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Gut bacterial species in late
trimester of pregnant sows
influence the occurrence of
stillborn piglet through pro-
inflammation response

Zhe Chen, Hui Yang*, Hao Fu, Lin Wu, Min Liu, Hui Jiang,
Qin Liu, Yaxiang Wang, Shuqi Xiong, Mengqing Zhou, Xiao Sun,
Congying Chen* and Lusheng Huang*

National Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural
University, Nanchang, China
Maternal gut microbiota is an important regulator for the metabolism and

immunity of the fetus during pregnancy. Recent studies have indicated that

maternal intestinal microbiota is closely linked to the development of fetus and

infant health. Some bacterial metabolites are considered to be directly involved in

immunoregulation of fetus during pregnancy. However, the detailed mechanisms

are largely unknown. In this study, we exploited the potential correlation between

the gut microbiota of pregnant sows and the occurrence of stillborn piglets by

combining the 16S rRNA gene and metagenomic sequencing data, and fecal

metabolome in different cohorts. The results showed that several bacterial

species from Bacteroides, potential pathogens, and LPS-producing bacteria

exhibited significantly higher abundances in the gut of sows giving birth to

stillborn piglets. Especially, Bacteroides fragilis stood out as the key driver in

both tested cohorts and showed the most significant association with the

occurrence of stillborn piglets in the DN1 cohort. However, several species

producing short-chain fatty acids (SCFAs), such as Prevotella copri, Clostridium

butyricum and Faecalibacterium prausnitzii were enriched in the gut of normal

sows. Functional capacity analysis of gut microbiome revealed that the pathways

associated with infectious diseases and immune diseases were enriched in sows

giving birth to stillborn piglets. However, energy metabolism had higher

abundance in normal sows. Fecal metabolome profiling analysis found that

Lysophosphatidylethanolamine and phosphatidylethanolamine which are the

main components of cell membrane of Gram-negative bacteria showed

significantly higher concentration in stillbirth sows, while SCFAs had higher

concentration in normal sows. These metabolites were significantly associated

with the stillborn-associated bacterial species including Bacteroides fragilis.

Lipopolysaccharide (LPS), IL-1b, IL-6, FABP2, and zonulin had higher

concentration in the serum of stillbirth sows, indicating increased intestinal

permeability and pro-inflammatory response. The results from this study

suggested that certain sow gut bacterial species in late trimester of pregnancy,

e.g., an excess abundance of Bacteroides fragilis, produced high concentration of

LPS which induced sow pro-inflammatory response and might cause the death of
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the relatively weak piglets in a farrow. This study provided novel evidences about

the effect of maternal gut microbiota on the fetus development and health.
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Introduction
Litter size is an economically important trait in pig production

(1). Over the past decades, the reproduction performance of sows has

been greatly improved through genetic improvement (2). However,

this also causes an unexpected increase in the number of stillborn

piglets. The occurrence of sows giving birth to stillborn piglets varies

between 5% to 10%, even as high as 14% in some high prolific herds

(3, 4). Some studies have shown that pregnant sows infected with

diseases (5), such as sow syndrome endometritis (SSE), porcine

pseudorabies (PPR), classical swine fever (CSF) and porcine

parvovirus (PPV), could directly result in the occurrences of

stillbirth and mummification (6–8). Environmental factors, such as

temperature and humidity, also influence the numbers of stillborn

piglets in sows (9–11). Sows in the first parity have a higher

probability of stillborn piglets, and within certain parities, the

probability of stillborn piglets is decreased following the increase of

parties (12).

Recently, the studies in humans have indicated that the

colonization of microbes in the vagina showed a link with adverse

pregnancy outcomes (13, 14). Maternal colonization with

Streptococcus agalactiae causes neonatal disease and stillbirth (15).

Danish et al. reported that Listeria monocytogenes in the gut of

pregnant mother showed a serious threat to the fetus, even the rate

of miscarriage or stillbirth was as high as 32% (16). In mice, intake of

high-fat diet could result in placental hypoxia which impaired the

development of the fetus (17). Bifidobacterium in maternal gut

microbiota promotes placental morphogenesis, nutrient transport

and fetal growth in mice (18). By far, whether the alteration of gut

microbiota causes the occurrence of stillborn piglets in sows has

still unknown.

Maternal gut microbiota could drive the early immune

development of the offspring by microbial metabolites, such as the

authentic ligands for Aryl hydrocarbon receptor (AhR) and short

chain fatty acids (SCFAs) translocating to the fetus (19). SCFAs

exhibit its functional capacity to increase the number of regulatory

T lymphocytes (20). Lipopolysaccharide (LPS), a component of the

outer membranes of gram-negative bacteria, could stimulate strong

immune responses (21) and plays an important role in increasing the

oxidative stress and overproduction of inflammatory cytokines, such

as interleukin -1b (IL-1b) and interleukin -6 (IL-6) (22). Dysbiosis of

the gut microbiota may increase the production of microbial LPS that

activates the inflammatory response and promotes the activation of

Toll-like receptor 4 (TLR4) (23–25). Impairment of the intestinal

epithelial barrier has been recognized as a crucial factor for the

inflammation and immune-mediated disorders (26, 27). Elevated
02
levels of serum zonulin and fatty acid-binding protein 2 (FABP2)

have been often recognized as the biomarkers for increased intestinal

permeability (28, 29). Hitesh et al. reported that abnormal immune

rejection during pregnancy in humans may lead to stillborn fetus,

premature birth and other adverse pregnancy phenomena (30).

Therefore, we hypothesized that dysbiosis of sow gut microbiota

might lead to an abnormal host immune response which caused fetal

death and resulted in the occurrence of stillborn piglets.

In this study, we performed 16S rRNA gene and metagenomic

sequencing analysis to document the association between the

occurrence of stillborn piglets and maternal gut microbiota in sows

from three cohorts. In addition, we determined the fecal metabolome

profiling of pregnant sows using the widely targeted metabolome and

lipidomics measurements. Gas chromatograph was used to measure

the concentration of fecal SCFAs. We further measured the serum

levels of pro-inflammatory cytokines and LPS to assess the immune

response of sows. We revealed a potential association between

maternal gut microbiota and the occurrence of stillborn piglets in

sows by using multiple-omics data, and primarily elucidated the

mechanism of maternal gut microbes affecting the occurrence of

the stillbirth (Figure 1). The results gave a new insight for modulating

the gut microbiota of pregnant sows to reduce the occurrence

of stillbirth.
Materials and methods

Animals, and fecal and serum
sample collection

A total of 136 pregnant sows from three experiment cohorts were

used in this study. Sixty-four pregnant sows including 17 sows having

stillborn piglets (Stillbirth group) and 47 sows giving birth normally

(Normal group) were from the 6th (F6 cohort) generation of a mosaic

population which was constructed through hybridization of four

Chinese indigenous pig breeds (Bamaxiang, Erhualian, Laiwu, and

Zang) and four commercial breeds (Pietrain, Duroc, Landrace, and

Large White). The other 72 pregnant sows were all from a Barkshire ×

Licha intercross from DingNan farm, including 37 sows raised in the

year of 2017 (DN1 cohort, including 16 sows having stillborn piglets,

and 21 sows giving birth normally), and 35 sows raised in the year of

2019 (DN2 cohort, including 9 sows having stillborn piglets and 25

normal sows). Pregnant sows were housed in gestation stalls

individually before giving birth. And then, all sows were moved

from the gestation stalls to the farrowing rooms at the gestation of

100 days. All the sows from the same cohort were provided with the

same diets without any antibiotics, probiotics or other medicines
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(Supplemental Table S1). The details about phenotypic records are

