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The immunomodulatory role of
matrix metalloproteinases in
colitis-associated cancer
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Zhangfeng Zhong2* and Wen Tan1*

1School of Pharmacy, Lanzhou University, Lanzhou, China, 2Macao Centre for Research and
Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau,
Macao, Macao SAR, China
Matrix metalloproteinases (MMPs) are an important class of enzymes in the

body that function through the extracellular matrix (ECM). They are involved in

diverse pathophysiological processes, such as tumor invasion and metastasis,

cardiovascular diseases, arthritis, periodontal disease, osteogenesis imperfecta,

and diseases of the central nervous system. MMPs participate in the occurrence

and development of numerous cancers and are closely related to immunity. In

the present study, we review the immunomodulatory role of MMPs in colitis-

associated cancer (CAC) and discuss relevant clinical applications. We analyze

more than 300 pharmacological studies retrieved from PubMed and the Web

of Science, related to MMPs, cancer, colitis, CAC, and immunomodulation. Key

MMPs that interfere with pathological processes in CAC such as MMP-2, MMP-

3, MMP-7, MMP-9, MMP-10, MMP-12, and MMP-13, as well as their

corresponding mechanisms are elaborated. MMPs are involved in cell

proliferation, cell differentiation, angiogenesis, ECM remodeling, and the

inflammatory response in CAC. They also affect the immune system by

modulating differentiation and immune activity of immune cells, recruitment

of macrophages, and recruitment of neutrophils. Herein we describe the

immunomodulatory role of MMPs in CAC to facilitate treatment of this

special type of colon cancer, which is preceded by detectable inflammatory

bowel disease in clinical populations.

KEYWORDS

matrix metalloproteinases (MMPs), colitis associated cancer (CAC), immunomodulation,
inflammation, extracellular matrix (ECM)
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1 Introduction

1.1 Classification and
structural characteristics of
matrix metalloproteinases

MMPs are a kind of calcium-and zinc-dependent proteolytic

enzyme (1), that exist in invertebrates, vertebrates and plants (2).

They are produced by multiple cells and tissues, with neutrophils

and dermal fibroblasts being the main sources (3). Connective

tissue, pro-inflammatory and uteroplacental cells, including

endothelial cells, osteoblasts, cytotrophoblasts, lymphocytes,

macrophages, and vascular smooth muscle are also capable of

secreting MMPs (4). Degrading the ECM is the main function of

MMPs (5). The ECM plays an important role in the

proliferation, growth, organization, differentiation, migration

of cells, and in the exchange among information cells; it also

acts as a physical barrier for microorganisms (6, 7). To date, 28

types of MMPs have been found. The homologous domains of

these MMPs include the signal peptide domain, propeptide

domain, catalytic domain and hinge region or linker peptide

along with a hemopexin domain (4, 8). The hinge region

connects the catalytic domain to the hemopexin domain (7, 9,

10). MMPs are divided into collagenases (e.g., MMP-1, MMP-8,

MMP-13, and MMP-18) (11, 12), gelatinases (e.g., MMP-2 and

MMP-9) (13, 14), stromelysins (e.g. MMP-3, MMP-10, and

MMP-11) (15, 16), matrilysins (e.g. MMP-7 and MMP-26)

(17), membrane-type MMPs (MT-MMPs) (MMP-14, MMP-
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15, MMP-16, MMP-17, MMP-24, and MMP-25), and others

(MMP-12, MMP-19, MMP-21, and MMP-28) based on

structural features and substrates (18–24). In particular,

gelatinases have a special additional exosome insert in the

catalytic domain called the collagen binding domain;

matrilysins lack a C-terminal hemopexin-like domain linked

by a hinge or linker region, and MT-MMPs have a C-terminal

transmembrane domain with a short cytoplasmic tail (9, 25).

The classifications and structures of MMPs are shown

in Figure 1.
1.2 Regulation of MMPs at multiple levels

MMP activity is regulated in three different ways, through

transcriptional regulation, inhibition by specific inhibitors, or

activation by the proenzyme (26). At the transcriptional level,

the activator protein (AP) -1 and -2 sites, the NF-kB site, the

signal transducer and activator of transcription site, the

polyomavirus enhancer-A binding protein-3 site, and others

are key transcription binding sites for regulation of the MMP

gene (8, 27–33). The AP-1 site is located close to the most

proximal promoter of the typical TATA box and is the major

mediator in MMP gene regulation. In many MMP promoters

that contain AP-1 site, the juxtaposed transcription factor

binding sites bind multiple erythroblastosis twenty-six factors,

which determine the peculiarities among different genes and

affect gene expression (8). The polyomavirus enhancer-A
FIGURE 1

Classifications and structures of matrix metalloproteinases (MMPs). The homologous domains of these MMPs include the signal peptide domain
(SP), propeptide domain (Pro), catalytic domain, and hinge region or linker peptide along with a hemopexin domain. The hinge region connects
the catalytic domain to the hemopexin domain. Matrilysins lack a C-terminal hemopexin-like domain linked by a hinge or linker region;
Gelatinases have special additional fibronectin repeats in the catalytic domain; MT-MMPs have a C-terminal transmembrane domain with a
short cytoplasmic tail. MT, membrane-type; Cs, cytosolic; GPI, glycosylphosphatidylinositol.
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binding protein-3 site, can combine with members of the

erythroblastosis twenty-six factors family of oncoproteins and

work in synergy with the AP-1 site nearby to promote the

production of MMPs among cancer cells for migration and

invasiveness (28). MicroRNA is a non-coding single-stranded

RNA. In liver cancer cells, mRNA expression of MMP-2 and

MMP-9 is up-regulated as a result of the inhibition of miR-21,

which stimulates the invasion and migration of tumor cells.

miR-224 is associated with gene expression of MMP-1, which

enables breast tumors to metastasize to the bone (34). NEMO-

binding domain, a synthetic peptide corresponding to the

S100A4-binding domain of methionine aminopeptidase 2

[MetAP2], blocks interaction between the metastasis

−enhancing calcium−binding protein (S100A4) and its effector

protein (MetAP2). And this blockage inhibits specificity protein

1 (Sp1) and ultimately leads to the downregulation of MMP-14

gene expression (35). MMP-7 antisense oligonucleotides inhibit

gene expression of MMP-7 and inhibit the metastasis of gastric

and colon cancer by interfering with protein translation or

promoting mRNA degradation (36). The modulation of

gene expression differs in various physiological and

pathophysiological events, such as Ets1 enhancing gene

expression of MMP-1 through c-Jun (29, 30). Note that

modulation of the MMP gene can be affected by several

stimuli. Some factors, such as phorbol esters and ultraviolet B

radiation, activate expression of the MMP gene, whereas others

(37–39), such as transforming growth factor b (TGF-b),
glucocorticoids and retinoic acid (40, 41), suppress it. In

addition, the MMP gene may be induced indirectly by several

signaling pathways. Inflammatory cytokines, for example,

interleukin (IL)-1 and tumor necrosis factor, indirectly

influence MMP gene expression and activate the ceramide

signaling pathway. Three distinct MAP kinase pathways, p38,

ERK1/2 and c-Jun N-terminal kinase (JNK) affect ceramide-

dependent MMP-1 gene expression in human skin fibroblasts

(42–45). MMPs genes are not generally upregulated by gene

amplification or mutation like classical oncogenes. Usually

transcriptional changes and/or epigenetic modifications result

in an upregulation of MMP gene expression in colorectal cancer

(CRC) (46, 47). Besides transcriptional regulation, MMP activity

is related to proMMPs, which are secreted as inactive zymogens.

