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Sjögren’s syndrome is a chronic inflammatory autoimmune disease

characterized by diminished secretory function of the exocrine glands.

Although extensive investigation has been done to understand Sjögren’s

syndrome, the causes of the disease are as yet unknown and treatments

remain largely ineffective, with established therapeutic interventions being

limited to use of saliva substitutes with modest effectiveness. A primary

feature of Sjögren’s syndrome is uncontrolled inflammation of exocrine

tissues and previous studies have demonstrated that lipid-based specialized

pro-resolving mediators reduce inflammation and restores tissue integrity in

salivary glands. However, these studies are limited to a single specialized pro-

resolving lipid mediator’s family member resolvin D1 or RvD1 and its aspirin-

triggered epimer, AT-RvD1. Consequently, additional studies are needed to

explore the potential benefits of other members of the specialized pro-

resolving lipid mediator’s family and related molecules (e.g., additional

resolvin subtypes as well as lipoxins, maresins and protectins). In support of

this goal, the current review aims to briefly describe the range of current

experimental methods to investigate the impact of specialized pro-resolving

lipid mediators on Sjögren’s syndrome, including both strengths and

weaknesses of each approach where this information is known. With this

article, the possibilities presented by specialized pro-resolving lipid mediators

will be introduced to a wider audience in immunology and practical advice is

given to researchers who may wish to take up this work.
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1 Introduction

Sjögren’s syndrome (SS) is a chronic inflammatory

autoimmune disease characterized by diminished secretory

function of the exocrine glands (1–9). It affects approximately

1% of the general population and up to 3% of people above the

age of fifty, with women accounting for more than 90% of

diagnosed cases (10, 11). Although extensive investigation has

been done to understand the disease (12–14), the causes of SS are

as yet unknown and treatments remain largely ineffective, with

established therapeutic interventions being limited to use of

saliva substitutes with modest effectiveness (15–17) and

medications that provide only temporary relief (16). As such,

development of alternative treatments to restore salivary gland

(SG) functioning is critical.

A primary feature of SS is a systemic uncontrolled

inflammation of exocrine tissues (18, 19) thought to be

initiated by viral and bacterial infection together with the

activation of susceptibility genes (20–24). This leads to an

initial tissue damage followed by cytokines and chemokine

release (25–28) as well as exaggerated antibody production by

hyperactivated B cells (7, 18, 19), all of which can be detected on

exocrine tissues and serum (29). When resolution mechanisms
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are working properly, neutrophils and M2 macrophages are able

to clear the injury/infection site (30–33). However, when these

mechanisms are absent, dead cells cannot be removed from the

injury/infection site leading to production of autoantigens,

elevations in chemokine and cytokine levels (34) that stimulate

peripheral lymphocytes to bind to and infiltrate across the

vascular endothelium into the SG (35–37), which leads to

chronic immune responses, SG damage and dysfunction (38–

41). To fully investigate the cell-specific mechanisms involved in

the initiation of the inflammatory response, proven mouse

models having SS-like features are required (42–45) to allow

for identification of novel targets and approaches for inhibiting a

futile systemic immune response and averting chronic

inflammation (46–49).

Resolution of inflammation is an actively regulated process

mediated in part by a family of specialized pro-resolving lipid

mediators (SPM) (50–54) which include resolvins, maresins,

lipoxins and protectins as well as their aspirin-triggered (AT)

forms, which are comparable in their properties to naturally

occurring SPM (reviewed in (55–62), but have a longer half-life

(58, 63). The SPM receptors belong to the G-protein coupled

receptor (GPCR) family as detailed in Figure 1A (64–66). SPM

and their AT forms present an intriguing alternative for treating
A

B

FIGURE 1

(A) Summary of SPM receptors, ligands and target cell types implicated in the resolution of inflammation. (B) Diagram showing common in vitro
models to investigate the impact of specialized pro-resolving lipid mediators in salivary glands.
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inflammatory diseases by limiting uncontrolled inflammation in