shown in the Supplemental Table S2. The sows with the number of

stillborn piglets ≥ 2 in a litter were classified into the stillbirth sow

group, while the sows whose all piglets were born alive were classified

into the normal group. Fresh fecal samples and serum samples from

experimental pregnant sows were collected one week before giving

birth. All fecal samples were immediately dipped in liquid nitrogen,

and then stored at -80°C until use.
16S rRNA gene sequencing and data analysis

Microbial DNA was extracted from 200 mg of each fecal sample

with a QIAamp Fast DNA Stool Mini Kit (Qiagen, Germany)

according to the manufacturer’s instructions (31). The DNA

integrity and concentration were measured with a Nanodrop1000

(Thermo Scientific, USA) and 0.8% agarose gel electrophoresis. The

V3 - V4 hypervariable region of the 16S rRNA gene was amplified

with the barcode fusion primers (338F:5-ACTCCTACG

GGAGGCAGCAG-3, 806R:5-GGACTACHVGGGTWTCTAAT-3).

The PCR products were purified with AmpureXP beads

(AGENCOURT, USA). After purification, the PCR products were

used for library construction and sequenced on an Illumina MiSeq

platform (Illumina, USA).
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Sequence reads with low Phred score and low quality were

removed from raw data to obtain clean reads using QIIME (v1.9.1)

pipeline (32, 33). Paired-end sequences from clean reads were

assembled into tags using FLASH (v.1.2.11) (34). To avoid the bias

of the sequencing depth, we rarefied the sequencing depth to 35,462

sequence reads per sample (the lowest number of sequence reads in

tested samples) using the rarefy function in the R package (35). High-

quality tags were clustered into operation taxonomic units (OTUs) at

the 97% sequence identity with the USEARCH (v7.0.1090) (36).

Taxonomy assignments for 16S rRNA gene sequences were

performed with the RDP classifier program (V2.2) (37). Principal

coordinates analysis (PCoA) was used to document the phylogenetic

compositions of gut microbiota. The Analysis of similarities

(ANOSIM) was used to compare the gut microbial composition

among cohorts. Canonical Correspondence Analysis (CCA) was

used to investigate the effects of variates including population,

parity and maternal infanticide on the composition of gut

microbiota. The a-diversity indices including richness, chao, ACE,

Simpson and Shannon index were calculated by R software (v4.2.1)

with vegan package (38). A Wilcoxon rank-sum test was used to

compare the a-diversity of gut microbiota between stillbirth and

normal sow groups (39). We used LEfSe (http://huttenhower.sph.

harvard.edu/galaxy/) and Wilcoxon rank-sum test to identify the

differential bacterial taxa and KEGG pathways between stillbirth and

normal sows. The abundance profiles of bacterial taxa were
FIGURE 1

The overall workflow of this study. This plot describes the workflow of this study and shows the category of the multi-omics analysis performed in each
cohort. “N” represents Normal group, “S” shows Stillbirth group.
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transformed with a central log-ratio transformation using

compositions package in R software (v4.2.1) (40). The 16S rRNA

sequencing data was submitted to the CNGB database with the

accession number: CRA008769.
Metagenomic sequencing and
bioinformatic analysis

All 72 fecal samples from DN1 and DN2 cohorts were selected for

metagenomic sequencing on a Novaseq 6000 platform. DNA libraries

were constructed following the manufacturer’s instruction (Illumina,

USA). Adaptor and low quality reads were removed from the raw

reads by fastp (v0.19.4) (41). BWA was used to filter the reads with

high sequence similarity with host genome (42). The clean reads of

each sample were assembled by MEGAHIT (v1.1.3) with the option ‘–

min-count 2 –k-min 27 –k-max-step 10 –min-contig-len 500’ (43).

Non-redundant contigs were generated by clustering all contigs with

100% sequencing identity and 100% coverage using CD-HIT (44).

The contigs with length more than 500bp was used to predict open

reading frames (ORFs) by the MetaGeneMark software (45). Cd-hit

software was used to remove the redundant genes from all predicted

genes with the threshold of 95% sequence identity and 90% coverage.

Taxonomic profiling was generated by mapping the non-redundant

genes into the NCBI-NR database by DIAMOND (v0.9.24) with e-

values ≤ 1e−5 (46). For those genes that were matched to multiple

distinguishable taxonomic groups (with multiple records of e-values

≤1e−5), the unique taxonomic classification was determined based on

the lowest common ancestor algorithms by BASTA (v1.3.2.3) (47) at

the thresholds of an alignment length > 25, identity > 80%, and shared

by at least 60% of hits. Genes whose encoding proteins could not be

mapped to the database were defined as unknown genes. The non-

redundant gene catalog was then aligned to the KEGG pathways

according to their protein sequences (48). The functional terms of

KEGG pathways were determined by KOBAS (v2.0) software (49).

After that, the clean reads of each sample were aligned to unique

genes in the catalog using BWA MEM(v0.7.17-r1188) (50). The

output files were converted to BAM format by Samtools (51).