Extracellular activation of proMMPs involves two steps. First,

the N-terminal sequence of the propeptide domain is cleaved

and releases the Zn2+-binding site stemming from catalytic

domain exposition. Second, propeptide cleavage resulting in an

active form of enzyme (21, 48, 49). For example, proMMP-9 was

activated and then generated MMP-9, thus catalyzing

angiogenesis via the FGF-2/FGFR-2 pathway (50). In addition,

the activity of MMPs is regulated by a2-macroglobulin and

tissue inhibitors of MMPs (TIMs), the two main endogenous

inhibitors (26, 51). Thiol-modifying reagents, sodium dodecyl

sulfate, and oxygen radicals also induce activation of MMPs in
Frontiers in Immunology 03
vitro(52).Variation in temperature or a decrease pH in the

physicochemical environment serves the same purpose (25).
1.3 Immunological function of MMPs

The immune system, human beings’ main defense against

disease, is indispensable. It eliminates foreign invaders through

the immune response in a sophisticated and scientific way.

Components that participate in immune regulation include

innate immune cells, which act as early-responders, and

adaptive immune cells, which enhance the response and

generate immunological memory and molecules. Cytokines

and chemokines control the immunoreaction in time and

space. They take part in cell migration to the site of

inflammation, proliferation, intercellular communication, and

cell death (53, 54). The immune response does not necessarily

lead to an inflammatory response, but inflammation

accompanies the immune response in most cases (55).

Inflammation commonly occurs after infection and damage

(56). When antigens enter the body, macrophages or epithelial

cells secrete chemokines, causing an increase in the vascular

epithelial cell gap and vascular expansion; a large number of

neutrophils, mast cells, basophils, and eosinophils infiltrate from

the blood vessels into tissue fluid, resulting in localized febrile

response, redness, swelling, and pain the cardinal signs of

inflammation. An excessive immune response can lead to

inflammation, such as pathogenic microbial infection, tumor,

autoimmune disease, and tissue damage induced by physical or

chemical elements. Immune cells and cytokines play an

important role in the occurrence and resolution of

inflammation. Numerous immune cells (e.g., macrophages,

neutrophils) infiltrate the inflamed area and activated immune

cells to release inflammatory factors (e.g., TNF-a, IL-6 and IL-

1b), which worsens the inflammation (56, 57). Resolving this

inflammatory response requires the release of anti-inflammatory

cytokines (e.g., IL-10) by immune cells (58–61).

The composition of the tumor microenvironment is very

complex. The tumor stroma is composed of the ECM, immune

cells, fibroblasts, endothelial cells and other non‐neoplastic cells

(62). MMPs produced in immune cells take part in innate and

acquired immunity (63). Many immune cells express low levels

of MMPs in the resting state. In mouse splenic CD4+ T cells,

membrane-anchored disintegrin metalloproteinase-10 (ADAM-

10) and ADAM-17 mRNAs are expressed highly, whereas the

mRNA expressions of MMPs, such as MMP-2, MMP-9 and

MMP-14 are low (64). Under normal conditions, when the

expression of inflammatory cytokines and chemokines

increases, MMPs of immune cells are secreted and activated.

When stimulated by IL-8, TNF, or chemo-attractive formyl-

Met-Leu-Phe peptide, MMP-9 in neutrophils is immediately

released from gelatinase granules (also called tertiary granules)
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(65). In addition, TIMP1 protein is not expressed in neutrophils

(66). However, B cells, T cells, and unstimulated human

peripheral blood monocytes are able to express TIMPs in the

steady state. The transcript levels of TIMP1, TIMP2 and TIMP4

are expressed more highly in monocytes than in B cells or T cells.

In contrast, TIMP3 mRNA is highly expressed in B cells (67).

ADAM17 and MMP-8 cleave the lymphotoxin (LT)-a1b2
heterotrimer, causing the release of heterotrimers from

polarized T helper 1 (TH1) and TH17 cells (68). The

combination of LTa1b2 heterotrimers and LTb receptor

activates primary synovial fibroblasts, eventually leading to

synovial inflammation (68). The OX40 (a member of the TNF

superfamily)–OX40 ligand axis is involved in numerous

inflammatory diseases, anti-tumor immune responses and

metabolic syndromes (69). MMP-2-specific CD4(+) T cells

exist in tumor-infiltrating lymphocytes from melanoma

patients, and they have an inflammatory T(H)2 (Type 2 helper

T cells) profile. Dendritic cells (DCs) with MMP-2 initiates TH2

responses against several melanoma-associated antigens. As a

reaction to exogenous melanoma antigens, active MMP-2

promotes TH2 cell differentiation, degrades the IF-a/b
receptor in immature DCs and increases the protein

expression of OX40 ligand in mature DCs. Therefore,

researchers speculate that the mechanisms by which activated

MMP-2 promotes tumor development is as follows: MMP-2

polarizes tumor-infiltrating lymphocytes toward a TH2 cell

phenotype, which restrains the tumoricidal TH1-type

response. Moreover, MMP-2 inhibits the powerful promoter of

TH1 cell polarization-IL-12 subunit p35 (IL-12a) (70).
Important factors in building an immune response are

efficient migration of neutrophils along a chemotactic gradient

and extravasation through blood vessels and tissues to sites of

infection. MMPs play a role in these processes by modifying

chemotactic agents. A cleavage mediated by MMP-7 releases the

heparan sulfate proteoglycan syndecan 1, and its associated

CXC-chemokine ligand 3 (CXCL3), which attracts neutrophils

to the site of infection (71). MMP‐8 which is mainly produced by

neutrophils can be detected in the inflammatory response and

some malignant tumors. In one study, there was a persistent

inflammatory response after MMP-8-deficient mice were

injected with methylcholanthrene. The incidence of skin

tumors in male mice of this type increased significantly;

female mice that were treated with tamoxifen or had their

ovaries removed were more likely than wild-type mice to

develop tumors. These results indicate that MMP-8 has a

tumor suppressor function to some extent (72). This function

is also supported by the finding that MMP-8 inhibits melanoma

growth in vitro and in vivo (73). MMP-8 is necessary for

recruiting chemokine CXCL6 to activate neutrophils;

neutrophils are not able to migrate to sites of LPS

administration without MMP-8 (74). IL-8 is a prototype

chemokine that activates neutrophils. There is positive

feedback between MMP-9 and IL-8. Stimulated by IL-8,
Frontiers in Immunology 04
neutrophils secrete gelatinase granules whose main component

is MMP-9 (65). MMP-9 truncates an amino-terminal fragment

of IL-8 for large increases in IL-8 potency (75). MMP‐2

cooperates with MMP‐9 to promote neutrophil infiltration (76,

77). MMP-2 and MMP-9 have synergistic effects on cleaving

CXCL5 to increase neutrophil migration to the peritoneum

during IL-1b-induced peritonitis (78). Meprins are members

of the metzincin superfamily of zinc metalloproteinases, the

cleaved substrate involved in many pathological processes, such

as inflammation, cancer and fibrosis. Meprins participate in

activating MMP-9 in the immune response. MMP-3 is an

efficient activator of proMMP-9. The cleavage mediated by

meprins improves the activation kinetics of proMMP-9 by

MMP-3 (79). In contrast, MMP-2 may suppress the

inflammatory response inactivating monocyte chemotactic

protein 3 or Chemokine (C-C motif) ligand 7 (80).

