depth obtained for all samples for each site; the top of the green bar indicates the total reads that are uniquely mapping to the GRCh38 reference, and
the grey bar indicates the reads mapping to annotated features (i.e., genes) in the reference. Created with BioRender.com.
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generating distinct library preparations. Thus, these data should

represent a good comparison set for investigating the overall

reproducibility of Illumina-based RNA-Seq results in the context of

a vaccine study.
2.3 Inter-site agreement of RNA-Seq log2
counts per million and fold-change
estimates improved after filtering out lowly-
expressed genes

A prior study assessed the technical accuracy of RNA-Seq

measurements between laboratory sites (14). This prior study relied

on a comparison of read counts of reference RNAs (i.e. UHRR)

between laboratories, which involved non-matching sequencing

platforms. Here, we extended this benchmarking of RNA-Seq

accuracy by using replicate samples from clinical samples. To assess

the agreement of read-count estimation and fold change, and to test

the impact of filtering lowly-expressed genes, we calculated an

adjusted Euclidean distance (which uses the mean squared distance

rather than the sum of squared distances to normalize for the total

number of genes) and Pearson correlation between the two sites for

the log2 counts per million (LCPM) (n=49) and the log2 fold change

(LFC) (n=36, post-vaccination vs. pre-vaccination) for each subject.

This analysis was performed on the data after applying different

counts-per-million (CPM) filtering cutoffs (unfiltered, 1, 2, 4, and 8

CPM) to remove lowly-expressed genes; these filtering cutoffs were

applied by removing any gene whose maximum expression level

across samples was below the specified threshold.

The Euclidean distance showed improved reproducibility of gene

expression profiles between replicate samples as the CPM cutoff

increased (Figure 2A); the average Euclidean distance was 1.45 for the

unfiltered dataset, and this distance dropped to 0.80 after applying the >1

CPM cutoff. Increasing the threshold to >2 CPM, >4 CPM, and >8 CPM

showed additional, incremental shifts in the distribution toward lower

Euclidean distances. Similarly, the Pearson correlation showed improved

reproducibility with filtering; the mean correlation increased from 0.945

for the unfiltered data up to 0.960 for the >1 CPM filtering, but it did not
Frontiers in Immunology 04
continue to increase substantially with additional filtering (Figure 2B).

The Euclidean distances of the LFC profile for each replicate paired

sample showed a similar trend: reproducibility between Sites improved

with increased filtering (Figure 2C). The average Euclidean distances

on the LFCs shrunk from 1.06 for the unfiltered dataset down to 0.30

for the >8 CPM filtering. In contrast to the LCPM profiles, the Pearson

correlation of the LFCs did show continued improvement with additional

filtering (Figure 2D). The average Pearson correlation jumped from 0.11

for the unfiltered data to 0.48 with >1 CPM filtering. Increasing the

threshold continued to improve the correlation reaching an average of

0.73 with >8 CPM filtering. A similar analysis was performed looking at

reproducibility by gene (rather than by sample), and this also

demonstrated improvements in Euclidean distance and Pearson

correlation after applying filtering (Supplemental Figure 1). Taken

together, these results demonstrated that (i) the overall concordance of

log2 counts per million and fold-change estimates increased with

increasing minimum gene expression abundance, (ii) low expressed

genes provide inaccurate measurements, as demonstrated here by low

concordance of data between sites, and (iii) commonly used cutoffs such

as >1 CPM might not be sufficiently stringent to ensure accurate

calculation of fold changes.
2.4 Discordance of detection of DE genes
between sites was mainly driven by
differences in mean fold change

To assess and compare the strength of the biological signal, i.e. the

change in magnitude of gene expression longitudinally over time (Days

1, 2, 7, and 14), we contrasted mean LFC and mean LCPM using MA

plots (Figure 3A). We determined the number of DEGs using edgeR

(FDR <0.05, fold change of ±1.5) after applying a maximum CPM ≤8

across samples to filter out lowly-expressed genes. For both sites, an

increase in fold change and the number of DEGs was observed over

time indicating that the complexity of vaccine-induced gene expression

signals in PBMCs reached a peak at Day 14. As shown in Figure 3A,

substantially higher numbers of DEGs were detected at Day 14 as well

as Day 7, compared to Day 1 and Day 2 for which few DEGs were
TABLE 1 Summary of human reference alignment statistics.

Site 1 (N=50) Site 2 (N=50)

Sequencing Parameter Min Q1 Median Q3 Max Min Q1 Median Q3 Max

Total Reads [106] 26.69 30.39 31.81 34.25 42.69 21.16 30.32 34.85 43.95 63.76

Total Mapped Reads [106] 25.37 28.71 30.27 32.54 40.65 20.34 29.27 33.8 42.43 61.65

Unmapped Reads [106] 1.0 1.5 1.61 1.71 2.05 0.66 1.05 1.19 1.49 2.11

Uniquely Mapped Reads [106] 16.06 26.69 28.06 30.19 37.47 18.22 25.92 28.76 36.79 55.74

Uniquely Mapped Reads [%] 42.7 92.8 93.75 94.2 95.3 83.7 86.3 88.1 90 91.1

Counted Reads [106] 11.65 21.51 22.36 24.35 30.24 12.32 17.57 20.1 25.16 37.13

Median GC [%] 47.83 49.01 49.33 49.67 55.63 49.5 50.5 50.5 50.5 51.49

Exon Tags [%] 64.33 85.57 86.6 87.42 91.44 71.95 75 76.61 77.99 82.63

Intron Tags [%] 8.04 11.64 12.6 13.55 33.45 16.38 20.9 22.16 23.74 26.82

Intergenic Tags [%] 0.52 0.79 0.85 0.89 2.21 0.99 1.11 1.2 1.25 1.34
frontier
sin.org

https://doi.org/10.3389/fimmu.2022.1093242
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Goll et al. 10.3389/fimmu.2022.1093242
detected. These results are consistent with other studies describing the

use of transcriptomics to characterize responses to live-attenuated

vaccines, in which increases in gene expression correspond with the

initiation of the adaptive immune response. Overall, 1173 and 1218

DEGs were detected across all time points for Site 1 and Site 2,

respectively, of which 869 overlapped with a concordance of 74% for

Site 1 and 71% for Site 2. To better understand where the loss of

concordance in DEGs occurred, we examined whether missed DEGs

were due to missing FDR and/or fold-change cutoffs or due to CPM

filtering (Figure 3A; Supplemental Table 1). At the Day 1 and Day 2

time points, the overall DEG concordance was only ~60% (Figure 3A,

right panel, green bar). However, when we accounted for genes that had

a significant FDR but did not pass the fold-change threshold of ±1.5,

the maximum concordance increased to nearly 80% (Figure 3A, right

panel, grey bar). Generally, we noted that the failure of genes to pass a

FC cutoff (grey bars) was consistently the largest contributor to gene list

discordance, followed by the effects of different levels of CPM filtering

(blue bars) (Figure 3A). However, failing both FDR and FC cutoffs had

more pronounced effects than CPM filtering for the weaker biological

signals observed at Days 1 and 2, indicating that statistical power was

more negatively impacted by lower effect sizes and higher variability in

changes for these days. Overall, only a small fraction of genes was

discordant due to failing to pass only the FDR cutoff (orange bars). We
Frontiers in Immunology 05
considered that the lack of overlap due to fold change differences

between Site 1 and Site 2 was due to the low magnitude of fold change

for DEGs at Day 1 and Day 2. However, when we compared the Site 1

vs. Site 2 DEG overlaps from the Day 7 and Day 14 time points, which

had more gene expression changes, the fraction of discordant genes due

to failing to meet the fold-change criteria (grey bars) was similar. To

examine the disagreement between fold changes in more depth, we

ranked the DEGs by fold change, from most downregulated to most

upregulated, and plotted them for each post-vaccination day

(Figure 3B). DEG fold-change ranks were highly concordant between

the two sites and overall directions agreed. Variability in ranks was

greatest for the middle ranks as was evident by the overall scatterplot

patterns with the least variability at the upper and lower ends. Genes

that had a fold change below the threshold of ±1.5 relative to the other

site fell generally in this middle area with some having much higher

ranks in one site vs. the other.