FeatureCounts (V2.0.1) (52) was then used to compute the number

of successfully aligned reads. The abundance was normalized to

fragments per kilobase of gene sequence per million reads mapped

(FPKM) (53). The abundances of microbial taxa, KEGG Orthology

(KO), and KEGG pathways were calculated by adding the abundances

of all the members falling within each category. Spearman correlation

analysis was used to calculate the association between differential

bacterial taxa and differential functional pathways. The metagenomic

sequencing data was submitted to the CNGB database with the

accession number: CRA008770.
Measurement of fecal short-chain fatty acids
by gas chromatograph

A total of 23 fecal samples including 13 samples from sows giving

birth to stillborn piglets and 10 samples from normal sows in the DN1

cohort were measured the concentrations of SCFAs including acetic

acid, propionic acid, isobutyric acid, butyric acid, isopentanoic acid
Frontiers in Immunology 04
and pentanoic acid. In brief, about 0.3 g aliquot of fecal sample was

mixed with 1,500 ml of DNase/RNase-Free water, homogenized for

30 s, and centrifuged at 5,000 rpm for 4 min. The supernatant was

pipetted into a new tube, mixed with 240-mL liquor of

metaphosphoric acid and crotonic acid (1:1, v/v), and centrifugated

at 15,000 rpm for 15 min. The supernatant was filtered through a 0.22

µm filter membrane (Millipore Express, Germany). Finally, 1,000 µl of

filtrate was accurately transferred into a GC vial. Water was used as a

blank control to correct the background. Samples were loaded to a

GC-gas chromatograph (Shimadzu, Japan) equipped with a flame

ionization detection and a thin-film capillary column DB-FFAP

(Shimadzu, Japan). LabSolutions software (Shimadzu, Japan) was

used for data collection and processing (54).
Metabolome profiling of fecal samples by a
widely targeted metabolome analysis

Metabolome profiles were measured in 23 fecal samples described

above from the DN1 cohort (stillbirth group: 13 samples, normal

group: 10 samples). Briefly, approximate 50 mg of fecal samples were

mixed with 1 ml of water-methanol-acetonitrile (1:2:2). The mixture

was vortexed for 1min, homogenized at 45 Hz for 4 min, and

incubated at -20°C 2 h. And then, the mixture was centrifuged at

12,000 rpm for 10 min at 4°C. An ultra-performance liquid

chromatography coupled with quadrupole time-of-flight mass

spectrometry (UPLC-QTOF/MS) was used to detect the metabolites

of supernatant. MassLynx software (Waters Corp, USA) was used for

data acquisition and system control. Leucine-enkephalin was used as

an external standard at a concentration of 100 ng/mL. We used

Progenesis QI software (v2.0, Nonlinear Dynamics, UK) to process

the preliminary data (55). MetaScope package in Progenesis QI was

used to annotate fecal metabolites using the HMDB database based on

MS/MS fragmentation data, retention time, neutral mass, isotope

distribution and the collisional cross-sectional area (56). The

annotation results were processed by removing peaks with missing

values in more than 50% of QC samples and 80% of tested samples.

The retained peaks were normalized to the QC samples using support

vector regression algorithm of “MetNormalizer” in R package (57). A

threshold of 30% was set for the relative standard deviation in the QC

samples to assess the repeatability of metabolomic data sets (58). We

applied Partial Least Squares Discriminant Analysis (PLS-DA) to

detect the differential metabolites by MetaboAnalyst 4.0 (59). The

metabolites with variable importance in the projection (VIP)>1.5

were selected for further analysis. AWilcoxon rank-sum test was used

to identify the differential metabolites between stillbirth and normal

groups, and a false discovery rate (FDR) < 0.05 was set as the

significance threshold (39). Spearman correlation analysis was used

to test the correlations between gut microbiome and fecal metabolites.
Comprehensive untargeted lipidomic
analysis of fecal samples

The lipidomic metabolites of fecal samples were determined in 23

fecal samples from the DN1 cohort described above. In brief, about 20

mg feces from each sample was thawed on ice, homogenized with
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1mL of mixture including methanol, methyl-tert-butyl ether (MTBE)

and internal standard substance. Two hundred micro liter of water

was added into the mixture, vortexed for 1 min, and then centrifuged

at 12,000 rpm at 4°C for 10 min. We extracted 300 mL of the

supernatant for measuring the lipidomic metabolites by LC-ESI-

MS/MS system (SCIEX, USA). The effluent was connected to an

ESI-triple quadrupole-linear ion trap (QTRAP)-MS. LIT and triple

quadrupole (QQQ) scans were acquired on a triple quadrupole-linear

ion trap mass spectrometer (QTRAP) equipped with an ESI Turbo

Ion-Spray interface. The qualitative and quantitative data were

generated based on the Metware database (MWDB) created by

MetWare Biotechnology Co., Ltd. (Wuhan, China) using secondary

mass-spectrometry data. The Analyst software (1.6.3) and

MultiaQuant software were used to process the final lipidomic data

(60, 61). The Partial Least Squares Discriminant Analysis (PLS-DA)

was used to assess the differential lipidomic metabolites by

MetaboAnalyst 4.0. The lipidomic metabolites with VIP score >1.5

were selected for further analysis (59). Wilcoxon rank-sum test was

used to further identify the significantly differential features between

stillbirth and normal group (39).
Determining the concentration of LPS,
biomarkers for intestinal permeability,
and proinflammatory cytokines in
serum samples

The concentration of serum LPS, FABP2, zonulin, TLR4, IL-1b
and IL-6 were determined by commercial enzyme-linked

immunosorbent assay (ELISA) kits (ThermoFiser, USA) following

the manufacturer’s instructions. Briefly, 50 mL of each diluted serum

sample was added into the 96-well microtiter plate coating with the

primary antibody, and then, 100 mL of HPR-conjugated secondary

antibody was added after incubation for 2.5 h at room temperature.

Microtiter plates were washed six times with washing buffer. A total of

50 mL of enzymatic reaction termination solution was added to each

sample. A microtiter plate reader (Tecan Infinite 200 pro,

Switzerland) was used to measure and record OD value at 450 nm.

A standard curve was plotted according to the OD value. Finally, the

concentration of LPS, FABP2, zonulin, TLR4, IL-1b and IL-6 in each

sample were calculated using the standard curve. Because serum

samples were not enough, only LPS, FABP2 and zonulin were

measured in the DN1 cohort, while LPS, IL-1b and IL -6 were

measured in the DN2 cohort. The Wilcoxon rank-sum test was

used to compare the concentration of LPS, FABP2, zonulin, TLR4,

IL-1b and IL-6 between stillbirth and normal sow groups. Spearman

correlation analysis was used to calculate the association between gut

microbes, and proinflammatory cytokines and LPS.
Construction of co-abundance groups of
bacterial taxa

The gut microbiota is a complex micro-ecosystem. Microbial taxa

with similar requirements and functions would constitute an ecologic

co-abundance group (62). Therefore, a CAG analysis was applied to

identify the differential CAGs between stillbirth and normal sow
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groups based on the abundances of OTUs. Specifically, the OTUs with

relative abundance > 0.1% (core OTUs) were selected to construct

CAGs with SPIEC-EASI package in R software. In brief, the SparCC

correlation coefficient matrix between pair OTUs on the abundance

was calculated by the SparCC function of SPIEC-EASI package in R

software (63). After that, the correlation coefficient matrix was

converted to a distance matrix (1-correlation coefficient), and the

Ward’s hierarchical clustering method was applied to cluster OTUs

into single CAG based on the distance matrix and permutational

multivariate analysis of variance (PERMANOVA) with 999

permutations. The CAGs containing OTUs with correlation

coefficient values > 0.5 were displayed in the co-abundance network

by Cytoscape v3.7.0 (64). The mean value of relative abundances of

the OTUs that were contained in the CAG represented the abundance

of that CAG. A Wilcoxon rank-sum test was used to compare the

abundances of CAGs between stillbirth sows and normal controls

(39). Furthermore, Netshift (https://web.rniapps.net/netshift/) tool

was used to identify the key nodes of bacterial species, which might

act as an important “driver” in the sub-networks (65).
Prediction analysis by random forest model