Monocyte precursors are capable of differentiating into local

macrophages in tissues (81). In different microenvironments, the

cell surface phenotypes and functions of macrophage populations

are heterogeneous (82). Macrophages play a prominent role in

anti-infection and, anti-tumor activity and immune regulation

(83). Similar to what happens in neutrophils, macrophages move

directionally along the concentration gradient of certain chemicals

and accumulate at the site of the lesion, where these substances are

released (56). Metalloproteinases are able to affect macrophage

recruitment (84–86). In mice with TIMP3-null mammary glands,

the inflammatory response is exacerbated, the number of CD3+

T-cells increases, andmacrophage infiltration is more pronounced

than in wild-type mice glands (87). A classic means of activating

macrophages (classically activated macrophages or M1

macrophages) is through Toll-like receptor ligands and pro-

inflammatory mediators, such as TNF-a, interferon-g (IFN-g),
and IL-1. Additionally, alternatively-activated macrophages, or

M2 macrophages, can also be alternatively activated by distinct

mediators, like IL-4 and IL-13 (88, 89). In inflammation, M1

macrophages effectively dispose of infectious organisms, and

orchestrate angiogenesis and the ingress of connective tissue

cells to form a granuloma. The function of MMPs ECM

remodeling is vital in that process (90). In healing, M2

macrophages may promote connective tissue cells to remodel

the ECM (88, 89). In vitro-differentiatedM1macrophages, mRNA

expression of MMP-1, MMP-3, MMP-7, MMP-10, MMP-14 and

MMP-25 are increased, and mRNA expression of TIMP-3 is

decreased. mRNA expression of MMP-11, MMP-12, MMP-25

and TIMP-3 are upregulated, whereas MMP-2,MMP-8 andMMP

-19 were reduced in M2 macrophages (91). Researchers speculate

that the function of macrophages is related to the profile of MMP

expression profile. The upregulation of MMP-12 in M2

macrophages is a major influence on the formation of

aneurysms (92). Higher levels of MMP-1 collagenase may might

be linked to higher collagenolytic activity of M1 macrophages

(91).Macrophages also participate in specific immune response by

releasing either pro- or anti-inflammatory cytokines (93, 94).
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MMP-14 (MT1-MMP) can control inflammatory gene responses.

MMP-14-deficient macrophages produce excessive chemokine

and cytokine responses to immune stimulation both in vitro

and in vivo: they increase the gene and protein expression levels

of the pro-inflammatory IL-12p40 (also called IL-12b) and IL-6,

along with decrease the gene and protein levels of the anti-

inflammatory IL-10. Phosphoinositide 3-kinase d (PI3Kd), a key
regulator of macrophage immune responses, is the downstream

transcriptional target of MMP-14 (95–97). Protein expression of

MMP-14-dependent PI3Kd evokes the expression and activation

of a PI3Kd/Akt/GSK3b signaling axis, thus mediating the

immunoregulatory Mi-2/nucleosome remodeling and

nucleosome remodeling and deacetylase to limit the expression

of proinflammatory mediators in macrophage (97–100). MMP-12

originating from macrophages participated in abrogating the

acute immune response. In MMP-12-deficient mice, leukocytes

accumulated at the site of infection. MMP-12 cleaves and

inactivates numerous CXC-chemokines and CC-chemokines

which are implicated in the influx of leukocytes at the site of

inflammation (101).

MMP-7 is involved in the immune activity of macrophages

and neutrophils. One immunological function of MMP-7 is

proteolytically activating a-defensins (cryptdins), which are a

group of six cationic anti-bacterial peptides that work by

disrupting bacterial membranes (102, 103). When stimulated

by bacterial products, such as LPS and lipoteichoic acid, a-
defensins are secreted from neutrophils, monocyte/macrophages

and Paneth cells at the base of the crypts in the small intestine

(104). a-defensins also act as the chemo-attractants for

monocytes, T-cells and DCs to connect innate immunity to

adaptive immunity (104). a-defensins are also mitogenic for

epithelial cells and fibroblasts to aid in wound healing (105).

The cDNA sequence of MMP-25 from Japanese sea bass

(Lateolabrax japonicus) (LjMMP25) regulates the production of

inflammatory cytokines and promotes phagocytosis and

bactericidal activity in monocytes/macrophages. Moreover,

LjMMP25 regulates the inflammatory response by modulating

NF-kB activity during innate immunity (106). Macrophages

have a negative impact on cancer treatment (107–109). They

create an inflammatory environment to promote tumorigenesis

and tumor progression, such as angiogenesis, migration and

invasion, and immunosuppression (109). For example, the

penetration of cancer cells and leukocytes into the cerebral

vessels is a complex multi-step process. The activity of

macrophage-derived MMP-2 and MMP-9 is pivotal to

leukocyte’s ability to penetrate the parenchymal basement

membrane in mice wi th the ab i l i t y auto immune

encephalomyelitis. These MMPs can be inhibited to protect

the brain parenchyma from damage by preventing the

infiltration of leukocytes (110). Moreover, the activation of

TNF‐a by MMPs contributes to tumor progression (63, 111).

The membrane-bound precursor, proTNF‐a, is mainly

expressed in macrophages. ADAM17 (a TNF-converting
Frontiers in Immunology 05
enzyme) and MMPs, such as MMP-1, MMP-2, MMP-3,

MMP-9, MMP-12, MMP-14, MMP-15 and MMP-17, convert

proTNF-a into TNF‐a (112).
2 MMPs in pathological processes

2.1 Multifaceted role of MMPs in
biological and pathological processes

Under normal physiological conditions, the activities of

MMPs are controlled by various stimuli at multiple levels.

However, under pathological conditions, this dynamic balance

is broken. Over-degradation of the ECM due to overactivation of

MMPs, is associated with a great many diseases, such as

cardiovascular disease (4, 113–115), arthritis (116), periodontal

diseases (117–119), osteogenesis imperfecta (120), disorder of

the central nervous system (121), tumor invasion and metastasis

(34, 122), age-related macular degeneration (123) and many

other pathological states (7). Moreover, a decrease in MMPs can

give rise to hypertensive pregnancy, preeclampsia (124), and

inflammatory damage (125, 126).

As mentioned above, there are several main types of MMPs

including collagenases, gelatinases, stromelysins, matrilysins,

and MT-MMPs. Different MMPs have different three-

dimensional structures, along with corresponding specific

inhibitors or drugs. A typical MMPs consists of a prodomain,

a propeptide, a catalytic domain and a hemophosphate domain.

Approximately 80 amino acids make up the propeptide domain,

and about 170 amino acids make up the catalytic

metalloproteinase domain. The polypeptide folding of the

MMP catalytic domain is basically superposition. The domain

consists of a five-stranded b fold sheet, three a helices, and

connecting rings. It contains two zinc ions and up to three stable

calcium ions. The joint peptide contained in MMPs consists

of a hinge region of variable length and a hemophosphate

domain of about 200 amino acids. Exceptions include MMP-7,

MMP-26, and MMP-23, which lack the hinge region and heme

domain; MMP-23 has unique cysteine-rich domains and

immunoglobulin domains (127–129). MMP-1, MMP-8, MMP-

13, and MMP-18 are collagenases, and their key feature is their

ability to cleave interstitial collagen I, II, and III at specific sites

three-fourths away from the N-terminus. MMP-2 and MMP-9

are gelatin enzymes, which have three type II fiber-fiber-domain

repeats in the catalytic domain and can bind to gelatin, collagen

and laminin to digest denatured collagen. MMP-3 and MMP-10

are matrix lysins that digest ECM components (21). The

classification of common MMPs implied in pathological

processes is shown in Table 1. Collagenases recognize the

substrate via a hemopexin-like domain, degrade fibrillar

collagen and affect the ECM environment (19). Collagenases

are closely related to the occurrence and development of diseases

characterized by the degradation or change in the ECM are
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TABLE 1 The classification of common matrix metalloproteinases (MMPs) implied in pathological processes.
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closely related to collagenase, including heart failure,