response to environmental challenges (67–73) while at the same

time promoting its termination and likewise leading to tissue

regeneration (74–81). They have been detected in human fluids

(e.g., saliva) as well as in animal models of infection and

inflammation (82–87). Studies of SPM and AT forms within

the SG have been largely confined to a single resolvin (AT-RvD1,

one of many in the resolvin family) that has shown promise for

treating hyposalivation. Specifically, previous studies

demonstrated that AT-RvD1 reduces inflammation and

restores tissue integrity in SG cells (88–91), AT-RvD1

biosynthetic and signaling pathways are active in mice and

human SG (89–93), the progression of the SS-like features in

NOD/ShiLtJ mice is halted using AT-RvD1, with mice treated

systemically prior to disease onset displaying downregulation of

pro-inflammatory cytokines, upregulation of anti-inflammatory

molecules and intact saliva production (44, 94), similar results

are obtained with AT-RvD1 treatment at disease onset and lack

of the RvD1 receptor ALX/FPR2 leads to impaired innate (42)

and adaptive immunity (33) in mouse submandibular glands

(SMG), with such results derived within the SG being consistent

with studies obtained using the full range of SPM in other organs

(95–105). Despite the promise shown by SPM in general and

AT-RvD1 in particular for treating SS, there are several obstacles

that must be overcome for this treatment to be implemented in

oral medicine. First, we only know the effects of RvD1 and AT-

RvD1 within the SG (43, 44, 88, 91, 94), while other SPM that

may contribute to resolution of inflammation in the SG are as yet

unexplored. Next, there is a limited knowledge regarding how

specific resolution mechanisms work in SG in vivo (106, 107)

and still less is known in humans. Finally, researchers need to

know the available options to study SPM in relation to

autoimmunity; however, information as to the relative benefits

and limitations of common experimental methods is not readily

available in a single source. Together, an overarching review of

the investigation models used to better understand the impact of

SPM on SS is needed and for the purpose of this compilation we

have divided the methods into three broad categories: in vitro

studies, in vivo studies and mathematical models.
2 Methods to investigate SPM using
in vitro models

The main eicosapentaenoic acid (EPA), docosahexaenoic

acid (DHA) and arachidonic acid (AA)-based metabolomes

operating during resolution of inflammation have been

discovered and can provide insight into the mechanisms of

inflammation resolution in multiple organs (65, 108).

Applying these findings to SS, previous studies found that

these metabolomes are present in mouse and human SG as

well as saliva (109). Given the above, it is necessary to study

spatio-temporal SPM biosynthesis and the upstream signaling
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mechanisms for EPA, DHA and AA-based metabolomes during

resolution of inflammation in SS. Generally speaking, however,

understanding of SPM upstream signaling mechanisms in SG

lags behind that of downstream mechanisms in other organs

(58–60, 103, 110–113) and, as earlier stated, the only SPM to

have been studied extensively to date is RvD1 and its aspirin-

triggered epimer (88–91, 94).

To investigate whether SPM biosynthesis is dysregulated in

vitro, several models using freshly isolated cells from SS-like mouse

models and SS human specimens can be compared to their healthy

counterparts. These cells may be plated on permeable supports to

allow monolayer formation (91, 114), scaffolds (e.g., hydrogels) to

form SG organoids (94, 115) or thermoresponsive plates to form

cell sheets (116) (Figure 1B). Permeable supports will permit us to

study apico-basal polarized SPM biosynthesis while scaffolds will

help us to understand polarized SPM biosynthesis in a three-

dimensional environment. Nevertheless, permeable supports

assays have limitations, including staining steps that may wash

off attached cells and unevenly distributed membrane pores;

however, protocol optimization can minimize this limitation

(117). Moreover, cell sheets will further our understanding of

how SPM are produced in a more natural environment (i.e., in

the presence of extracellular matrix proteins and secretory

granules), which are absent in the prior two models. A limitation

of cell sheets is that the exact cell composition is still under

investigation and future studies using RNA seq might be needed

(118). Finally, the use of fresh human minor SG can verify results

obtained with mouse models in humans; yet cell culture

optimization is critical to ensure cells viability under in vitro

conditions. Measuring SPM and their metabolites at various

times points in each of these models using both ELISA (109)

and targeted metabololipidomics (119), with results from each in

vitro model analyzed and SPM biosynthesis among these

complementary models, can provide an approximation of how

SPM biosynthesis occurs in vivo. These experiments can use EPA,

DHA and AA as substrates for SPM biosynthesis in vitrowhile also

using ELISA and metabololipidomics in response to these lipids

(109, 119).