These data were instructive for establishing the relative

contribution of cutoffs to the discordance of DEGs between sites.

We demonstrated here that by removing the FC cutoff criterion of 1.5

fold (in either direction), an increase in the inter-site agreement of

DEGs by 20 percentage points was obtained. We hypothesize that the

observed differences in fold changes between sites are attributable to

differences in RNA representation in the aliquoted PBMCs.
B

C

D

A

FIGURE 2

Inter-site agreement of RNA-Seq log2 counts per million and fold-change estimates improves after filtering out lowly-expressed genes. LCPM: log2
counts per million. LFC: log2 fold change. (A) Violin plot depicting the distribution of adjusted Euclidean distance between Site 1 and Site 2 of the LCPM
gene expression profile for each subject. Each distribution consists of a total of 49 observations. Red dots mark the mean of the distribution, and black
diamonds mark the median. Each column shows the distribution after filtering genes at the CPM thresholds indicated on the x-axis. (B) The same analysis
and plotting design as described in (A), but for the Pearson correlation between Site 1 and Site 2 of the LCPM gene expression profile for each subject.
(C, D) show the same results but calculated on the LFCs. For these, each distribution consists of a total of 36 observations.
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A

B

FIGURE 3

(A) Fold change and DEGs over time. MA plots shown to the left contrast average log2 fold changes from pre-vaccination (y-axis) by average gene
expression levels (log2 CPM as shown on the x-axis) for each site and post-vaccination time point. Blue lines indicate the pre-specified minimum fold-
change cutoff of ±1.5 fold. DEGs (edgeR FDR <0.05, fold change ≥ ± 1.5 in either direction, and maximum read count of >8 CPM across all samples) are
colored in red. Stacked bar plots to the right summarize the overlap between the two sites. The first bar plot for each post-vaccination day represents DEGs
identified for Site 1 color-coded by the overlap class for genes identified for Site 2 (combination of FDR and fold change criteria or CPM gene filtering
criterion that were met/not met). The second barplot shows the reverse presenting a characterization of Site 2 DEGs based on the overlap with Site 1 genes.
(B) Scatterplots of ranks of log2 fold changes based on a union of DEGs identified for each site by post-vaccination day. A rank of 1 corresponds to the
lowest log2 fold change. Dashed lines represent the upper and lower rank boundaries of the ≥1.5 fold-change cutoff for each site.
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2.5 The influence of sequencing depth on
gene representation of the PBMC
transcriptome

We next assessed the influence of sequencing depth on gene

representation in our datasets. To establish a comprehensive reference

of genes expressed in PBMCs, we first pooled, in silico, data from all

100 samples (10 individuals, 5 time points, 2 sequencing sites),

yielding a reference transcriptome comprising 2.2 B total reads that

mapped to hg38 human reference gene models. We next filtered out

genes with fewer than 100 total aggregate reads (corresponding to

approximately 1 read per sample). This resulted in a “PBMC

transcriptome compendium” comprised of 26,172 gene models that

we used as a reference set considered “truly expressed” in the PBMC

compartment. To assess the impact of sequencing depth on gene

representation, we used the PBMC transcriptome compendium to

determine the proportion of genes detectable per sample as a function

of decreasing simulated sequencing depth (Figure 4). To focus on

genes with strong evidence of genuine expression, we choose a cutoff

of ≥16 reads per sample. At a sequencing depth of 30 M reads, an

average of 14,545 genes were detected with ≥16 reads, representing

56% of the truly expressed PBMC compartment (or 44% lost). While

relaxing our read-count threshold increased the number of detected

genes, there was still an incomplete representation of transcripts: at a

threshold of 5 reads, only 67% of genes in the compendium were

detected, and at a threshold of 1 read, detection was 83%. As expected,

the number of detected genes from the PBMC reference

transcriptome compendium decreased with lower sequencing depth.

At 25 M reads, the fraction of genes with ≥16 reads from the

cumulative PBMC reference was 53%, and at 20 M reads the

fraction of genes lost was 52%. In comparison, when subsampling

in silico to 10 M reads per sample, 12,030 genes (46%) were detected

on average, representing a loss of 54% relative to the cumulative gene

set. At sequencing depth of 10 M reads, on average 2,515 genes (9.6%)

fewer genes with ≥16 reads could be detected compared to samples at

30 M. This demonstrated that, even at relatively deep sequencing
Frontiers in Immunology 07
depth of 30 M, a significant percentage of the gene content expressed

in PBMCs was not detected.
2.6 Sequencing depth was more influential
than read length in ensuring consistent DEG
results

Two of the main technical parameters that determine cost in an

RNA-Seq experiment are (i) read length and (ii) sequencing depth.

The impact of read length on the ability to accurately measure DEGs

has not been comprehensively studied to date: One previous study

utilized data from the SEQC study and determined virtually no

impact of using paired-end reads vs. single-end reads on the ability

to reproducibly detect top 200 DEGs when sorted by p-value and log2

fold change (17). Thus, we focused our analysis on defining the

optimal single-ended read length. In the Chhangawala study (17), the

dataset utilized commercial reference RNA samples (UHRR and

Ambion FirstChoice Human Brain Reference RNA) and relatively

low replication (n=3). In this regard, the current study, which used

“real-world” samples from a vaccine trial and was more robustly

powered (n=10), provided an optimal opportunity to empirically test

the impact of varying read-length parameters. To evaluate the impact

of different read lengths on DEG identification, we used the Site 1

dataset as it utilized longer read lengths compared to Site 2. Different

read lengths were simulated by right-truncating the actual sequencing

reads (100 nt, 75 nt, and 50 nt read length) to most accurately mimic

true Illumina sequencing and the range of Q-scores that would result

from bonafide sequencing at those lengths. To simulate different

coverage levels, we randomly down-sampled the original 31.8 M reads

to 25 M, 20 M, 15 M, and 10 M reads. For the comparisons, we used

the DEG results identified for the original data (151 nt read length and

31.8 M sequencing depth) as the reference, essentially controlling for

all other parameters. We then compared DEGs obtained using

differing read lengths and sequencing depth levels using the Jaccard

index. Results showed that shortening read length had a lesser impact
FIGURE 4

The impact of sequencing depth on gene representation by establishment of a deep “compendium” transcriptome of PBMCs. The x-axis represents
simulated datasets (n=50) with coverage x, the y-axis shows the percentage of genes that we considered truly expressed in the PBMC compartment
for genes that met the filtering cutoff. Bar plots summarizing the mean percentage of the detected PBMC compartment genes by coverage and read
filter criterion.
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on DEG detection compared to a reduction in sequencing depth