atherosclerosis, cancer, arthritis, abdominal aortic aneurysm

(130–132, 136, 137, 167, 168). In addition, they play a

protective role in some diseases, for instance hypertrophic

cardiomyopathy (134). Furthermore, collagenases improve

liver fibrosis (133, 138). MMP-1 inhibits the development of

atherosclerosis (130). MMP-8 plays a protective role in arthritis

(135). Another category of MMPs is gelatinase. These MMPs act

as digestive agents for components of the ECM, such as type I

and IV collagen (19). They are induced or inhibited by a diverse

range of resolvable factors, including growth factors, cytokines

and hormones, and are acted on by cellular contacts through

specific signaling pathways (169). MMP-9 has pro-inflammatory

properties, whereas MMP-2 has pro-homeostatic properties

(169, 170). Gelatinases have a profound influence in

inflammatory process and tumor progression and have

therefore long been considered one of the most significant

anti-tumor targets (139, 140, 171). In terms of non-

neoplasticity, gelatinases are mainly involved in cardiovascular

pathology and auto-immune diseases (20). Moreover, MMP-9 is

associated with many respiratory diseases (143). A reduction in

vascular MMP-2 and MMP-9 gives rise to hypertensive

pregnancy and preeclampsia (124). Stromelysins, another class

of MMPs, have a structural domain arranged similarly to that of

collagenases. However, these MMPs do not cleave fibrillar

collagen type I (19). An important physiological function of

stromelysins is to activate other members of the MMP family

(21, 129). The most widely described pathological role of

stromelysins is in cancer progression (144, 147–149). In

addition, they function in the progression of cardiovascular,

degenerative, and auto-immune diseases (145, 146, 172).

Matrilysins, yet another category of MMPs, do not contain a

hemopexin-like domain and are able to decompose collagen type

IV but not type I (19). Matrilysins are associated with a number

of pathological conditions in humans, mainly cancer and,

respiratory, cardiovascular, and neurological diseases (20, 143,

151, 153, 154). A large number of studies have demonstrated

that MMP-7 acts in the development and migration of cancer

(151, 173). Moreover, MMP-7 also has a critical role in

pathogenesis of tonsillitis and permanent hearing loss (150,

152). A study confirmed the early role of MMP-26 in the

invasion and angiogenesis of malignant tumors (139). The

final member of the MMPs family discussed here is MT-

MMPs, which are an important mediator of infiltration. The

influence of MT-MMPs on pathological process is mainly

reflected in their promotion of tumor invasion (140, 155–161,

165, 166). The ability to activate MMP-2 is one of the reasons

why most MT-MMPs play these roles (173). A different example

is MMP-17, which has no regulatory effect on MMP-2 although

it still affects tumor invasion (174). In addition, studies have

demonstrated that MT-MMPs are also implicated in the

pathological process of osteoarthritis, atherosclerosis and

Alzheimer’s disease (85, 132, 162–164). MMPs are medicinal
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targets highly relevant to the treatment of a variety of diseases.

As understanding of the role of MMPs in biology and pathology

increases, greater understanding of the structural similarities and

differences among MMP families makes it possible to discover

highly selective MMP inhibitors.

In the tumor microenvironment, the activity of a variety of

MMPs, including MMP-1, MMP-2, MMP-3, MMP-7, MMP-8,

MMP-9, MMP-10, MMP-11 and MMP-14, are up-regulated.

These MMPs participate in tumor proliferation, survival, and

angiogenesis, enabling replication immortality, invasion/

migration, immunity evasion and other processes (175, 176).

These MMPs control tumor cell growth by the releasing of

ectodomains of growth factor, regulating the bioavailability of

growth factors and regulating signaling pathways related to cell

proliferation (177). MMP-3 and MMP-7 expression in tumor

cells may contribute to an apoptosis resistant phenotype (178,

179). In addition, the MMP family is necessary for tumor

angiogenesis via a two-way action, that is promoting or

inhibiting angiogenesis. MMP-1, MMP-2, MMP-7, MMP-9

and MMP-14 regulate this process, and the first three of them

play critical roles (180–182). Another key process in which

MMPs are the migration of tumor cells. MMP-14 is among

the key contributors to cancer invasion and promotes cancer

development by activating proMMP-2 and degrading the ECM

to promote cancer migration (176). MMP-7 acts in tumor cell

metastasis by activating the ERK 1/2 and JNK 1/2 signaling

pathways (183). MMP-1, MMP-2, MMP-8, MMP-11, and

MMP-13 are implicated in the regulation of tumor cell

migration (184–188). Finally, MMPs, such as MMP-14, also

participate in tumor immune monitoring (176, 189, 190).

Increasing attention has been paid to the role of MMPs in

tumor immune regulation, such as their effects on inflammatory

and immune responses, the tumor immune microenvironment

and their diagnostic or prognostic potential (191–196).
2.2 Relationship between MMPs and
immune-related diseases

MMPs affect the process of colitis. MMP-2 is causative for

inflammatory bowel disease (IBD), which is derived from weak

mRNA expression of pro-inflammatory cytokines including

IFN-g and TNF-a, and weak protein expression of IL-6 and

less overgrowth of the colonic lumen by potentially pro-

inflammatory enterobacteria from the commensal gut

microbiota (197). MMP-9 plays a potentially key role in the

progress of ulcerative colitis (UC) by regulating the immune

system (198). MMP-19 coordinates the appropriate innate

immune response in colitis, which is critical to balancing the

host response to colon pathogens (126). MMP-9 is a member of

MMPs closely related to cancer. MMP-9 is related to immune

infiltration in pan-cancer and can be used as a biomarker of
Frontiers in Immunology 09
cancer prognosis and metastasis (199). It is overexpressed in

peripheral blood NK cells of prostate cancer (86). And MMP-9

also effectively reduces the tumor killing-effect of T cells via

cutting the MHC class I molecule, cell surface antigen-

presenting complex molecules expressed in melanoma cells

(200). In addition, high expression of MMP-11 is associated

with worse survival rate in breast cancer, which is related to a

low immune response, such as the reduction in the number of

CD8+T cells, CD4+T cells, B cells and activated DCs (201).
2.3 Relationship between MMPs and
inflammatory diseases

Inflammation is a fundamental pathological process that

occurs when biological tissue is stimulated by certain kinds of

injury, such as trauma and infection. Topical presentations of

inflammation include redness, swelling, heat, pain and

functional impairment. Systemic reactions include fever and

changes in peripheral blood levels. MMPs are vital elements

implicated in the manifold regulation of inflammation (202,

203). In one study, levels of some MMPs, such as MMP-1,

MMP-2, MMP-3, MMP-7, MMP-9, MMP-10, MMP-12, and

MMP-13, were significantly elevated in ulcer biopsies from

patients with inflammatory disease (204–208). MMPs have not

only a negative influence (125), but they also have an impact on

vascular permeability (209–211), ECM remodeling, epithelial

proliferation, and angiogenesis in different stages of

inflammation (4, 173). In a model of colonic injury induced by

sodium dextran sulfate, MMP-10 had a positive effect on disease

(172). Because the progression of damage due to lack of MMP-

10 is accelerated with viciousness-potential, enhancing

expression of MMP-10 is helpful (125). A similar observation

can be found for MMP-19 (126).
3 Key MMPs in CAC and their
immunomodulatory aspects