Random forest analysis was used to construct the prediction

model to identify the potential biomarkers that could predict the

sows giving birth to stillborn piglets using “randomForest” in the R

(v4.2.1). A total of 17 differential bacterial species, 36 differential KOs,

56 differential metabolites, and three inflammation cytokines were

provided as input variables. We used a nested ten-fold cross-

validation to detect the important features. The area under curve

(AUC) index and receiver operating characteristic (ROC) analysis

were used to evaluate the efficacy of possible cutoff values of the tests

with 13 stillbirth sows and 10 normal sows from the DN1 cohort

which had both metagenome and metabolome dataset by the pROC

package in the R (v4.2.1) (66).
Results

Identification and replication of bacterial
taxa enriched in the gut of sows giving birth
to stillborn piglets in three cohorts based on
the 16S rRNA gene sequencing data

A total of 136 samples from three cohorts were performed 16S

rRNA gene sequencing. After quality control, we obtained 40,555

high-quality tags per sample in average. These tags were clustered into

4,997 OTUs according to the 97% sequence identity. The PCoA plot

showed that the compositions of gut microbiota had an obvious

difference among three cohorts (Figure 2A). Compared to the F6

population, the DN1 cohort showed a higher similarity in the gut

microbial composition with the DN2 cohort. This should be due to

the fact that two DN cohorts came from the same farm although these

sows were raised in different years. CCA analysis was used to evaluate

the influence of variates including population, parity, and maternal

infanticide on the composition of gut microbiota. Different

population had the most significant influence on the gut microbial
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composition rather than other variates (Figure S1A). The

phylogenetic composition of gut microbiota had no significant

difference between stillbirth and normal sow groups in all three

cohorts. Additionally, we compared the a-diversity of gut

microbiota between stillbirth group and normal sow group using

the chao, richness, ACE, Shannon and Simpson index, and found that

the fecal samples from the stillbirth sow group had a higher a-
diversity of microbial composition than that from normal sows in all

three cohorts although this did not achieve the statistical significance

level (Figures S1B, S1C, S1D).
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To identify differential bacterial taxa between stillbirth and

normal sow group, we first performed a LEfSe analysis with the

OTUs having the relative abundance > 0.01% in each cohort. In the F6

cohort, a total of 42 OTUs showing differential abundances between

two sow groups were detected, of which 24 OTUs (15/24 OTUs

belonging to the order Clostridiales) were enriched in normal sows,

and 18 OTUs (7/18 OTUs belonging to the order Bacteroidales)

showed enrichment in the gut of sows giving birth to stillborn piglets

(Figure 2B). In addition, we identified 77 differential OTUs in the

DN1 cohort (Figure 2C). Among them, 14 OTUs had higher
A B

DC

FIGURE 2

Comparison of bacterial compositions and identification of OTUs associated with sows giving birth to stillborn piglets in three cohorts based on 16S
rRNA gene sequencing data. (A) PCoA analysis based on the relative abundance of OTUs. ANOSIM was used to compare the gut microbial composition
among three cohorts. (B–D) The OTUs showing significantly differential abundances between stillbirth and normal sows in the F6 cohort (B), DN1 cohort
(C) and DN2 cohort (D) by LEfSe. The circle histogram showing the OTUs with the LDA score > 2. Blue taxa names represent the OTUs belonging to the
order Clostridiales, and red taxa names represent the OTUs belonging to the order Bacteroidales. Green bars indicate the OTUs enriched in the gut of
normal sows, and red bars show the OTUs enriched in stillbirth sows.
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abundance in the normal sow group, half of which were annotated to

the order Clostridiales, such as Ruminococcaceae, Blautia and

Oscillospira, while 63 OTUs were enriched in the stillbirth sow

group, including 18 OTUs belonging to the order Bacteroidales. In

the DN2 cohort, we detected 52 OTUs that had significantly different

abundance between stillbirth and normal sow groups (Figure 2D).

Most of the OTUs enriched in the normal sow group were also

annotated to the order Clostridiales (17/22), such as Dorea,

Coprococcus, Ruminococcaceae, Faecalibacterium prausnitzii,

Butyricicoccus pullicaecorum. A total of 30 OTUs had higher

abundance in the stillbirth sow group (Supplementary Table S3).

Among these 30 OTUs, 23 OTUs belonged to the order Bacteroidales.

And then, we used the Wilcoxon rank-sum test to further validate

the differential bacterial taxa between stillbirth and normal sow

groups with the OTU abundance data through a central log-ratio

(CLR) transformation. In the F6 cohort, a total of 62 OTUs showing

different abundances between two sow groups were identified. Among

them, 23 OTUs (9/23 OTUs belonging to the order Bacteroidales)

were enriched in stillbirth sows, while 39 OTUs (26/39 OTUs

belonging to the order Clostridiales) had higher abundance in

normal sows (Figure S2A). A total of 75 differential OTUs were

detected in the DN1 cohort, of which 16/43 OTUs belonging to the

order Bacteroidales were significantly enriched in the stillbirth group,

while 17/32 OTUs annotated to Clostridiales had higher abundance

in the normal sow group (Figure S2B). In the DN2 cohort, 97

differential OTUs were isolated. Similar to the results obtained in

the F6 and DN1 cohorts, most of the OTUs (46/54) enriched in the

stillbirth sow group belonged to Bacteroidales, and a large part of

OTUs enriched in normal sows were annotated to Clostridiales

(Figure S2C). As we expected, the high similarity of the association

results was obtained between LEfSe analysis and Wilcoxon rank-sum

test (Supplement Table S3).

A co-abundance network analysis was performed in this study to

find the CAGs having different abundance between stillbirth and

normal sow groups. A total of 156, 182 and 171 core OTUs in the F6,

DN1 and DN2 cohort, respectively, were used to construct CAGs by

the SparCC correlation and PERMANOVA (Figures 3A, 3B, S3A,

S3B). A total offive CAGs were obtained for each cohort. Those OTUs

with correlation coefficient values > 0.5 were displayed in the co-

abundance networks. In the DN1 cohort, CAG1 and CAG5 were

enriched in the stillbirth sow group, while CAG2, CAG3 and CAG4

had higher abundance in the normal sow group although this did not

achieve the statistical significance level. More details, CAG1 was

comprised of 50 OTUs. Among these 50 OTUs, 31 OTUs belonged

to the order Bacteridales. CAG5 contained 11 OTUs including four

OTUs belonging to the order Bacteridales. CAG2 was comprised of 35

OTUs including 21 OTUs annotated to the order Clostridiales.