(Figure 5). Notably, although the set of genes identified as DE was

affected, the total number of DEGs detected did not change

substantially with either shortening read length or a reduction in

sequencing depth (Supplemental Figure 2). Reducing the read-length

from 151 to 100, 75, and 50 nt at the same sequencing depth (35

million) showed a mean DE agreement (based on the Jaccard index)

for days with strongest biological signals (Day 7-14) of 0.95, 0.94, and

0.91, respectively. At the lowest read length level of 50 nt, 91% of the

detected DEGs agreed. In contrast, reducing sequencing depth from

35 to 25, 20, 15, and 10 M reads at the same read length (151 nt)

showed a mean DE agreement (based on Jaccard index) for days with

the strongest biological signals (Day 7 and 14) of 0.93, 0.87, 0.83, and

0.80, respectively (Figure 5). In summary, this showed that read

length had a much lesser impact on DEG agreement compared to

sequencing depth. Changing the read length by approximately half

from 151 nt to 75 nt only resulted in 6% disagreeing DEGs. In

contrast, reducing sequencing depth by approximately half from 32M

to 15 M reads resulted in 17% disagreeing DEGs. The disagreement

was not explained by a change in the total number of DEGs.
Frontiers in Immunology 08
2.7 Establishment of a read-count cutoff for
accurate fold-change assessment

In RNA-Seq experiments, pre-filtering genes with low read counts

to reduce low-quality data is an important part of the analysis but is

frequently done using arbitrarily defined thresholds. As we have

shown in Figure 2, filtering also improved inter-site agreement in

LCPM and LFC based on Pearson correlation. Exogenous RNA

species used as spike-in controls provide the ability to include

within a dataset a set of references with known abundance levels

that can be used as an internal “truth” by which to judge the accuracy

of the analysis accounting for varying sequencing parameters. Here,

we tested the utility of the spike-in controls provided by the External

RNA Controls Consortium (ERCC) (24) to empirically derive read-

count cutoffs within our datasets that result in a high agreement

between expected and observed fold changes. To achieve this, we used

92 ERCC spike-in RNA control pairs (ERCC2 vs. ERCC1 mixes with

known abundance ratios) that were spiked into pre-defined sample

pairs (n=40 for each site). The 92 spike-in transcripts were binned

into 7 groups of increasing expression levels (based on the average
FIGURE 5

Impact of read length and sequencing depth on DEG detection. Impact of read length and sequencing depth on Jaccard index between DEGs (Site 1).
The Jaccard index represents the proportion of intersecting DEGs compared to the union of DEGs identified for a subsampled/truncated dataset and the
original dataset.
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LCPM of each ERCC1 and ERCC2 spike-in pair), and the Spearman

correlation between the observed and expected ERCC 2 vs. ERCC 1

ratio was calculated within each bin (on average 13 ERCC1/2 spike ins

per bin) for each paired sample, along with the respective average

LCPM. These values were used to model the relationship between the

LCPM and the correlation of empirical vs. expected fold changes

(Figure 6). The trend plots showed that the correlation increased with

increasing LCPM values. We then empirically determined a read-

count threshold based on LCPM abundance that marks good

agreement between the expected and observed LFC. We defined

good agreement as having a correlation value of 0.9 or higher. The

non-linear relationship between Spearman correlation and average

LCPM was modeled using a 3rd-order polynomial. The model was fit

to our two datasets (n=40 paired samples each), and the LCPM value

that gave a predicted correlation value of 0.90 was used as the

empirically determined threshold. This method yielded LCPM

expression cutoffs of 3.34 and 1.73 for Sites 1 and 2, respectively.

To assess the degree of variability of the point estimate we used

bootstrapping. The resulting 95% CIs were 2.15 to 6.84 LCPM for Site

1 and 1.29 to 2.17 LCPM for Site 2 (Figure 6). These intervals can be

used to balance the trade-off between fold-change accuracy and

filtering out too many genes. To maximize the number of genes for

the analysis while maintaining good agreement between observed and

expected fold changes, the lower bound of the 95% CI may be used as

the cutoff threshold, in this case, 2.15 and 1.29 for Site 1 and Site 2,

respectively. With nearest integer increments typically used for read
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counts, this would translate to 3 and 2 LCPMs for Sites 1 and

2, respectively.

In this section, we highlighted a new algorithm that utilizes

internal ERCC spike-ins for determining an optimal read-count

threshold for each dataset independently. The CpmERCCutoff R

package implements this algorithm to empirically determine the

LCPM cutoff. The advantage of this approach is that it is data-

driven and implicitly controls for any inherent sequencing

parameters. These results suggested that the 8 CPM cutoff (3

LCPM) used in the original analysis of these data provided a good

agreement between observed and expected fold changes for Site 1. For

Site 2, a 4 CPM cutoff (2 LCPM) would have been more optimal.
2.8 Power estimates for vaccine studies for
DEG detection

To further evaluate the impact of different parameters on DEG

identification, we assessed relative statistical power for different

scenarios characterized by varying sample size (n=3 to n=15), effect

size (1.25 to 2 minimum absolute fold change), and sequencing depth

(10 to 60M reads) (Figure 7). In lieu of a “truth set” of genes for which

the differential expression was independently known, we defined a set

of “truly differentially expressed genes” (TDEGs) as those genes

identified as DEG for both sites using two different R packages

(edgeR and DESeq2). Using these conservative criteria, we obtained
frontiersin.org
FIGURE 6

Determination of empirical minimum expression cutoffs using ERCC spike-ins. Each dot represents a subset of the 92 ERCC1 and ERCC2 transcripts for
one paired sample grouped by average ERCC1 and ERCC2 abundance (on average 13 per abundance bin). The y-axis summarizes the Spearman
correlation between the empirical log2 fold change and expected log2 fold change across these transcripts. The x-axis represents the average log2
abundance per paired sample for a subset of the ERCCs. Overall, 40 pre- and post-treatment pairs were created for each experiment. Each pair is
shown multiple times (once in each abundance bin). The purple line represents the fitted 3rd order polynomial function. Red dots represent paired
samples with outlying correlation results relative to their abundance bin (exceeding ±1.5 times the interquartile range) which were excluded from curve
fitting. The vertical blue solid line indicates the log2 counts per million value at which the fitted curve is equal to a correlation value of 0.9, and the
vertical light-blue dashed lines show the 95% bootstrap confidence interval for this log2 counts per million value. The values in the lower right
correspond to these vertical lines: the point estimate and 95% bootstrap confidence interval of the log2 counts per million at which the fitted polynomial
was equal to 0.9.
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444, 357, 2,300, and 3,284 TDEGs for post-vaccination Days 1, 2, 7,

and 14 respectively. We then simulated negative binomial data for

each post-vaccination day using Site 2 data as the basis for power

analyses as this set was more complete than Site 1 due to one

outlying subject.