3.1 Important role of MMPs in colitis

Chronic inflammatory disease is often associated with the

occurrence and development of various cancers. A classic

example is the increased risk for CAC in patients with IBD. In

chronic environments marked by chronic inflammation, the

ECM is a major factor in maintaining and promoting tumor

growth, and MMPs are the major protease involved in the

pathogenesis of IBD. Although both sporadic CRC and CAC

are malignancies of the colon, CAC differs from sporadic colon

cancer in several respects. CRC is produced through three main

pathways: the adenomato-carcinoma sequence, the serrated

pathway, and the inflammatory pathway. In contrast, the
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development of CAC is associated with the inflammatory-

dysplasia-carcinoma pathway. MMPs counteract ECM

proteins expressed in the gastrointestinal tract during

inflammation (212, 213). Therefore, this study was conducted

to evaluate the role of MMPs in CAC and its related mechanisms

(214). The essential role of these enzymes in the remodeling and

destruction of tissue in IBD has been well documented (205,

215–220). Pathological results of IBD, progressive mucosal

disintegration (e.g., ulcers and fistulas) and fibrosis due to

excessive deposition of collagen (the main component of

ECM), is related to a disruption in the balance between

composition and breakdown of the ECM (221). As an

important molecule in mucosa and submucosa, ECM is the

substrate of MMPs, which is why MMPs play such an essential

role in the development of IBD. In Crohn’s disease (CD), TNF-a
and activated T cells stimulate mesenchymal cells to increase the

secretion of MMPs, and then MMPs causes tissue damage by

degrading the lamina propria matrix (222, 223). MMP-3 and

MMP-9 participate in the formation of fistula in CD by

degrading the ECM (224). Moreover, MMPs are the key

element in wound healing in the late stage of IBD through

their effects on degradation of the ECM (225). MMP-1, MMP-7,

and MMP-10 are expressed in migratory enterocytes in this

process (226), which is important for epithelial regeneration and

wound granulation (225, 227, 228). Furthermore, MMP-3 is

crucial in scar contraction and ECM remodeling (229–231).

Regarding the ECM, MMPs have roles in a diverse array of

substrates (232), including cytokines (90, 233), chemokines

(234–237), TNF-a (238), a1-antitrypsin/a1-antichymotrypsin

(239), IL-1b (240, 241), stromal cell-derived factor-1 (234),

growth factors (239) and so forth. Some factors, such as TNF-

a and IL-1b, in turn, stimulate the production of MMPs (242–

244). Injury to the intestinal barrier is also responsible for IBD.

When the intestinal barrier is disrupted, gene and protein

expression of MMP-1, MMP-2, MMP-3, MMP-7, MMP-9,

MMP-10 and MMP-13 increase, and leukocytes are

summoned to inflamed areas (219, 245–247). MMP-8 and

MMP-9 are released from neutrophi ls to regulate

proinflammatory cytokines and chemokines to increase the

number of leukocytes and eliminate bacteria (204, 224, 245).

Macrophages phagocytose bacteria, along with MMP-9 released

externally and MMP-12 entering into the phagosome (248).

MMP-12 has a direct bactericidal effect. Briefly, when bacterial

pathogens invade, MMP-12 is mobilized to macrophage

phagolysosomes and adhere to bacterial cell walls, destroying

cell membranes and causing bacterial death (249). MMP-7 plays

an indirect bactericidal role by activating and releasing

bactericidal alpha defensins into the gut lumen (250, 251).

MMP-10 from infiltrating myeloid cells participates in the

recovery of DSS-induced damage to the colon (125). Research

has also shown that the susceptibility to colitis, including

significant disease progression, increased mortality, severe
Frontiers in Immunology 10
tissue destruction, increases level of pro-inflammatory

regulators in the colon and plasma, and a significant delay in

neutrophil infiltration and persistent inflammation, increased

markedly in MMP-19-null mice. In IBD, MMP-14 in endothelial

cells promotes angiogenesis, which is achieved by combining the

C-terminal fragment of MMP-14 substrate thrombospondin-1

with CD47/avb3 integrin to produce nitric oxide (252).

Moreover, the migration of macrophages that lack MMP-19 is

reduced in vivo and in vitro and the mucosal barrier is damaged

(126). Chemokine fractalkine (CX3CL1), a substrate of MMP-

19, is an essential component of the response to DSS in acute

colitis. Because CX3CL1 receptors exist on innate immune cells

(e.g., macrophages, neutrophils), impaired immune cell

trafficking may be associated with a lack of the soluble

CX3CL1 in MMP-19-deficient mice. Mice without the receptor

CX3CR1 have more serious symptoms of DSS-induced colitis

(126, 253–255). The application value of MMPs as biomarkers in

IBD has also been recognized. A number of studies have

demonstrated the high sensitivity of MMP-9 in evaluation of

active UC (256–258). In addition, through an analysis of

emerging BiomARKers (EMBARK), the researcher not only

proposed that the combination of fecal calprotectin and serum

MMP-9 can be used as a biomarker of UC, but also confirmed

the value of MMP-9 as a biomarker of CD, indicating the

combination of fecal calprotectin, serum MMP-9 and serum

IL-22 can be used as a biomarker of CD (259).

In conclusion, MMPs participate in the host immune

defense, would healing, and epithelial regeneration and they

have bidirectional effects in IBD. On the one hand, they are

involved in the development of IBD through the process of

inflammation. MMPs are indirectly associated with progressive

organ damage, ulceration or over accumulation of collagen, the

persistence of inflammation, and fibrosis because of their

substrate ECM. On the other hand, some members of MMP

family have an inhibitory effect on inflammation (215, 260).
3.2 Key MMPs in CAC

CAC is a very common fatal complication of IBD (261–264).

The pathogenesis of CAC is multifactorial, although a key driver

of colitis is neoplastic progression (265–267). The lifetime risk

for CAC in IBD patients is 15-40%, and CAC accounts for about

15% of mortality in these patients (268). Chronic inflammation

generates oxidative stress that induces DNA damage that might

activate some oncogenes and inactivate some anti-oncogenes

(267). Related mechanisms include oxidative base lesions,

replication stress, DNA crosslinking, and strand breaks, which

eventually lead to genomic destabilization and tumorigenesis

(269). MMPs play a roles in both promoting and inhibiting

regulation of CAC development and progression, as shown in

Table 2. The main role of MMPs in colitis and CAC is shown in
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Figure 2, and the network of MMPs that interfere with CAC is

shown in Figure 3. A list of all genes mentioned here could be

found in Table S1.

MMPs degrade the protein components of the ECM and

basement membranes, which provides a channel for cancer cells

to invade to the vascular and lymphatic systems as well as promotes

metastasis (276). In the process of tumor growth, MMPs are up-

regulated, which strengthens the permeability of vascular

endothelial cells, thereby increasing cell proliferation, migration

and angiogenesis (287). Histone demethylase (JMJD2D) and b-
catenin interacts physically (JMJD2D demethylates H3K9me3 on

the promoter of b-catenin target genes), which increases the
Frontiers in Immunology 11
promoter activity of target genes (including MMP-2 and MMP-9)

of b-catenin; activates transcription ofMMP-2,MMP-9, and others;

and ultimately cause CRC cells to proliferate, migrate and invade,

and form colorectal tumors in mice (270). In a mouse model of

tumor invasion, macrophages infiltrate and express MT1-MMP,

resulting in activation of MMP-2 and consequent inhibition of

TGF-b. This process leads to submucosal invasion of epithelial cells

when it occurs in conjunction with KRAS or phosphatase and

tensin homolog deleted on chromosome 10 (271). Specifically,

when the inhibition of TGF-b is accompanied by the expression

of KRAS, activation of the epidermal growth factor receptor (EGFR)

signaling pathway is increased as a result of increased protein
TABLE 2 The key matrix metalloproteinases (MMPs) in colitis associated cancer.