Impressively, CAG1 showed a negative correlation with CAG2

significantly (p=0.001 r=0.12) (Figures 3A, 3B). In the DN2 cohort,

CAG1 containing 20 OTUs from the order Bacteridales and CAG5

containing 11 OTUs from the order Bacteridales were enriched in the

stillbirth sow group. However, CAG2 was enriched in the normal sow

group, in which 21 OTUs were annotated to the order Clostridiales.

Interestingly, more potential SCFAs-producing bacterial taxa were

enriched in the CAG2, such as OTU72_Phascolarctobacterium and

OTU1710_Butyricicoccus pullicaecorum. (Figures 3A, 3B). Similarly,

in the F6 cohort, the OTUs annotated to order Clostridiales mainly
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constituted CAG1 which exhibited higher abundance in the normal

sow group (Figures S3A, S3B). Taken together, the co-abundance

network analysis showed that the CAGs which mainly contained the

OTUs belonging to Bacteridales were enriched in the stillbirth sow

group, while CAGs composed of OTUs from Clostridiales were more

abundant in the normal sow group. This result was consistent with

the results from both LEfSe analysis and Wilcoxon rank-sum test.
Metagenomic sequencing detected bacterial
species and functional capacities of gut
microbiome enriched in the gut of sows
giving birth to stillborn piglets

To identify bacterial species having different abundances between

stillbirth and normal sows, 72 fecal samples from the DN1 and DN2

cohorts were performed metagenomic sequencing analysis

(Methods). Among the 20 most abundant species in both cohorts,

Escherichia coli, Prevotella copri, Lactobacillus johnsonii and

lactobacillus reuteri were predominant (Figures S3A, S3B). The

bacterial species with relative abundance ≥ 0.01% in each cohort

were used for association analysis. LEfSe analysis detected 17 and 37

bacterial species showing significantly different abundances between

stillbirth and normal sows in the DN1 and DN2 cohort, respectively.

(Figure 4A, Supplement Table S4). Interestingly, three Bacteroides

species including Bacteroides fragilis, Bacteroides cellulosilyticus and

Bacteroides pyogenes, Paenibacillus sp. P22, Treponema porcinum

were mainly enriched in the stillbirth sow group. Consistent with

the results from 16S rRNA gene sequencing, several bacterial species

that could produce SCFAs had higher abundance in the gut of normal

sows, such as Clostridium butyricum, Eubacterium ramulus,

Faecalibacterium prausnitzii and Prevotella copri. Additionally,

some pathogens or opportunistic pathogens had higher abundance

in the gut of stillbirth sows, such as Clostridium baratii and

Turicibacter sanguinis in the DN1 cohort, Desulfomicrobium orale,

Cupriavidus taiwanensis, Campylobacter hyointestinalis, Desulfovibrio

piger, Ruthenibacterium sp, Prevotella nigrescens, Bacteroides

cellulosilyticus, Clostridium botulinum, Bacteroides pyogenes, and

Parabacteroides distasonis in the DN2 cohort.

Wilcoxon rank-sum test was further used to confirm the

differential species identified by LEfSe analysis. A total of 33 and 26

differential bacterial species were detected in the DN1 and DN2

cohorts, respectively. Impressively, all differential bacterial species

detected by the LEfSe analysis were also found by the Wilcoxon rank-

sum test in the DN1 cohort (Figure S4A, Supplement Table S4).

Especially, Prevotella copri and Clostridium butyricum which were

enriched in the gut of normal sows showed high significance.

Similarly, in the DN2 cohort, the high repeatability was observed in

the detection of differential bacterial species by LEfSe analysis and

Wilcoxon rank-sum test, such as the enrichments of Bacteroides

fragilis, Bacteroides cellulosilyticus, and Bacteroides pyogenes in the

gut of stillbirth sows, and the significantly higher abundance of several

SCFAs-producing bacterial species in the gut of normal sows, e.g.,

Eubacterium ramulus, Faecalibacterium prausnitzii and Prevotella

copri (Figure S4B, Supplement Table S4).

To further document the core “driver” species in the complex

micro-ecosystem of sow gut related to giving birth to stillborn piglets,
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we further constructed co-abundance network using the SparCC and

NetShift methods. Impressively, Bacteroides fragilis, Bacteroides

pyogenes, Bacteroides thetaiotaoicron and Oscillibacter sp. had a

high NESH score as the “driver” species in the gut of stillbirth sows

from both DN1 and DN2 cohorts (Figures 4B, C). Taken together, we

suggested that three Bacteroides sp., especially Bacteroides fragilis

which was detected in both DN1 and DN2 cohorts by both LEfSe and

Wilcoxon rank-sum test, and showed the most significant correlation

in the DN1 cohort in the LEfSe analysis might be the key bacterial

species related to give birth to stillborn piglets in both cohorts, while

some SCFAs-producing bacteria, such as Clostridium butyricum,
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Faecalibacterium prausnitzii, and Prevotella copri might be the key

bacterial species in the gut of sows giving birth normally.

We further detected the differential functional pathways of gut

microbiome between sows giving birth to stillborn piglets and normal

sows in the DN1 and DN2 cohort. A total of 4 and 11 KEGG

pathways showing significantly differential abundances were

identified in the DN1 and DN2 cohort by LEfSe analysis

(Figure 4D). Interestingly, the KEGG pathways related to diseases,

such as immune diseases and bacterial infectious diseases were

significantly enriched in the stillbirth sows in both sow cohorts.

Meanwhile, the pathways of energy metabolism and carbohydrate
A

B

FIGURE 3

Identifying the co-abundance groups (CAGs) of gut mirobota associated with sows giving birth to stillborn piglets by co-abundance network analysis
based on 16S rRNA gene sequencing data. (A) Co-abundance networks of DN1 and DN2 cohort. Each circle represents one OTU. Circles with the same
color represent the OTUs from CAG. Circle size represents the average abundance of each OTU in CAGs. The red lines represent the positive
correlation. And the grey lines show the negative correlation. (B) The boxplots showing the differential abundance of CAGs between stillbirth and normal
sow group in the DN1 and DN2 by the Wilcoxon rank-sum test.
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metabolism had more abundance in normal sows. These results

suggested that the gut microbiota related to sow giving birth to

stillborn piglets might have a potential correlation with the immune

response of the host.