The power curves shown in Figure 7 demonstrate that statistical

power to detect TDEGs was most strongly influenced by sample size.

Importantly, power was modulated by the overall magnitude and

breadth of the biological vaccine effect, which was evident by the

overall horizontal shifts in the power curves with increasing power for

increasing vaccine effects reported for Days 1-14 (see Figure 3A).

Most positively impacted was the statistical power to detect TDEGs

with smaller fold changes (FC ≥1.25 fold change), for example, with a

sample size of n=10 and sequencing depth of 30 M reads, the

statistical power increased from ~30% on Day 1 to 50%, 55% and

68% on Days 2, 7, and 14, respectively. Three other notable trends

were apparent:

First, the statistical power to detect TDEGs was remarkably higher

for genes with larger effect sizes. For example, at Day 14, for genes

with greater than 1.75-fold or 2-fold effect sizes, even at the lowest

level of sample size evaluated (n=3) the statistical power was 55% and

68%, respectively. An increase in sample size to 10 or higher led to
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greater than 90% power for the detection of TDEGs with fold changes

at or above 1.75 (Figure 7). In contrast, at a lower effect-size cutoff of

1.5-fold, the approximated power was 37% at a sample size of n=3,

and 90% power wasn’t attained until a sample size of 13 or more. For

the smallest effect size considered, a cutoff of 1.25-fold, statistical

power dropped much lower for smaller n with only 18% of TDEGs

detected at n=3. However, sensitivity increased steadily with increased

sample sizes: at n=6, 44% of TDEGs were detected; at n=10, 68% of

TDEGs were detected; and at n=15, the largest sample size

considered, 84% of TDEGs were detected.

Second, sequencing depth had a minor effect on power (Figure 7).

A noticeable negative effect on power was only observed when

coverage was reduced from 20 M to 10 M, and even with this

magnitude of coverage reduction, the power difference was minor.

No substantial gains in statistical power were detected beyond 20 M

reads. Furthermore, this lack of dependence on power on the

sequencing depth was observed across all four days. This means

that since the biological signal increased across time, deeper coverage

over 20 M reads did not improve power in the presence of weaker

biological signals.

Lastly, the false discovery rate (FDR), defined by the proportion of

statistically significant genes that were not TDEGs, showed a strong
FIGURE 7

Relative power by sample size, effect size, and sequencing depth at each post-vaccination day as simulated using the modified PROPER R package. Days
were sorted by decreasing vaccination effect based on overall fold changes and DEG responses observed for this study (see Figure 3A). Power was
assessed for different fold-change cutoffs (indicated by color-coded lines), sequencing depth (as indicated by the line type), and sample size (x-axis).
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dependence on the strength of the biological signal (Supplemental

Figure 3). The statistical significance of each gene was determined

based on an adjusted p-value set to control the false discovery rate at a

5% level. At Day 1, when the signal was weakest, the approximated

FDR was inflated to 41% for a sample size of n=3. However, the FDR

improved as the sample size increased; with a sample size of n=13 or

larger, the FDR was below 10% for all fold-change cutoffs and below

5% for the more stringent 1.75- and 2-fold-change cutoffs. In contrast,

at Day 14 when the biological signal was strongest, the FDR was near

5% for all sample sizes and fold-change cutoffs. Of note, the coverage

level did not noticeably affect the FDR, regardless of the strength of

the biological signal, similar to what was observed for power.

The type-I-error rate, defined as the proportion of non-TDEGs that

were declared statistically significant, was also evaluated (Supplemental

Figure 4). In all simulation settings, the type-I-error rate was below 2%. It

should be noted, however, that a low type-I-error rate is not surprising in

this context because its value is directly related to the proportion of genes

declared to be statistically significant. As a result, the type-I error should

be assessed together with power to form an accurate summary of the

performance.With this in mind, we found that: (i) the stronger biological

signals at Days 7 and 14 led to increased type-I error relative to Days 1

and 2, but this was accompanied by improved power; (ii) there was no

apparent dependence between coverage level and the type-I-error rate in

any scenario; and (iii) the type-I-error rate remained relatively

unchanged with increasing sample size, except at Days 7 and 14 when

the lowest fold-change cutoff of 1.25 was used, in which case the type-I

error showed a slight, gradual increase for each sample size considered

even though power still improved.

While the magnitude of the fold change for the TDEGs was fixed

in this simulation, the variance of these genes was allowed to change

based on each simulated coverage dataset. Since variance plays an

important role in power—higher variance directly results in lower

power, all else equal—we investigated whether the mean-variance

relationship across genes was affected by the different sequencing depth.

Overall, the mean-variance trends across genes were maintained for

different sequencing depth considered in this simulation; the curves

shift left with lower coverage to produce fewer total counts, but the

trend of lowly-expressed genes having higher variance compared to

highly-expressed genes persisted (Supplemental Figure 5A). While the

trends shifted vertically with increasing log mean expression, the

corresponding log over dispersion values remained similar.

Additionally, after applying TMM-normalization and obtaining

LCPM values for the gene expression in the simulated coverage

datasets, these values aligned with the LCPM values in the original

dataset (Supplemental Figure 5B). Hence, this suggested that

sequencing depth would also have a minimal differential impact on

lowly-expressed gene filtering based on CPM. Thus, while we

performed this analysis for genes with >8 CPM, given this result, our

findings that coverage did not have a substantial impact on power can

be generalized to other CPM cutoffs.
3 Discussion

RNA-Seq offers a large amount of flexibility in the design of

experiments, and many technical parameters such as read length,

sequencing depth, and replication (i.e. sample size) can be varied to
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match the needs of an experiment. In addition, choices of the lowly-

expressed gene, and fold-change thresholds have an impact on

downstream analysis. The goal of most RNA-Seq experiments is to

detect genes with statistically significant differences in expression

across conditions. Several studies in recent years have sought to

investigate how technical parameters influence the composition of

DEGs and to provide standards for the design of RNA-Seq

experiments. The contributions of technical variation to RNA-Seq

analysis have been reduced in recent years due to the improvements

in library preparation methods and widespread use of Illumina

sequencing; however, the contribution of biological variation

remains unique to each dataset.

With this in mind, we sought to provide genera l

recommendations for conducting RNA-Seq in clinical vaccine

studies using real-world data generated from a vaccine clinical trial.

To achieve this, we assessed human blood PBMC transcriptomes for

10 healthy subjects at Days 0 (pre-vaccination), 1, 2, 7, and 14

following vaccinations with a Francisella tularensis live vaccine

strain (DVC-LVS) and compared results obtained from matching

aliquots from two different sequencing laboratories addressing the

following questions:

Inter-site reproducibility: How reproducible are data generated in

separate laboratories? How can agreement be improved?

Technical Parameters: What is the impact of altering lowly-

expressed gene thresholds, read length, and coverage? How is PBMC

transcript coverage impacted? How can lowly-expressed gene thresholds

be derived empirically?