SPM are generated in resolvin exudates in vivo and are a

product of transcellular biosynthesis with human leukocytes and

endothelial or epithelial cells (63, 65, 120), with sequential

oxygenations by human 15-lipoxygenase (LOX) in humans or

mouse ortholog 12/15-LOX and 5-LOX (121) involved in their

biosynthesis. The first step in SPM biosynthesis involves release

of w-3 fatty acids from membrane phospholipids by PLA2,

which is responsible for lipid release in mammalian cells (122,

123). The second step is transformation of w-3 fatty acids to 17S-
Hp forms by the enzymatic conversion through 15-LOX or 12/

15-LOX forms (61, 63, 124), with the final step in SPM

biosynthesis being release of 17S-Hp forms from epithelial or

endothelial cells to the extracellular medium. 17S-Hp forms are

then captured by adjacent cells and transformed into SPM by the

action of the enzyme 5-LOX (61, 63, 124). In the presence of
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aspirin, the 15-LOX or 12/15-LOX activities in epithelial cells are

transformed into cyclooxygenases by COX-2 activation (63).

This leads to the formation of 17R-Hp forms, which is

transformed to AT-forms by 5-LOX (63). In light of the

above, it is important to measure expression of biosynthetic

enzymes, determine their activities and quantify metabolite

production in response to w-3 fatty acids. Finally, for these

studies it is critical to measure the impact of enzymes involved in

SPM biosynthesis using mouse lines specific to each particular

enzyme (e.g., 5LOX-/-).
3 Methods to investigate SPM using
in vivo models

Having expanded SPM mechanistic studies to additional

morphological factors using the various in vitro models listed

above, it is necessary to further isolate SPM mechanisms by

studying their metabolomes in vivo, thereby tracking

mechanisms originating in the SG and operating in conjunction

with other organs throughout the body, as detailed below.

Specifically, SPM biosynthesis and signaling pathways may be

activated in response to a wide variety of internal and/or

environmental stressors (31, 125–128), such that the use of

multiple mouse models covering these various conditions can be

utilized as follows: NOD/ShiLtJ mouse model for autoimmune

disease (129–134), NOD.H-2h4 mouse expressing the major

histocompatibility complex haplotype H-2K on the NOD mouse

background, rendering the NOD.H-2h4 mouse susceptible to

autoimmune-like features, including spontaneous thyroiditis and

SS-like features, but not diabetes (135–137), surgically wounded

mouse SMG for tissue injury (138–140) andLPS-challengedmouse

model (42). Additionally, although the NOD mouse lines are

accepted models for SS, use of the wounded and LPS mice

facilitate comparisons between inflammation due to physical

injury and infection, respectively. Together, these models allow

for measurement of SPM production in plasma, saliva and SMG

during both acute and chronic inflammation.

To further identify SPM downstream mechanisms, receptor

signaling studies are necessary. For instance, theGprotein-coupled

ALX/FPR2 receptor for AT-RvD1 is effective in restoring secretory

function in SS mouse SG (43, 44, 94), indicating that activation of

this receptor diminishes the systemic immune response. Given the

remarkable effects with AT-RvD1, it is important to investigate the

downstream mechanisms that resolve chronic inflammation via

ALX/FPR2or throughactivationof additional SPMreceptorsusing

SS mouse models and test the effect of targeting SPM in SS mouse

models to diminish systemic immune response. One suchmodel is

the NOD/ShiLtJ mouse that can be studied at five time points

representing the pre-disease stage (4wk), the earlypre-clinical stage

(8wk), the early clinical phase of autoimmunity (12-16wk) and the

onset of clinical SS-like features characterized by secretory

dysfunction (16-20 wk). At 8-16 wk, lymphocytic infiltration and
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upregulation of SS-associated pro-inflammatory cytokines are