MMPs Protein
Expression Molecular Mechanisms Effects Refs

MMP-2 ↑

Histone demethylase (JMJD2D) and b-Catenin interacts physically
(JMJD2D demethylates H3K9me3 on the promoter of b-Catenin target
genes), hence this interaction increases promoter activity of target genes
(including MMP-2) of b-Catenin, activates transcription of MMP-2 and
others;
Macrophages infiltrate and express MT1-MMP, causing MMP-2 activation;

Promote CRC cell to proliferate, migrate
and invade and form colorectal tumors in
mice;
Promote submucosal invasion of
transforming growth factor (TGFB)
signaling-repressed epithelial cells;

(270,
271)

MMP-3 ↑
TNF-a and bradykinin enhance the expression of MMP-3 at a
transcriptional level through protein kinase C /protein kinase D1
/mitogen-activated protein signal 20 pathway;

Promote tumor invasion;
(272–
274)

MMP-7 ↑
Lack of adenomatosis polyposis coli lead to deregulation of WNT signaling
pathway, and binding accumulation of b-catenin and T-cell factor-4;
Stat-3 signaling is activated by FGFR, thereby inducing MMP-7 expression;

Relate to the occurrence and development
of CAC;

(275–
278)

MMP-9 ↑

Histone demethylase (JMJD2D) and b-Catenin interacts physically
(JMJD2D demethylates H3K9me3 on the promoter of b-Catenin target
genes), hence this interaction increases promoter activity of target genes
(including MMP-9) of b-Catenin, activates transcription of MMP-9 and
others;

Activate p21WAF1/Cip1 by regulating notch
activity, a key transcription factor in
epithelial cell lineage, resulting in b-
catenin inhibition and cell cycle arrest;
Acts tumor suppressive effect by activating
MMP-9-Notch1-ARF-p53 axis, which lead
to apoptosis and DNA damage in colonic
epithelium;
Reduce reactive oxygen species
accumulation and DNA destruction;
Inhibit metastasis and adhesion of
colorectal cancer cells;
Reduce tumor angiogenesis;
Act on EGFR-nuclear transcription factor-
specificity protein 1 (Sp1) signaling
pathway to sustain the epithelial mucosal
and function as well as immune
homeostasis;
Maintain epithelial and mucosal integrity
by increasing mucin and intestinal trefoil
factor (ITF) and downregulating STAT3
pathway;
Maintain the balance of microbiota;

(212,
213,
270,
276,
279–
282)

MMP-10 ↑
Activate proTNF-a turning into TNF-a, then promote NF-kB signaling
pathway activation;

Destroy intestinal barrier function;
Facilitate the resolution of inflammation;

(283)

MMP-11 ↑ Associate with the increase of b-catenin accumulated crypts number; Reduce apoptosis of cancer cells;
(276,
284,
285)

MMP-13 ↑
Activate proTNF-a turning into TNF-a, then promote NF-kB signaling
pathway activation;

Destroy intestinal barrier function;
Facilitate the resolution of inflammation;

(283,
286)
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expression of epiregulin and mRNA expression of Errb1. When the

inhibition of TGF-b is accompanied by phosphatase and tensin

homolog deleted on chromosome 10 deletion, mRNA expressions

of cyclin-dependent kinase (CDK) inhibitors (Cdkn2b/p15Ink4b,

Cdkn1a/p21Cip1 and Cdkn1b/p27Kip1) is down-regulated (288,

289). The level of MMP-3 secreted from myofibroblasts is up-

regulated in IBD and tumorigenesis (272, 273). TNF-a and

bradykinin enhance expression of MMP-3 at a transcriptional

level through the protein kinase C/protein kinase D1/mitogen-

activated protein signaling pathway, and thus mediate CAC (272).

This mediating effect is related to the promotion of tumor invasion

by MMP-3 (274). MMP-7 is connected to the occurrence and

progression of CAC, and is expressed intensely at crypt bases of

epithelial cells and in dysplastic CAC biopsy, as observed in CRC

(275). Because of the lack of adenomatosis polyposis coli, the WNT

signaling pathway is deregulated and b-catenin and T-cell factor-4

accumulate. Hence, the expression of MMP-7 up-regulated (276,

277). In addition, fibroblast growth factor receptors in cancer-

related fibroblasts activate Stat-3 signaling, thereby inducing MMP-

7 expression (278). In contrast, the highly expressed MMP-9 in

CAC inhibits the tumor by affecting the Notch signaling pathway.

Specifically, MMP-9 activates p21WAF1/Cip1 by regulating notch

activity, a key transcription factor in epithelial cell lineage,

resulting in b-catenin inhibition and cell cycle arrest (213).

MMP-9 from the colonic epithelium also acts as a tumor

suppressor by activating the MMP-9-Notch1-ARF-p53 axis,

which leads to apoptosis and DNA damage (279). Previous study

claimed that epithelium-derived MMP-9 is beneficial for chronic

inflammation, regardless of tissue origin, in contrast to neutrophil-

derived MMP-9. They also proposed that MMP-9 (stemming from

epithelium or neutrophils) is a pivotal regulator of acute IBD and
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sporadic cancers (279). MMP-9 reduces reactive oxygen species and

DNA destruction in CAC as well (212). Some researchers have also

found that the hemopexin domain of MMP-9 has an inhibitory

effect on the metastasis and adhesion of CRC (280). The decrease in

MMP-9 in plasma causes down-regulation of angiostatin synthesis,

which results in tumor growth and vascularization (280, 281).

MMP-9 expressed in the colonic epithelium maintains the

microbiota balance. Antimicrobial peptides including REG3 and

S100A families, are effective agents of the innate immune system

(290–292). In transgenic mice constitutively expressing MMP-9 in

the colonic epitheliummRNA levels ofTNF-a, IL-6, IL-1b and IFN-
g increased, but mRNA levels of IL-22, REG3g and S100A8

decreased. MMP-9 maintains epithelial and mucosal integrity by

increasing mucin and intestinal trefoil factor protein levels and

down-regulating the STAT3 pathway in vivo. Moreover, MMP-9

acts on the EGFR-nuclear transcription factor-Sp1 signaling

pathway to sustain epithelial mucosa and functioning as well as

immune homeostasis (282).

MMP-9 and MMP-10 are only significantly expressed in

inflamed tissue, not normal colon tissue, and they start to peter

out when healing begins (276). MMP-10 is mostly expressed by

macrophages. In UC, it is found in enterocytes at the margins of

ulcers and in the cells of granulation tissue (276). Researchers

believe that MMP-10 from infiltrating bone marrow cells plays a

role in resolving the inflammation. With a lack of MMP-10,

susceptibility to DSS-induced colitis increases, and prolonged IBD

may eventually lead to dysplasia (276). In miR-148/152-deficient

mice, expressions of MMP-10 and MMP-13 increases, thus

activating pro-TNF-a turning into TNF-a and promotes

activation of the NF-kB signaling pathway. Damaged functioning

of the intestinal barrier accelerates colitis and CAC (283). Similarly,
FIGURE 2

The main role of matrix metalloproteinases (MMPs) in colitis and colitis-associated cancers (CAC). MMPs are involved in pathological processes
of colitis and CAC, including cell growth and division, angiogenesis and migration, ECM remodeling and invasion, as well as inflammation and
immune response. ROS, reactive oxygen species; ITF, intestinal trefoil factor; Sp1, specificity protein 1; ECM, extracellular matrix.
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MMP-11 is virtually absent in regular tissues (276). The mRNA

level of MMP-11 is related to CAC in some way (284, 285). The

mRNA level of MMP-11 is up-regulated in CAC, and is associated

with the increase in the number of b-catenin accumulated crypts

(284). The proton pump inhibitor-omerprazole and TNF-a
blocker-infliximab reduce the mRNA level of MMP-11 and

induces cells apoptosis in CAC (285). MMP-13 is highly

increased in CAC colonic tissues, but do not change as the CAC

progression (286). Compared to other MMPs, MMP-14 (MT1-

MMP) does not increase markedly in CAC. Researchers have also

found that Omerprazole and Infliximab were able to down-regulate

the mRNA levels of MMP-14 (284). In a mouse model of CAC,

miR-128, miR-134 and miR-330 are influenced by Dicer1. These

microRNAs inhibit tumor growth in vitro and in vivo andmodulate

expression of MMP-3, MMP-10, and MMP-13 (285, 293).
3.3 Mechanisms underlying of typical
MMPs in CAC