Sample Size & Statistical Power: Given the biological variation

and effect sizes observed in a clinical vaccine study, what relative role

does sample size, effect size, and coverage play? What is the impact on

false discoveries and the type-1 error?
3.1 Inter-site reproducibility

The seminal SEQC study investigated the concordance of

samples processed in multiple sites performing contrasts of two

reference samples (Universal Human Reference RNA vs Brain

Reference RNA). One important conclusion from SEQC was that

while RNA-Seq fold-change estimates were generally concordant

between laboratories, read-count data could not be reliably

combined (16). Normalization improved overall inter-site

agreement but not to the level where read counts could be

combined (31).

In this study, we showed that the inter-site agreement between log2
count per million and fold changes was strongly dependent on the

degree of read-count filtering. While the commonly used cutoff of >1

CPM resulted in the biggest gain, inter-site agreement showed

continuous further improvements with more stringent filtering and

the observed Pearson correlation was modest with an average of r=0.7

for LCPM and r=0.50 between LFCs. This indicated that (i) genes that

are lowly expressed disproportionally contribute to disagreement

between sites, as demonstrated here by lower concordance of data

between sites when not excluded; (ii) that these low abundance

transcripts are most effectively negated by filtering; (iii) average

explained variance was 92% and 24% for LCPM and LFC,

respectively, when using >1 CPM demonstrating that a lot of the
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inter-site variability remained unexplained; and (iv) commonly used

cutoffs such as 1 CPM might not be stringent enough to ensure a high

level of reproducibility of LCPM and LFC obtained from data run at

two different sites. For example, increasing the cutoff from 1 CPM to 8

CPM increased the explained variance for fold changes from 24%

to 52%.

Several groups have demonstrated that correlations are not

sufficient to allow the combination of datasets generated at distinct

sites (16, 29). Thus, we extended our comparison to further

investigate to what extent DEGs detected from Site 1 and Site 2

datasets were congruent after applying a >8 CPM low expressed gene

cutoff and how gene filtering, fold change, and FDR cutoffs modulated

this agreement. We found that when using >8 CPM, FDR <0.05, and

FC ≥1.5 that (i) agreement increased with the strength of the

biological signal (55-73% of DEGs agreeing between Days 1-14 with

an average of 65% agreement) and (ii) the largest negative impact on

inter-site DEG agreement was driven by genes meeting the FDR but

not meeting the FC for one site but not the other (on average 68% of

DEGs among genes with >8 CPM in both laboratories). These

findings highlighted the importance of the accuracy of fold changes

for inter-site DEG agreement. Based on these findings, our

recommendation for improving inter-site DEG agreement is to

apply gene expression filtering and determine DEGs using an FDR

cutoff but to not use fold-change cutoffs. In our case, after removing

the fold-change cutoff requirement, the agreement in DEGs increased

from 65% to 82% on average between the two sites.

In addition to the aforementioned differences, global PCA and

MDS analysis of LCPM across all 100 samples showed a strong

separation of the two sites indicating that the data could not simply be

merged, e.g., by using the sum of the read counts obtained for the two

aliquots belonging to the same sample (Supplemental Figure 6). This

effect could not be removed using TMM normalization, a common

approach used for normalizing systematic differences between

samples in RNA-Seq data. While sequencing technology was the

same, each site utilized a similar, but distinct library preparation

method: Site 1 used the Illumina TruSeq method and 500 ng of RNA

as input, whereas Site 2 used a modified, in-house method similar to

TruSeq and 1 ug of RNA for starting material. Thus, even when using

highly similar library preparation methodologies, the random

variation added by different sequencing laboratories is sufficient to

discourage pooling the data. In addition, biological variation between

aliquots derived from the same samples may explain some of these

differences as well. These results have important implications for

RNA-Seq experimental design considerations in the setting of large

consortia, in which hundreds or thousands of samples are sequenced

across multiple sites. These data indicate that, even under scenarios in

which sequencing laboratories have harmonized library prep

methodology, strategies that pool data at the read-count level

directly should be avoided. However, biological conclusions drawn

from each individual dataset on the DEG level were very similar

including heatmap log2 fold change profiles showing clustering of all

DEGs within aliquots from the same subject for all time points

(Supplemental Figure 7). This indicated that, while differences were

observed on the global gene expression level, these did not sufficiently

confound the key signals in the data that these were accurately

captured in either experiment.
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3.2 Technical parameters

3.2.1 Choice of read length
We assessed the impact of differing read length on our ability to

detect DEGs by truncating reads to mimic common Illumina

sequencing configurations (100 nt SE, 75 nt SE, and 50 nt SE), and

compared DEGs recovered to those found using 151 nt. Overall, for

the strongest biological signal observed at Days 2-14, we found very

little impact, the overlap in DEGs was >90% for all configurations,

and it was 95% and 94% for the 100 nt and 75 nt simulations,

respectively, based on Jaccard index. Our findings are largely in

agreement with prior work examining this relationship:

Chhangawala et al. (17), utilized commercial reference RNA

samples (UHRR and Ambion FirstChoice Human Brain Reference

RNA) and found very little difference in the sensitivity to detect DEGs

when varying read length from 50-100 nt, but read lengths of 25 nt

were inferior. In this regard, our study replicates and extends this

principle to “real-world” samples from a vaccine trial. In contrast,

recent data has emerged that indicates that short-paired end reads (i.e.

2x40 nt) outperform longer single-ended libraries for gene expression

estimates (32). These findings are intriguing and warrant future

investigation. However, it should be noted that the primary metrics

for this determination were correlations of read counts to the “parent”

dataset which comprised of 2 x 125 paired-end reads. Given the size of

our dataset, we did not utilize paired-end sequencing and are unable

to directly test these findings. Collectively, our data demonstrate that

RNA-Seq studies with clinical PBMC datasets can reduce read length

down to 50 nt with relatively minimal impact on the ability to detect

DEGs compared to the untruncated data. While our observations on

the relatively modest impact of read count are generally consistent

with prior observations, our simulation was performed using a dataset

with relatively deep coverage (~35 M reads per sample), and the

impact may be more evident on datasets with less sequencing depth.

Nevertheless, these results indicate that reducing read length can be a

viable option for cost savings.

3.2.2 Choice of Coverage
For this analysis, we assessed the relative impact of reducing

coverage from 35 to 25, 20, 15, and 10 M reads on DEG agreement.

Our main findings were that (i) compared to read length when

coverage was kept constant (35 M reads), coverage had a larger

influence on DEG agreement when read length was kept constant

(151 nt); (ii) the relationship was modulated by the strength of the

biological signal; (iii) for the strongest biological signals (Day 7 and

14), an approximate linear relationship was observed with a 5% drop

in agreement with each drop in 5 M sequencing depth (down to 80%

agreement with 10 M reads); and (iv) for the weaker signal at Day 2, a

non-linear relationship was observed with the biggest drop seen

between 15 M and 10 M, indicating that weaker biological signals

require higher coverage than stronger signals to produce robust

DEG results.

In order to assess the impact of coverage on accurately covering

genes expressed in the PBMC transcriptome, based on pooled data, we

generated a “PBMC transcriptome compendium” comprised of 26,172

genes. Cumulatively, our results demonstrated that, even at relatively

deep sequencing depth of 30 M, a significant percentage of the gene
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content expressed in PBMCs was not detectable (17-44% depending on

read count filtering). This limitation in turn negatively impacts DEG

detection contributing to an increased false negative rate.