We further investigated the correlations between differential

bacterial species and differential KEGG pathways in the DN1 and

DN2 cohorts by spearman’s correlation analysis (Figures 5A, 5B). In

the DN1 cohort, we found that Bacteroides fragilis, Clostridium

beijerinckii, Clostridium baratii, Firmicutes bacterium_CAG_582,

Paenibacillus sp. P22 and Turicibacter sanguinis which were

enriched in the stillbirth sow group were positively correlated with

the pathways about immune diseases in the DN1 cohort. At the same
Frontiers in Immunology 09
time, eight of 12 bacteria species which were enriched in the stillbirth

sow group were positively correlated with the pathway of infectious

diseases, while the Prevotella copri which had significantly higher

abundance in the normal sow group were negatively correlated with

the pathways of immune diseases and infectious diseases. In the DN2

cohort, the Streptomyces lincolnensis, Clostridia bacterium,

Odoribacter splanchnicus, uncultured Dysgonomonas sp., and

Porphyromonadaceae bacterium were positively correlated with the

pathway of immune disease. Similarly, Bacteroides fragilis were

positively correlated with the pathway of immune diseases although

it did not achieve the statistical significance level (p=0.2 r=0.3).

Prevotella copri, Prevotella disiens, Erysipelotrichaceae bacterium,
A B

D C

FIGURE 4

Bacterial species and functional capacities showing differential abundances between stillbirth and normal sow group in the DN1 and DN2 cohort based
on metagenomic sequencing data. (A) Differential bacterial species between stillbirth and normal sows by LEfSe analysis (LDA score > 2.5 and P < 0.05).
Blue taxa names represent the bacterial species or genus which were enriched in stillbirth sows from both DN1 and DN2 cohorts, and red taxa names
indicate the species or SCFA-producing species which were enriched in normal sows from both DN1 and DN2 cohorts. (B, C) Co-occurrence networks
of differential bacterial species in the DN1 (B) and DN2 (C) cohort using the NetShift tool. Nodes size showes the predicated “driver” scores, and red
nodes indicate those species identified as important “drivers”. (D) Differential KEGG pathways between stillbirth and normal sow group by LEfSe analysis.
Blue pathway names represent the diseases-associated pathways which were enriched in stillbirth sows from both DN1 and DN2 cohorts, and the red
pathway name represents the pathway enriched in normal sows from both DN1 and DN2 cohort.
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Faecalibacterium prausnitzii, Eubacterium ramulus and Dorea

longicatena which were enriched in normal sows were negatively

correlated with immune disease. Interestingly, those bacterial species

enriched in the normal sow group, including Erysipelotrichaceae

bacterium, Eubacterium ramulus, and Dorea longicatena were

positively correlated with the pathways of energy metabolism,

carbohydrate metabolism, global and overviews maps, biosynthesis

of other secondary metabolites, and endocrine system. Based on these

results, we speculated that the sows giving birth to stillborn piglets

suffered from abnormal immune response in pregnant stage that

might link to the increased abundances of disease-related bacteria and

the decreased abundance of bacterial species producing SCFAs.
Frontiers in Immunology 10
The shifts of fecal metabolites in sows giving
birth to stillborn piglets

Many studies have reported that maternal microbiota has an

important influence on the fetus development by microbial

metabolites translocating to the fetus (19, 67). We first measured

the fecal metabolome profile using UPLC-QTOF/MS. A total of 2,185

metabolites were detected from the fecal samples of the DN1 cohort.

We performed the Wilcoxon rank-sum test and PLS-DA analysis to

identify the differential metabolites between stillbirth and normal

sows (Figure S5A). At the threshold of FDR < 0.05, fold change > 2

and VIP > 1.5, we detected 37 metabolites showing significantly
A

B

FIGURE 5

Correlations between differential function pathways and differential bacterial species. Heatmap showing the correlations between differential KEGG
pathways of gut microbiome and differential bacterial species. The stars indicate the significance threshold of *P < 0.05, **P < 0.01, and ***P < 0.001 in
Spearman’s rank correlation test. (A) DN1 cohort, (B) DN2 cohort.
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differential abundance between stillbirth and normal sows

(Figure 6A). Interestingly, a mass of phosphatidylethanolamine and

lysophosphatidylethanolamine, such as LysoPE (16:1(9Z)/0:0), PE

(14:0/0:0), PysoPE 16:1, LysoPE 14:0, and LysoPE (15:0/0:0) were

enriched in the fecal samples of stillbirth sows (Figure S6). In

addition, the higher levels of cholesterol including Cholest-4-en-3-

one and 7-Dehydrocholesterol, and prototype prostaglandin (15(s)-

15-methyl PGF2 alpha) that are the biomarkers of oxidative stress and

can cause abortion or the termination of a pregnancy were enriched in

fecal samples of the sows giving birth to stillborn piglets (68).
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However, quinolones related metabolites, e.g., quinolone-2,4-diol

and quinine were enriched in fecal samples of the normal sows.

Next, we measured lipidomic metabolites in the same fecal samples

described above from the DN1 cohort using LC-ESI-MS/MS. A total of

576 lipid molecules were detected. We also used PLS-DA and Wilcoxon

rank-sum test to detect the differential lipidomic metabolites in fecal

samples between two sow groups, and found 11 lipid molecules showing

significantly differential abundances (Figure 6B, Figure S5B).

Consistently, the phosphatidylethanolamine (PE 15:0_22:6) and

lysophosphatidylethanolamine (LPE P-16:1) were also detected to be
A B

D E

C

FIGURE 6

Comparison of the concentration of fecal metabolites, and serum cytokines and biomarkers between stillbirth and normal sow group. The differetial fecal
metabolites between stillbirth and normal sow group at the threshold of VIP value > 1.5, wilcox test FDR < 0.05, and fold changes > 2. (A) widely targeted
metabolome, and (B) lipidomic metabolites. (C) Comparision of the concentration of fecal SCFAs between stillbirth and normal sow group.
(D) Comparison of the concentration of serum Lipopolysaccharide (LPS), zonulin and FABP2 in serum samples of DN1 cohort. (E) Comparision of the
concentration of Lipopolysaccharide (LPS), IL-1b, IL-6 and TLR4 in serum samples from the DN2 cohort. The stars indicate the significance thresholds:
* FDR < 0.05 and ** FDR < 0.01 by Wilcoxon rank-sum test.
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significantly enriched in fecal samples of the stillbirth sows. However,

phosphatidylcholine (PC 17:1_18:1) and lysophosphatidylcholine LPC

(O-16:1) and LPC (22:0/0:0) had higher concentration in fecal samples of

the normal sows.