In CAC, typical MMPs affecting the organism’s immune

function and their expressions are regulated by the immune

system, as shown in Figure 4 (10). MMP-7 decreases the

sensitivity of mice to intestinal bacteria. Specifically, MMP-7

knockout mice do not activate pro-a-defensins in the gut to their
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mature active forms, with the result that these mice are highly

susceptible to intestinal bacterial infection (250). MMP-8 affects

the immune response to tumor and helps to resolve necrosis,

which is positively related to the degree of primary tumor

necrosis and blood neutrophil count, as well as negatively

correlated with destructive inflammatory infiltration and

Crohn’s-like lymphoid reaction (294). MMP-8, which is

involved in resolving acute and chronic inflammation and

helps to recruit neutrophils during acute inflammation, is

mainly produced by neutrophils (295, 296). It plays a role in

the recruitment of neutrophils to necrotic areas and in tissue

remodeling, including collagen breakdown (294). MMP-9 is

associated with the onset of lymphadenitis in patients with

CAC, and is significantly up-regulated before the onset of

lymphadenitis in these patients (297). In addition, MMP-9

maintains the integrity of epithelial mucosa and acts as a

tumor suppressor in CAC, which is inseparable from its

function of mediating the level of proinflammatory cytokines

(282). The linings of gastrointestinal epithelial mucosa act as an

external physical barrier and a functional immune barrier for an

immune monitoring system (298). The imbalance in immune

cells is crucial to the development of cancer (299). The

inflammatory cytokines released by immune cells function in

immune defense, and promote the development of cancer in

specific circumstances (300, 301). MMP-9 increases mRNA
FIGURE 3

The network of matrix metalloproteinases (MMPs) interfering with colitis-associated cancers (CAC). MMP-2, MMP-3, MMP-7, MMP-9, MMP-10,
MMP-11, and MMP-13 are involved in the regulation of CAC. MMP-2 and MMP-9 promote CRC cell proliferation. MMP-2 and MMP-3 contribute
to tumor invasion. Expression of MMP-9 leads to apoptosis, reduced accumulation of ROS, DNA damage and inhibition of tumor vascularization,
while maintaining epithelial mucosa, microbiota homeostasis and immune homeostasis. MMP-10 plays a role in inflammation regression. MMP-
11 reduces apoptosis in cancer cells. PKC/PKD1/MEK: protein kinase C/protein kinase D1/mitogen-activated protein; TCF-4: T-cell factor-4;
PTEN: phosphatase and tensin homolog deleted on chromosome 10; EGFR, epidermal growth factor receptor; FGFR, fibroblast growth factor
receptors; CDK, cyclin dependent kinase; Sp1, specificity protein 1; ROS, reactive oxygen species.
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levels of IL-6, IL-1b, TNF-a and IFN-g, but decreases the mRNA

level of IL-22 (282). Regarding the regulation of MMPs by the

immune system, elevated MMP-8 is associated with systemic

inflammation and increased secretion of various cytokines,

including IL-1ra, IL-7 and IL-8, and is negatively associated

with the number of tumors infiltrating mast cells (302). In a

mouse model of colitis-associated CRC, the NF-kB mediated

inflammatory reaction promotes protein expression of cyclin

D1, phosphorylated ribosomal protein S6 and MMP-9 in the

colon tissues of these mice, which plays a beneficial role in CRC

progression (303). In the mouse model of CAC, MMP-9

expression is associated with excessive angiogenesis and cell

proliferation, which is related to CXCL2 and neutrophil

recruitment (304). CXCR2 is present in neutrophils and

interacts with CXCL2 (305). This interaction promotes the

recruitment of neutrophil and the synthesis of MMP-8 and

MMP-9 (304, 306, 307). The proinflammatory factors IL-17 and

IL-21 increase the MMPs secreted by human intestinal

fibroblasts, including MMP-1, MMP-2, MMP-3 and MMP-9

(308–310). Among them, the inducing effect of IL-17 on MMP-1

and MMP-3 depends on the rapid activation of mitogen-

activated protein kinase (308, 311). The regulation of MMPs

by IL-21 does not occur at the level of transcription and

translation and stimulating fibroblast with IL-21 does not

increase the intracellular level of MMP RNA transcripts and

proteins. The up-regulation of MMPs by IL-21 may depend on

preferentially increasing the secretion of preconstituted or newly
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synthesized MMPs (309). In addition, expression of MMPs is

regulated by TNF-a and IFN-g (312).
3.4 Potential clinical applications of
MMP inhibitors

Clinical trials of MMPs mainly focus on three factors. They

are respectively the changes in clinical levels of MMPs in

different disease states, the clinical use of MMP inhibitors in

colitis and colorectal cancer, and combining MMPs and some

regulatory factors with other drugs to control inflammation and

tumors. MMP-2, MMP-3, MMP-7 and MMP-9 are the key

MMPS in this process. However, current clinical trials have

shown that inhibiting MMPs has no obvious effect on tumor

responses, although it has a certain role in stabilizing the

condition of diseases.

Many MMPs are upregulated in IBD. These MMPs remodel

tissue and release several small protein fragments. In a clinical

trial with 164 volunteers, these protein fragments could be used

to distinguish between CD and UC. For example, measuring

segments of vimentin (MMP-2 and MMP-8 decomposed and

citrullinated-vimentin [VICM]) and type III (MMP-9

decomposed collagen type III [C3M]) can distinguish between

CD and UC (313). A total of 138 participants took part in an

IBD-related study, including different types of disease. Fecal

MMP-9 can be used to diagnose and differentiate between UC
FIGURE 4

The network of MMPs and therapeutic targets in colitis-associated cancers (CAC). Key aspects of carcinogenesis are mediated by MMPs, including
cell growth, angiogenesis, invasion, epithelial-mesenchymal transition (EMT), inflammation, and immune surveillance in immunomodulatory manner.
CXCL2: CXC-chemokine ligand 2; CXCR 2: CXC chemokine receptor 2; MAPK, mitogen-activated protein kinases; FGF-2, fibroblast growth factor 2;
IGF, insulin-like growth factors; IGF-BP, insulin-like growth factors binding protein; TNF-b, tumor necrosis factor-b; TNF-a, tumor necrosis factor-a;
ECM, extracellular matrix; Lam-5, laminin-5; CD44, cluster of differentiation-44; VEGF, vascular endothelial-derived growth factor; a1-P1, alpha 1-
proteinase inhibitor;IL-17, interleukin-17; IL-21, interleukin-21; IL-2Ra, interleukin-2 receptor alpha.
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and pouchitis, because it is strongly associated with clinical,

histological, and endoscopic activities of different forms of IBD

(257). A clinical trial evaluated the relationship between MMP

and prognosis in CRC. This study enrolled 198 consecutive

patients who had undergone operation for CRC, (85 females and

113 males). Of the patient, 67% were older than 65 years old, and

their Tumor-Node-Metastasis classification ranged from 1 to 4.