3.2.3 Choice of lowly-expressed gene cutoff
Our analysis showed that stronger filtering improved the inter-

site agreement—in particular, the correlation between fold-change

estimates—by removing lowly-expressed genes. This prompted us to

investigate the relationship between known fold changes using

endogenous reference RNA (ERCC1 and ERCC2 controls) which

were spiked into clinical samples in a way to evaluate fold-change

accuracy (ERCC1 was spiked into 10 samples, and ERCC2 was spiked

into the remaining 40 samples). Based on the observed non-linear

trend, we devised a method to empirically determine a low gene

expression LCPM cutoff that represents good Spearman correlation of

observed vs expected ERCC control fold changes. Using this approach

with each site’s data separately, we established low gene expression

thresholds of 3 LCPM and 2 LCPM for Sites 1 and 2, respectively.

These thresholds balance the trade-off between fold-change accuracy

and filtering out too many genes for each site. These results were

encouraging as they demonstrated that both sites retained a high level

of technical precision to accurately quantify ERCC1/2 spike-in

expression changes at relatively low CPM. However, differences

remained with Site 1 requiring stronger filtering than Site 2 due to

the slightly lower sequencing depth and increased noise (one globally

outlying sample was identified) for Site 1. This highlights the

usefulness of internal ERRC1/2 spike-ins for estimating empirical

gene expression filtering cutoffs accounting for systematic

experimental differences across sites. This strategy for determining

the LCPM cutoff was implemented in the CpmERCCutoff R package

and is available for download on CRAN.
3.3 Impact of sample size and sequencing
depth on statistical power

One of the most important decisions to be made during the design

of an RNA-Seq experiment is the number of samples to sequence. A

set of “truly differentially expressed genes” or TDEGs was established

based on a stringent FDR threshold and replication in both sites using

different DEG detection methods. This strategy to define a “truth set”

has been used effectively by prior studies examining the relationship

of RNA-Seq parameters with power (33). We defined statistical

power, or sensitivity, as our ability to detect TDEGs with a given

effect size at varying sequencing depths and sample sizes for each

post-vaccination day. The results unambiguously demonstrated that

sample size was a much more important factor than sequencing depth

for the detection of TDEGs in PBMCs after vaccination. A few other

principles were identified:
Fron
i. the power to detect gene expression with variable sample sizes

was highly influenced by the effect size (i.e. the fold change).When

we restricted our analyses to genes with a greater than 2-fold

change on Day 14, the power was 66% to 68% for all coverage

levels considered with only n=3 samples, and this increased to

>90% with n=8 samples. In contrast, when we lowered the

threshold to 1.5-fold changes, the power to detect TDEGs fell
tiers in Immunology 13
to below 38% with n=3 and was below 79% with n=8. While we

did not run a simulation using all genes, our simulation using a

fold-change threshold of 1.25-fold contained between 70% to

88% of all DEGs found at each day at an FDR <0.05, and we

reasoned that this was an acceptable threshold likely to screen

out unreliable transcripts with extremely low effect sizes and

allow us to estimate the power to detect most (if not all) of the

TDEGs. Nevertheless, using the fold-change cutoff of ≥1.25-fold,

even at a simulated sample size of n=8, we were only able to

detect fewer than 58% of the TDEGs on Day 14. This relationship

between effect size and power has been observed by others: Hart

et al. found using simulated RNA-Seq datasets from PBMCs that

genes with fold changes approaching 3 are nearly universally

detected, but as the fold change becomes lower than 2-fold,

sensitivity decreases sharply (34).

ii. the sample size needed to sensitively detect the full complement of

differentially expressed genes (i.e., all TDEGs at all fold changes) is

remarkably high. Even with enforcing a ≥1.25-fold-change cutoff,

our simulations indicated that a sample size of n=10 provided only

29% power to detect TDEGs on Day 1 and peaked on Day 14 with

68% power. This observation has been reported several times using a

wide variety of datasets with differing samples: Wu et al.

demonstrated that even using extremely high sequencing depth,

sample sizes of >10 were needed to achieve sensitivities above 80%.

Ching and colleagues examined a diverse array of datasets: whereas

some datasets were able to achieve a high level of power at low

replicates (i.e., n=3 to 5), these tended to be unique scenarios such as

comparing reference samples from highly divergent tissues and

employing technical replicates, where average fold changes of DEGs

were high, and the gene-level dispersion extremely low (33). In

contrast, our work demonstrated that when analyzing human

samples from diverse individuals that mimic true biological

variability and comparing responses in the same tissue induced by

exogenous stimuli, the sample size to achieve power >80% across all

fold-change cutoffs was n≥15 for the strongest biological signal

observed at Day 14. At Day 7 and Day 2, power was ≥70% followed

by Day 1 with ≥50%. Schurch et al.’s findings suggest that sample

sizes should be larger than n=12 if the goal is to sensitively describe

the majority of DEGs (20). Hart and colleagues demonstrated

that the gene-level dispersion was the main driving factor

determining the sensitivity of an RNA-Seq dataset and that while

datasets with low coefficients of variation could achieve 80% power

at n=8, other datasets needed n>20 or even n>40. In the context of

these prior studies, our power simulations illustrate the utility and

limitations of RNA-Seq data using PBMCs in clinical studies. First,

in our PBMC dataset, we found that at a relatively low fold-change

cutoff of ≥1.5, we achieved 80% power at n=9 for TDEGs onDay 14.

At this sample size, we had extremely high sensitivity to detect the

genes most dramatically influenced by the perturbation. Conversely,

when the gene set is defined with the fold-change threshold of ≥1.25,

we estimated approximately 62% power at n=9 and attained 80%

power only at n>14. In practical terms, these results provide

guidance on how RNA-Seq data can be interpreted from studies

using similar data. Importantly, these results do not imply that

datasets where the sample size is <10 are totally unreliable. Rather,

we conclude that, at smaller sample sizes, if one employs a higher

fold-change cutoff, then there is a higher degree of confidence to
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detect true DEGs. However, more caution must be placed on

interpreting genes that do not pass the FDR or fold-change

threshold as true negatives—the study may be underpowered to

detect them. If the goal of the experiment is to catalog all (or nearly

all) DEGs induced by a perturbation, then a large sample size is

needed. While applying a fold-change cutoff increased statistical

power, we have shown that inter-site agreement in DEGs was

reduced when using ≥1.5 due to variation in fold-change

estimates between sites. Thus, the ability to detect true TDEGs

would need to be balanced with the ability to reproduce findings

between different experiments.

iii. the impact of sequencing depth on the power to detect TDEGs

was minimal. The ability to detect TDEGs was indistinguishable

ranging from 20 M reads to 60 M reads (at 10 M read intervals).

A minor loss of sensitivity was observed when samples were

subsampled down to 10 M reads. This result demonstrated that a

sequencing depth of 20 M reads is sufficient to capture the

majority of TDEGs in a PBMC-derived dataset. Ching et al.

reported nearly identical findings, that minimal increased

sensitivity was gained above 20 M reads (33). Similarly, others

have simulated the increase in power at increased sequencing

depths and found that at 2-fold depth, the increase in power only

increased by 3-5%, and even at 10-fold depth, that power only

increased by 2-3%.
While sequencing depth did not profoundly influence statistical

power, we did observe that reducing sequencing depth had a stronger

influence on transcript representation. We found that even at relatively

deep sequencing depths, only approximately 65% of the total fraction of

PBMC transcripts are reported in any individual sample. Decreasing

sequencing depths led to a loss of content of approximately 5% of

identifiable genes for each 10 M drop in depth. For example, reducing

coverage from 30 M reads to 10 M reads detected 2,515 fewer genes.