observed, while at 20 wk, anti-nuclear antibodies and anti-M3

autoantibodies are detected in sera of NOD/ShiLtJ mice together

with decreased amylase activity (141–144). Together, the

progressive changes in SS-like phenotype suggest that immune

cell subpopulations mediate distinct aspects of the NOD mouse

model’s autoimmune features and mimics SS clinical presentation

by exhibiting hypergammaglobulinemia and elevated levels of

immunoglobulin-secreting B lymphocytes (7, 18, 19). Previous

studies demonstrated that systemic treatment with AT-RvD1

partially decreases lymphocytic infiltration of SMG and restores

saliva secretion (43, 44, 88, 94); however, to completely eliminate

lymphocytic infiltration in the SS mouse models, it would be

necessary to determine whether a combination of SPM

completely abolishes lymphocytic infiltration and diminished

saliva secretion. Should such a response be noted, it would be

beneficial to elucidate their downstream signaling mechanisms.

Therefore, the investigator should identify the temporal changes in

SS-like pathological endpoints following systemic treatment with a

range of SPM, quantify alternations in inflammatory cells and their

SPM receptor expression and identify changes in the formation of

hematopoietic stem cells and lymphoid progenitor cells. In SS,

epithelial cells adjacent to sites of inflammation display high levels

of immunoactiveproteins (145, 146), cell adhesionmolecules (147–

150) and proinflammatory mediators (25, 28, 151, 152), thus

playing a role in regulation of immune cells. Given that SPM

have been shown to reduce these events in a range of other tissues

(153–157), contributions of SPM receptors to the autoimmune

phenotype of SS mouse models should be investigated.
4 Methods to investigate SPM
metabolism using
mathematical models

Mathematicalmodels suchas thosepresentedbelowmaybeused

as supplementarymethods to informstudydesignusing theprincipal

methods alreadypresented (i.e., in vivo and in vitro studies), and in so

doing the investigator can better focus their traditional lab work to

better use resources (i.e., time and lab materials) and also reduce the

suffering of animals (e.g., in vitro studies). These mathematical

models using differential equations, virtual models of the systems

to be studied, both in terms of theminimumeffective treatment dose

of a given drug as well as its likely path and interactions within the

body.Thepayoff on suchmethods shouldbe apparent– theyprovide

an educated guess as to a starting point for dose-response studies,

thereby resulting in a better chance of getting a desired result with

fewer trials as compared to a literature review and/or trial and error

alone. Likewise, the results derived from in vitro and in vivo studies

subsequent to mathematical modeling can then be fed back into a

revised and verified version of that model, based on these real-world

inputs, to better inform future iterations of the investigative process.

Recently, various types ofmathematicalmodels have been applied to
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FIGURE 2

Workflow of PBPK model development for the specialized pro-resolving lipid mediator AT-RvD1. The PBPK model for human with Sjögren’s
syndrome refers to the virtual population of the subjects whose anatomical physiological parameters are consistent with disease features. If the
model-predicted data does not agree with the observed experimental data, a parameter identification and optimization will be performed using
the default tools provided by the PK-Sim® software to identify the parameter responsible for the lack of accurate predicts and then its value will
be optimized using the observed data until a goodness of fit is achieved between predicted versus observed data. Although AT-RvD1 is the
subject of the figure, the same model can be applied to other specialized pro-resolving lipid mediators. This image was adapted from (163). AT-
RvD1: aspirin-triggered resolvin D1; PBPK, physiologically based pharmacokinetic; PK, pharmacokinetics; SS, Sjögren’s syndrome.
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the drug development process (158–162). Principal among them is

pharmacokinetic (PK) modeling, which combines investigator-

determined pharmacological parameters with the biological and

physiological parameters derived from general experience and/or

literature review to achieve a well-informed virtual mechanistic

representation of that drug, thereby allowing for a priori

simulation of expected concentration-time profiles (158–160).

Furthermore, PK modeling enables the estimation of drug

exposure, not only in plasma but also at the site of action, which

may be difficult or impossible tomeasure experimentally (158–160).