Maternal SCFAs are readily transmitted to the offspring, and

affect the fetal neural and metabolic systems (69). Compared to sows

giving birth to stillborn piglets, normal sows had more SCFAs-

producing bacteria in the gut. We assumed whether the

concentration of SCFAs in fecal samples should be higher in

normal sows. We measured the concentration of fecal SCFAs

including acetic acid, propionic acid, isobutyric acid, butyric acid,

isopentanoic acid and pentanoic acid in the DN1 cohort using GC-gas

chromatograph. As the results, the concentration of acetic acid,

propionic acid and butyric acid in fecal samples were significantly

higher in the normal sows than that in the sows giving birth to

stillborn piglets (Figure 6C). However, there were no significant

differences in the concentration of of isobutyric acid, isopentanoic

acid and pentanoic acid in fecal samples between two sow groups.
Associations between the changes of
gut microbiota and the shifts of
fecal metabolites

We evaluated the correlations between the shifts in fecal

metabolites and the changes in the abundances of gut microbial

species in the DN1 cohort. In general, the metabolites enriched in

fecal samples of the stillbirth sow group were positively correlated

with the bacterial species enriched in stillbirth sows, but negatively

associated with the bacterial species enriched in normal sows, and vice

versa. In details, Bacteroides fragilis enriched in the gut of the stillbirth

sow group was positively correlated with phosphatidylethanolamine

(PE 15:0_22:6) which plays important roles in bacterial adhesion

probably via affecting LPS biosynthesis (70), but negatively associated

with butyric acid (Figure 7). Clostridium butyricm, a bacterial species

producing SCFAs, had a strongly positive correlation with acetic acid,

propionic acid and butyric acid. Interestingly, the antibiotics

including Aklavin and Puromyclin that were enriched in fecal

samples of the stillbirth sows were positively associated with

Bacteroides fragilis, which might be related to the strong drug

resistance of Bacteroides fragilis (71).
Chronic inflammatory response in sows
giving birth to stillborn piglets

Several Bacteroides species, especially Bacteroides fragilis were

enriched in the gut of sows giving birth to stillborn piglets.

Alexandrov et al. reported that Bacteroides fragilis could produce a

pro-inflammatory and neurotoxic LPS (72). We determined and

compared the concentration of serum LPS using an ELISA between

stillbirth and normal sows in both DN1 and DN2 cohorts. As expected,

sows giving birth to stillborn piglets had significantly higher

concentration of serum LPS compared to normal sows in both

cohorts (Figures 6D, 6E). In addition, we measured the concentration

of biomarkers of the gut barrier permeability (zonulin and FABP2) in

serum samples from the DN1 cohort. Compared to normal sows, the
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sows giving birth to stillborn piglets had significantly higher

concentration of zonulin and FABP2 in serum, suggesting an

increased intestinal barrier permeability (Figure 6D). The

concentration of pro-inflammatory cytokines IL-6 and IL-1b, and the

LPS receptor of TLR4 in serum were also measured by ELISA assay in

the DN2 cohort. The levels of IL-6 (P = 0.02) and IL-1b (P = 0.01) were

significantly higher in the serum of stillbirth sows than that in normal

sows (Figure 6E). The concentration of TLR4 in the serum was also

higher in the stillbirth sow group although this did not achieve the

statistical significance level.

We further evaluated the correlations between the shifts in the

concentrations of serum inflammation cytokines and LPS, and the

changes in the abundances of gut microbial species in the DN1

cohort. Serum LPS abundance showed robust correlation with

Bacterial fragilis that was enriched in stillbirth sows. Moreover,

FABP2 and zonulin were positively correlated with most of the

stillbirth-associated bacterial species (Figure 8A). Taken together,

these results suggested that the changes in the gut microbiota of

sows, e.g., an excess abundance of Bacteroides fragilis produced high

concentration of LPS which impaired intestinal integrity, activated

sow pro-inflammatory response, induced the production of

inflammatory cytokines, and finally resulted in the death of

relatively weak piglets in a farrow.
Identifying the biomarkers predicting the
sows giving birth to stillborn piglets

In order to identify the potential biomarkers that could be used to

predict the sows giving birth to stillborn piglets, we constructed

random-forest classifiers to discriminate stillbirth and normal sows

based on 112 differential features including bacterial species (n = 17),

KO (n = 36), metabolites (n = 56) and inflammation cytokines (n = 3).

A tenfold cross-validation method was used to identify the features

with the best discriminatory power. The result showed that 14

features could distinguish stillbirth and normal sows well

(Figure 8B). Interestingly, among these 14 features, puromycin had

the best discriminatory power (top 1). As the antibiotic, it was

significantly correlated with the abundance of Bacteroides fragilis.

Moreover, the species Bacteroides fragilis, Prevotella copri,

Ruminoccus albus and Clostridium butyricum were also included in

the list of these 14 biomarkers. The prediction model showed high

diagnostic power with the area under the curve of AUC 95.38%

(Figure 8C), suggesting that these 14 features could be used as

biomarkers for predicting the occurrence of stillbirth sows.
Discussion

Sows giving birth to stillborn piglets bring a big loss to pig production

industry. The reasons causing stillborn piglets are particularly

complicated (1, 10, 73). Here, to our knowledge, for the first time, we

showed that sow gut microbes in late trimester of pregnancy might play

an important role in the occurrence of stillborn piglets in three

experimental sow cohorts by integrating multi-omics data.

We did not find any CAGs showing significant difference in

abundance between normal and stillborn groups in either DN1 or
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DN2 cohort although some of CAGs showed the tendency to

significance. This should be due to: 1) Although we identified some

bacterial taxa or species showing significantly different abundance

between normal and stillborn groups, the shifts in the abundances of

these bacterial taxa did not significantly change the compositions and

interactions of bacterial taxa between normal and stillborn groups.

We did not observe the significant difference in the overall diversity of
Frontiers in Immunology 13
gut microbiota between two groups (both a- and b-diversity did not

show significant differences between normal and stillborn groups)

(Figure S1). 2) The sample sizes were relatively small for both DN1

and DN2 cohorts, so it only showed the tendency to significance.

Several Bacteroides spp., such as Bacteroides fragilis, Bacteroides

pyogenes, and Bacteroides thetaiotaomicron, and Treponema

porcinum were detected to be enriched in the gut of sows giving
FIGURE 7

Correlations between differential fecal metabolites and differential bacterial species. The sizes of circles indicate the values of Sperman correlation
coefficient. The stars show the significance thresholds: *P < 0.05, **P < 0.01, and ***P < 0.001 by Spearman’s rank correlation test. Blue metabolite
names represent the metabolites which were enriched in stillbirth sows, and the red metabolite names show the metabolites which were enriched in
normal sows.
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birth to stillborn piglets by metagenomic sequencing analysis.