Taken together with our power simulations, this analysis demonstrates

that while sequencing depth does not alter overall power, a substantial

proportion of genes with lower expression will be lost or provide

unreliable quantification. The true impact on the biological

interpretation of reduced transcript representation needs to be

evaluated for each RNA-Seq dataset independently. In summary,

these results demonstrated that while it is possible to reduce costs in

an RNA-Seq experiment with an overall loss of power by decreasing

coverage, this step must be carefully considered as there is a tangible

loss of gene content. As the cost-per-base continues to drop as

sequencing technology improves, the relative savings in reducing

sequencing depth are becoming minimal compared to the cost of

gene-content loss in an RNA-Seq experiment.
(iv) the false discovery rate and type-I error was dependent on the

biological signal strength. Day 14 produced the strongest

biological signal, having a relatively high number of TDEGs

and magnitude of fold changes compared to other days. The FDR

was near or below the 5% level on Day 14, regardless of the

sample size, coverage level, or fold-change threshold used. As we

moved back toward Day 1, the strength of the biological signal

weakened at each preceding time point, and the control of the

FDR became more dependent on sample size. On Day 2 and Day
tiers in Immunology 14
1, the sample size was the most important factor for ensuring the

FDR was not inflated. As with power, the sequencing depth did

not affect FDR as long as the depth was at or above 20 M.
The strength of the biological signal appeared to be the greatest

influencer on type-I error, but this effect was balanced by the power and

FDR. For example, Day 14 shows the highest type-I-error rates (although

still below 2% in all cases), but this is accompanied by the highest power

and lowest FDR. Sequencing depth had a negligible impact on the type-I-

error rate, consistent with the findings for power and FDR.
4 Conclusion

In this study, our goal was to establish parameters and guidelines

for RNA-Seq studies using patient PBMC samples obtained before

and after vaccination with a live attenuated tularemia vaccine.

Estimating statistical power in RNA-Seq studies is a complex

endeavor, as power is strongly influenced by the biological variance

of the particular experiment, the range of effect sizes, and the technical

factors we have described in this study. The near-universal usage of

Illumina sequencing has partially standardized the technical factors

influencing RNA-Seq power. A number of recent studies have

established a framework of statistical power and quality control for

RNA-Seq experiments, and their findings are largely in agreement

with our data (14, 16, 18). Here, we have extended these framework

studies by demonstrating that the principles established hold true

using “real world” clinical samples from a vaccine clinical trial. The

main conclusions are: (i) filtering lowly-expressed genes is

recommended, if possible guided via ERCC spike-ins, to improve

fold-change accuracy and inter-site agreement—we produced an

algorithm that is implemented in the R package CpmERCCutoff

that is publicly-available through CRAN; (ii) read length did not

have a major impact on DEG detection, and although shortening

reads will result in some lost DEGs compared to longer reads, it may

be a good option to save costs (iii) applying fold-change cutoffs for

DEG detection reduced inter-set DEG agreement and should be used

with caution, if at all; (iv) reduction in coverage had a minimal impact

on statistical power but reduced the identifiable fraction of the PBMC

transcriptome—20 M reads appear to be sufficient; (v) sample size is

the most important driver of statistical power followed by effect size

(i.e. the magnitude of fold change)—a sample size of n=15 captured

TDEGs with ≥1.25 fold change at >80% power for the strongest signal

(Day 14). As transcriptomics is being increasingly included in clinical

drug and vaccine trials to understand biological molecular

mechanisms and to provide more sensitive monitoring for

toxicities, this study should provide useful guidelines for the design

of multicenter RNA-Seq studies.
5 Materials and methods

Total RNA was extracted using the RNeasy kit (Qiagen, CA) and

quantitated on a ThermoNanodrop, quality assessment was performed

on an Agilent Bioanalyzer. Samples with a RIN score >7.5 were used for

library construction.
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5.1 RNA-Seq library preparation and
sequencing: Site 1

Libraries were prepared using the Illumina (Illumina Inc. San

Diego, CA, USA) TruSeq™ mRNA stranded kit as per the

manufacturer’s instructions. 500 ng of total RNA was used for

library preparation. ERCC synthetic spike-in 1 or 2 (Thermo Fisher

Scientific Inc., Waltham, Massachusetts) was added to each total RNA

sample and processed in parallel. The TruSeq method (high-

throughput protocol) employs two rounds of poly-A based mRNA

enrichment using oligo-dT magnetic beads followed by mRNA

fragmentation (120-200 bp) using cations at high temperatures.

First and second strand cDNA synthesis was performed followed by

end repair of the blunt cDNA ends. One single “A” base was added at

the 3’ end of the cDNA followed by ligation of the barcoded adapter

unique to each sample. The adapter-ligated libraries were then

enriched using PCR amplification. The amplified library was

validated using a DNA tape on the Agilent 4200 TapeStation and

quantified using a fluorescence-based method. The libraries were

normalized and pooled and clustered on the HiSeq3000/4000 flow cell

on the Illumina cBot. The clustered flowcell was sequenced on the

Illumina HiSeq3000 system employing a single-end 101 cycles run,

each sample was sequenced to an average depth of 25 M reads.
5.2 RNA-Seq library preparation and
sequencing: Site 2

Total RNA integrity was determined using Agilent Bioanalyzer or

4200 Tapestation. ERCC synthetic spike-in 1 or 2 (Thermo Fisher

Scientific Inc., Waltham, Massachusetts) was added to each total RNA

sample and processed in parallel. Library preparation was performed

with 1 ug, of total RNA with a Bioanalyzer RIN score greater than 8.0.

Ribosomal RNA was removed by poly-A selection using Oligo-dT

beads (mRNA Direct kit, Life Technologies. In cases, where samples

had less than 1ug of total RNA, the entire available amount was used.

mRNA was then fragmented in buffer containing 40 mM Tris Acetate

pH 8.2, 100 mM Potassium Acetate, and 30 mM Magnesium Acetate

and heated to 94 degrees for 150 seconds. mRNA was reverse

transcribed to yield cDNA using SuperScript III RT enzyme (Life

Technologies, per manufacturer’s instructions) and random

hexamers. A second strand reaction was performed to yield ds-

cDNA. cDNA was blunt ended, had an A base added to the 3’

ends, and then had Illumina sequencing adapters ligated to the ends.

Ligated fragments were then amplified for 14 cycles using primers

incorporating unique index tags. Fragments were sequenced on an

Illumina HiSeq 3000 using single-end reads extending 100 bases to an

average of 35 M reads per sample.
5.3 RNA-Seq data processing and detection
of DEGs

The latest version of the human reference genome (GRCh38),

gene models, and associated gene annotation information at the time

of the study start were obtained from the ENSEMBL database

(Version 84, March 2016). The genomic reference was built by
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merging all human chromosomes except X and Y chromosomes to

avoid gender-specific effects. Reads were mapped against the human

reference genome using the STAR splice-aware read aligner (Version

2.5.2a) (35). Gene expression quantification was carried out using the

featureCounts function as implemented in the Subread software

(Version 1.5.0-p2) (36). TMM normalization was executed as

implemented in edgeR (37).