Expression of MMPs was higher in tumor tissue than in normal

mucosa. This result indicates that high expression of MMP-2

and MMP-9 in the mucosa of CRC patients is related to poorer

5-year survival rates (314). MMP-7 is implicated in multiple

processes of tumor development. To estimate the contribution of

serum MMP-7 to the prognosis of resected CRC, researchers

have conducted several clinical trials. In a study with 303 CRC

patients (87 healthy controls, 96 nonmetastatic patients and 120

advanced patients), high serum MMP-7 was associated with a

higher risk of death in terminal CRC patients (315). Included in

another study were 175 curatively resected CRC patients. In two

Cox proportional hazard models (overall survival and disease-

free survival), higher MMP-7 was associated with higher

recurrence and faster progression (316). Given the role of

MMP-3 in cancer progression and metastasis, a study with 73

CRC patients who underwent minimally invasive colorectal

resection investigated the relationship between increased

plasma MMP-3 and residual metastases after surgery.

Minimally invasive surgery directly up-regulated MMP-3 levels

owing to surgery or subsequent wound healing or indirectly up-

regulated MMP-3 by increasing TNF-a and IL-1 in the acute

inflammatory response after surgery (317).

BAY 12-9566 inhibits MMP-2, MMP-3, and MMP-9. A

phase I clinical enrolled 13 patients with colorectal, renal,

gastroesophageal junction, duodenum, lung, and sarcoma

cancer. Subjects were given BAY 12-9566 at four dosages. No

tumor responses were found, but two patients had stable disease

after 1.1 and 1.5 years of treatment (318). In another phase I

clinical trial, 27 patients with advanced solid tumors took BAY

12-9566 100 to 1,600 mg/day. These patients had colorectal,

lung, breast, ovarian and cervical cancers. The condition of 48%

patients was stable. BAY 12-9566 did not reduce the size of the

tumor, but slowed their growth (319). BMS-275291 is another

wide-spectrum inhibitor of MMPs. In an open-label, phase I

trial, 40 late-stage or metastatic cancer patients were given BMS-

275291, most of them had CRC or non-small cell lung cancer.

Although the researchers found no objective tumor responses,

the condition of some patients stabilized (320).

Two clinical trials have been conducted on drug

combinations. In a randomized, double-blind, clinical trial of

rectal cancer, 34 patients receiving chemoradiotherapy were

divided into a placebo group and a conjugated linoleic acid

group. Supplementing conjugated linoleic acid decreased the

levels of TNF-a, IL-1b, hsCRP, MMP-2 and MMP-9, which are

biomarkers of tumor aggression and angiogenesis (321). A trial

that included 37 patients with CRC lasted for 7 weeks. These
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patients who underwent chemotherapy, were separated into two

groups: a fisetin group (n=18) and a placebo group (n=19).

Flavonoid fisetin reduced levels of MMP-7, and significantly

lowered levels of high-sensitivity C-reactive protein and IL-8 by

the end of the study (322).

Despite the important role of MMPs in many human

diseases, no broad-spectrum synthetic MMP inhibitor has

successfully passed the clinical trial stage because of the

bilateral pro-tumor and anti-tumorigenic effects of MMPs in

cancer (323). A variety of MMPs, including MMP-2, MMP-9

and MMP-14, can degrade the basal layer of capillaries and

promote exosmosis of tumor cells. MMP-9 also down-regulates

the IL receptor on the surface of T cells, further inhibiting

immunity and promoting cancer tolerance (324–326). By

eliminating cell apoptosis, MMP-7 reduces the effect of

chemotherapy even promoting tumor growth. However,

MMP-8 may directly inhibit tumor metastasis in tumor cells.

One of the side effects of broad-spectrumMMP inhibitors is that

they interfere with the tumor-inhibiting function of MMP-8

(76). With more specific MMPs inhibitors now available, MMPs

targeting can be reconsidered for cancer therapy (326).
4 Conclusion

Given their role in degrading the ECM, MMPs are associated

with the occurrence and development of many diseases,

especially inflammatory diseases. Most MMPs, such as MMP-

2, MMP-3, MMP-7, MMP-9, MMP-10, MMP-12, and MMP-13

are increased in colitis and CAC. Therefore, reducing levels of

these MMPs could effectively prevent the development of

inflammation and CAC, as well as the progression of colitis-

the eventual cause of CAC- from acute inflammation to chronic.

However, the effect of some MMPs, like MMP-9, on CAC is

bidirectional, which means they are involved in the pathogenesis

of IBD and promote the metastasis and spread of malignant

tumors, but also play a role in tumor suppression as well.

Therefore, how to balance the bidirectional role of MMPs in

clinical applications is a vital question. In specific diseases, it

might be advisable to clarify the therapeutic target, especially the

definitive role and efficacy of a certain MMP. Given their

multifaceted role in colitis and CAC, more in-depth research

is needed. In addition, MMPs participate in the host immune

defense, wound healing, and epithelial regeneration. Normally

MMPs are secreted and activated in immune cells when the

expression of inflammatory cytokines and chemokines increase.

MMPs modulate immune system activity by interfering with the

differentiation and immune activity of immune cells,

recruitment of macrophages, and migration of neutrophils. In

clinical trials, the condition of CRC patients could be stabilized

to a certain extent by inhibiting levels of MMPs. Therefore, levels

of MMPs could be used to predict the condition and

development of inflammatory diseases and CAC. Furthermore,
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MMPs have very broad prospects in the treatment of CAC

through immunoregulation, which is also a promising direction

in future research.
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Blacher S, et al. Membrane-type 4 matrix metalloproteinase promotes breast cancer
growth and metastases. Cancer Res (2006) 66(10):5165–72. doi: 10.1158/0008-
5472.Can-05-3012

162. Baranger K, Bonnet AE, Girard SD, Paumier JM, Garcıá-González L,
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Endothelial MT1-MMP targeting limits intussusceptive angiogenesis and colitis via
TSP1/Nitric oxide axis. EMBO Mol Med (2020) 12(2):e10862. doi: 10.15252/
emmm.201910862
Frontiers in Immunology 22
253. Marelli G, Erreni M, Anselmo A, Taverniti V, Guglielmetti S, Mantovani A,
et al. Heme-Oxygenase-1 production by intestinal CX3CR1 macrophages helps to
resolve inflammation and prevents carcinogenesis. Cancer Res (2017) 77(16):4472–
85. doi: 10.1158/0008-5472.CAN-16-2501

254. Medina-Contreras O, Geem D, Laur O, Williams IR, Lira SA, Nusrat A,
et al. CX3CR1 regulates intestinal macrophage homeostasis, bacterial translocation,
and colitogenic Th17 responses in mice. J Clin Invest (2011) 121(12):4787–95.
doi: 10.1172/JCI59150

255. Zhuang Q, Ou J, Zhang S, Ming Y. Crosstalk between the CX3CL1/
CX3CR1 axis and inflammatory signaling pathways in tissue injury. Curr Protein
Pept Sci (2019) 20(8):844–54. doi: 10.2174/1389203720666190305165722

256. de BruynM, Arijs I, Wollants WJ, Machiels K, Van Steen K, Van Assche G,
et al. Neutrophil gelatinase B-associated lipocalin and matrix metalloproteinase-9
complex as a surrogate serum marker of mucosal healing in ulcerative colitis.
Inflamm Bowel Dis (2014) 20(7):1198–207. doi: 10.1097/mib.0000000000000068
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diagnostic value of a new fecal marker, matrix metalloprotease-9, in different types
of inflammatory bowel diseases. J Crohns Colitis (2015) 9(3):231–7. doi: 10.1093/
ecco-jcc/jjv005
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