Given the utility of a well-validated PK model for estimating SPM

concentrations in vivo, it is likewise necessary to produce a whole-

bodymouse PKmodel of SPM to be coupled with an earlier derived

pharmacodynamics (PD) model. Such a PK/PD tandem allows the

PD effects of SPM (e.g., salivary flow as well as local and systemic

inflammation binding to simulated plasma and SG SPM

concentrations) to be quantified. The PK/PD model can then be

validatedbyadministering the targetdoseof SPMtoahealthymouse,

sacrificing it andmeasuring its concentrationwithin specified organs

using liquid chromatography-tandem mass spectrometry (LC-MS/

MS) as well as ELISA analyses (109, 119), thus establishing baseline

values for future SPM studies (Figure 2). The target administration

amount can then be introduced systemically at multiple time points,

after which the degree of inflammatory resolution in the SG and the

mechanisms by which this change has occurred should be

determined. The validated mouse PK/PD effects obtained in mice

can be extrapolated to humans by replacing the model input

parameters for the mouse species with those of humans on the

basis of a previously developed whole-body PK model of AT-RvD1

and extrapolationprotocol for humans (163, 164), a process ofmodel

development that will need to be replicated for exploration of future

SPM to be identified and explored in this context. However, the PK

modelhas some limitations. First, thephysicochemical andbiological

parameters used to build themousemodels are obtained either from

the literatureor estimatedusing algorithms andneed tobe confirmed

experimentally. Second, in PK human models for RvD1 and AT-

RvD1 data must be verified using results from prospective clinical

studies. Finally, these models do not consider endogenous RvD1

which may influence the PK of exogenous administrated RvD1 and

AT-RvD1.

5 Discussion

This reviewhas been presentedwith the aimof promoting both

the rationale and means to study SPM as a potential treatment for

SS. The need to do so is based on the current lack of effective

treatments and the methods for doing so, as detailed above, are

numerous and ever expanding. Regarding in vitro studies, results

should be interpreted with caution as SPM production may be

different depending on growth and differentiation stages within the

SG as well as the various culture conditions. Moreover, if the

researcher finds SPM dysregulation to occur in human tissue

cultures, studies should be confirmed multiple times and
Frontiers in Immunology 06
correlated with clinical data. As for in vivo models, previous

studies indicated that endotoxin challenge temporally regulates

lipid mediator production in human serum (50), where pro-

inflammatory eicosanoids concentrations peak after 8 h and

similar results could occur in SG. Also, SPM such as resolvins

and lipoxins initially decreased after 2 h but are then elevated at

24h.Therefore, a similar timingof SPMproductionmayoccur in in

vivomodels of inflammatory resolution (i.e., wound healing (138–

140) and innate immunity (165) models); however, dysregulation

of SPM production in SS mouse model may occur during disease

progression, as these mice do not resolve inflammation (1, 44, 46,

48, 166). With respect to virtual mathematical models (158–162),

such techniques can provide a reasonable starting point for

required total dosage to be administered while also eliminating

the need for excessive animal usage, aswould be the case should this

estimate bederived by trial and error alone; however, a limitationof

mathematical models is that the physicochemical and biological

parameters used to build the RvD1 and AT-RvD1 PK/PD models

are obtained either from data on from data, from the literature or

estimated using algorithms (163, 164). Therefore, it is critical to

keep in mind that all such estimates must be confirmed and thus

validated using models in vivo. To expand on this work, future

investigations may involve determining if activation of SPM

receptors in SG epithelium and vascular SG endothelium

diminishes SS autoimmune phenotype, identifying mechanisms

bywhich SPMreceptors diminish SG lymphocytic infiltration in SS

mouse models and testing whether SPM activation in B and T cells

diminishes SS phenotype. Finally, it is worth emphasizing yet again

that the SPM family is vast and work has only been performed in

relation to the SGwitha small fractionof thepotential candidates. It

would therefore appearwarranted to extend the range of SPM tobe

explored by repeating already performed studies with new SPM

candidates and related molecules while also stretching this work to

make use of emerging experimental techniques and technologies.
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