Genes with expression levels ≤8 CPM for all 50 samples within

site were filtered out and were excluded in the differential gene

analysis. To identify genes that were significantly differentially

expressed (DE) from baseline for each post-vaccination day (Days

1, 2, 7, 14), a negative binomial model was fit to read counts using the

implementation provided by the edgeR software (37). Each model

included fixed effects for subjects to account for paired samples and

study visit day (baseline or post-vaccination day). For each gene, the

statistical significance of the study visit day effect was evaluated using

a likelihood ratio test. To control for testing multiple genes, the false-

discovery rate (FDR) based on the Benjamini-Hochberg procedure as

implemented in the p.adjust R function was applied for each model

(38). Genes with a fold change from baseline ≥1.5 and FDR-adjusted

p-value <0.05 were considered DEGs.
5.4 Simulation of datasets to assess the
impact of sequencing depths, read length,
and simulate power

The original 50 FASTQ files from Site 1 with a read length of 151

nt were right-truncated to obtain three additional FASTQ files per

sample with 50 nt, 75 nt, and 100 nt long reads. Truncation of reads

was carried out using the fastx_trimmer tool of the FASTX Toolkit. A

set of four FASTQ files per sample to simulate different coverage levels

were obtained by randomly down-sampling original reads to 25

million (25 M), 20 million (20 M), 15 million (15 M), and 10

million (10 M) reads. Random subsampling of reads was carried

out using the sample tool of the seqtk Toolkit (Version 1.2-r95-dirty).

An additional four FASTQ files were simulated for the power analysis

using the same approach, which contained 30 M, 40 M, 50 M, and 60

M reads, respectively.
5.5 Empirical determination of a cutoff for
filtering lowly-expressed genes using
ERCC controls

The 92 ERCC 1 mix transcripts were added to pre-vaccination

samples, and the ERCC 2 mix was added to each post-vaccination

sample. ERCC spike-ins cover a range of concentrations from 0.014 to

30,000 CPM for both mixes, and the expected LFCs frommix 2 to mix

1 range from 0.25 to 2. For paired samples, the empirical fold change

(based on fold change in CPM from the RNA-Seq experiment) and

expected fold changes were determined for each of the 92 ERCC

transcripts. Likewise, the mean LCPM of each ERCC transcript was

determined by first calculating the average LCPM value for each

paired sample, and then taking the mean of those averages. This

results in a weighted average for each ERCC transcript across the pre-

and post-vaccination samples. Based on the distribution of the mean
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ERCC LCPM, the 92 spike-ins were allocated into 7 bins of increasing

abundance from low to high (≥13 transcripts per bin).

Next, for each paired sample, the Spearman correlation between

the empirical and the expected fold changes was calculated for the

subset of ERCC transcripts within each bin. The mean LCPM of the

transcripts within each bin was also computed for each paired sample.

This produces a pair of values—the Spearman correlation and the

mean LCPM—for each paired sample within each bin of ERCC

transcripts. A 3rd-order polynomial was fitted to these correlation

data to estimate a trend line that captured the non-linear relationship

between the correlation and average LCPM. To make this step more

robust, outliers within each bin (points with correlation values

exceeding Q3 + 1.5 IQR or less than Q1 – 1.5 IQR) were excluded

from this step. The LCPM cutoff value was then chosen as the value at

which the fitted polynomial gave a correlation of 0.9. Bootstrapping

(sampling with replacement of paired samples) was used to determine

the 95% confidence interval of the cutoff point; the lower and upper

bound of the confidence interval represented the 2.5 and 97.5

percentiles, respectively, of the bootstrap cutoff values.

The CpmERCCutoff R package was developed to implement the

method described above (https://CRAN.R-project.org/package=

CpmERCCutoff). The getLowLcpmCutoff function takes the paired

samples and the expected and observed fold changes as input,

calculates the LCPM cutoff threshold, and returns the summarized

results. The package also includes plotting capabilities to visualize the

3rd order fit with the empirically-derived LCPM cutoff highlighted, as

seen in Figure 6.
5.6 Calculation of statistical power

Statistical power was assessed using a modified version of the

PROPER (39, 40) R package. The simulation strategy was designed to

assess the effect of (i) the coverage level of the RNA-Seq experiment,

(ii) the log fold-change cutoff used to filter genes, (iii) the sample size,

and iv) the varying strength of the biological signal post-vaccination

(Day 1, 2, 7, and 14).

For each post-vaccination day, we defined a gold standard set of

genes that were “truly differentially expressed genes” (TDEG) as those

genes with a maximum expression level of at least 8 CPM for all 50

samples within a site and an FDR-adjusted p-value below 0.05,

independently detected in the data from both sites by both the

edgeR (37) and DESeq2 R packages (41), using the original coverage

data (Table 1). Using these criteria, these analyses yielded 444, 357,

2,300, and 3,284 TDEGs for post-vaccination Days 1, 2, 7, and 14

respectively. Each TDEG was associated with an effect size based on

the estimated average fold change (FC) for that gene in the original

dataset from Site 1. All non-TDEGs were associated with a null effect

size (FC=1).

We used the most complete set (Site 2) that did not have any

outliers for the power assessment. To estimate statistical power to

detect TDEGs, different coverage levels were simulated by down-

sampling the FASTQ files from Site 2 to 30 M, 20 M, 10 M reads and

over-sampling them to sizes of 40 M, 50 M, and 60 M reads. We

simulated FASTQ files for each of these different coverage levels for

each subject and each of the five time points (pre-vaccination and

each post-vaccination day). The simulated FASTQ files were aligned
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against the reference and processed to obtain corresponding gene

count datasets as described for the original data. The same genes that

were filtered out in the original analysis were also removed from these

datasets. Finally, the average gene expression levels (normalized

average LCPM) and dispersion estimates (trended dispersion) were

calculated based on the pre-vaccination day data, resulting in paired

mean and dispersion estimates for each gene and for each

coverage level.

These estimates were then used to simulate gene count datasets

for the power assessment: for each coverage level, post-vaccination

day, and sample size (, 500 datasets were simulated using independent

negative binomial models for each gene parameterized by its

estimated mean expression, dispersion, and effect-size level. In each

dataset, samples were simulated for both the pre- and post-

vaccination day. The TDEGs were simulated so that the average

difference in expression between the pre- and post-vaccination days

was equal to its estimated effect size. The model did not include a

dependence between paired samples. The simulated dataset was then

analyzed with edgeR to identify differentially expressed genes. The

estimated FC and p-value for each gene were calculated and recorded.

The statistical power for each combination of parameters was

determined as the average proportion of TDEGs that were identified

in the simulated datasets with an FDR-adjusted p-value <0.05. Four

levels of fold-change cutoffs were considered: 1.25, 1.5, 1.75, and 2.0.

The power calculation was conditioned on the given fold-change

criteria, which means the TDEGs considered had an effect size above

the cutoff value.
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