Moreover, several pathogen or opportunistic pathogens including

Clostridium baratii, Desulfomicrobium orale, Cupriavidus

taiwanensis, Campylobacter hyointestinalis, Desulfovibrio piger,

Bacterioides cellulosilyticus, Odoribacter splanchnicus, and

Porphyromonadaceae bacterium (74–79), and LPS-producing

species, e.g., Bacteroides fragilis (72) had the higher abundances in

the stillbirth sows. Particularly, Bacteroides fragilis was enriched in
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stillbirth sows by both LEfSe analysis and Wilcoxon rank-sum test

and had the highest LDA score in the DN1 cohort in LEfSe analysis.

Considering the high abundance of Bacteroides fragilis in the gut of

stillbirth sows, and particularly, that Bacteroides fragilis was

recognized as a core driver species in the gut microbial community

of stillbirth sows by NetShift network analysis in both DN1 and DN2

cohorts, we speculated that the excessive enrichment of Bacteroides

fragilis in the gut could result in stillborn piglets. Bacteroides fragilis is
A

B C

FIGURE 8

Correlations between cytokines and differential bacterial species and identification of the biomarkers that could be used to classify the sows giving birth
to stillborn piglets by Random Forest. (A) The values on the heatmap represent the Spearman correlation coefficient between bacterial species which
were enriched in each of two sow groups. *, P < 0.05, **, P < 0.01, and ***, P < 0.001 obtained in the Spearman’s rank correlation test. The lines
represent the Spearman correlation between cytokines and bacterial species, the green lines indicate a positive correlation, the orange lines show a
negative correlation, and the grey lines indicate the correlation that did not achieve significance level. (B) The tenfold cross-validation by Random Forest
model. (C) The 14 features that could discriminate the stillbirth and normal sows.
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one of the bacterial species having outstanding ability to produce

polysaccharides (80). It is also one of common anaerobic bacteria

causing the infection, and the infection rate is high if the integrity of

intestinal mucosa is impaired (77, 81). We indeed detected that serum

FABP2 and zonulin, the biomarkers of intestinal permeability, had

higher concentration in sows giving birth to stillborn piglets than that

in normal sows, indicating an increased intestinal barrier permeability

in sows with stillbirth piglets. Seungbum et al. also showed that

zonulin and FABP2 were correlated with serum LPS and altered gut

microbiota that were related to intestinal inflammation (82).

Bacteroides fragilis is an obligate anaerobic gram-negative

bacterium whose outer membrane is a highly asymmetric bilayer

that contains phospholipids in the inner leaflet and LPS in the outer

leaflet (83). Extensive studies have confirmed the relationship of LPS

with host inflammatory response (84, 85). Toyama et al. reported that

LPS could cause fetal death or abortion in animals (86). We detected

that the level of LPS was higher in the stillbirth sows and positively

correlated with the abundance of Bacteroides fragilis. In addition, fecal

me tabo lome and l ip i domic s ana l y s i s i d en t ified tha t

phosphatidylethanolamine (PE) and related lipids (such as lysoPE

and pysoPE) were enriched in the stillbirth sow group. However, the

s e r u m l e v e l s o f p h o s p h a t i d y l c h o l i n e ( P C ) a n d

lysophosphatidylcholine (LPC) that play a role in the regulation of

cell immunes response, had the higher concentration in normal sows.

LPC can inhibit TLR-mediated intracellular responses, and ultimately

induced an anti-inflammatory phenotype (87). PE is the principal

phospholipid in bacteria. In Gram-negative bacteria, e.g., Escherichia

coli, PE takes about 70–80% of the total membrane lipids (70). Yu

et al. also reported that PE had an important influence on bacterial

adhesion probably via affecting LPS biosynthesis (70). The abundance

of Bacteroides fragilis showed the most significant correlation with the

concentration of PE. These results further suggested that more

Bacteroides fragilis adhering to the gut of sows giving birth to

stillborn piglets produced higher concentration of LPS that

increased intestinal barrier permeability and chronic inflammation

response. It has widely known that Bacteroides fragilis has two

different strains, non-toxigenic (NTBF) and enterotoxigenic

(ETBF). Bacteroides fragilis toxin (BFT) is the only well-studied

virulence factor specific to ETBF (88). We blasted the metagenomic

sequencing reads into bft genes, but didn’t detect bft gene sequence in

the samples from experimental pigs (data not shown), indicating that

the Bacteroides fragilis should be non-toxigenic subtype in tested

samples. Kordahi et al. reported that the non-toxigenic Bacteroides

fragilis from patients were enriched the genes involving in the LPS

biosynthesis, could activate NF-kB through TLR4, and induced a pro-

inflammatory response (89). Toll-like receptors (TLRs) are

responsible for the recognition of LPS and play a central role in the

initiation of innate immune responses (84, 90). We presumed that

non-toxigenic Bacteroides fragilis enriched in the sows giving birth to

stillborn piglets might activate the host immune system and cause

inflammation response. As we expected, the serum levels of TLR4, IL-

6 and IL-1b had higher concentration in the stillbirth sow group.

Previous study also indicated that LPS can medicate fetal death by

inducing the substantial increase in decidua COX-2 (91). Taken

together, LPS produced by stillborn-associated bacterial taxa, e.g.,

non-toxigenic Bacteroides fragilis strains might impair intestinal
Frontiers in Immunology 15
integrity, activate sow pro-inflammatory response, induce the

production of inflammatory cytokines, and finally result in the

death of relatively weak piglets in a farrow.

Several SCFA-producing bacteria, such as Clostridium butyricum,

Eubacterium ramulus, Faecalibacterium prausnitzii and Prevotella

copri were enriched in the gut of normal sows. SCFAs not only

provide energy for host cells, but also serve as signal molecules

between gut microbiota and intestinal organs, and can inhibit

intestinal inflammation response (92–94). Metagenomic sequencing

analysis showed that the pathway of energy metabolism was enriched

in normal sows, indicating that SCFAs-producing microbes should

benefit pregnancy sows by providing SCFAs that provided sows

energy and also inhibited host inflammation response. This finally

improved the development of the fetal. SCFAs regulate host energy

homeostasis via GPR41 and GPR43 in the sympathetic nervous

system, adipose, pancreas, intestine and embryo tissues, and play

anti-inflammatory roles (20, 95). In pregnant mice, acetate produced

by gut microbiota can permeate the placenta and attenuate postnatal

allergic responses in the offspring (69). Maternal gut microbiota could

affect maternal and placental metabolome (i.e. acetate, formate and

carnitine), and then promote placental morphogenesis, nutrient

transport and fetal growth in mice (18). We indeed observed that

normal sows had significantly higher concentration of SCFAs in feces

than sows giving birth to stillborn piglets. Clostridium butyricum and

Faecalibaverium prausnitzii were significantly associated with the

levels of feces SCFAs. Maternal carriage of Prevotella copri during

pregnancy may promote the development of fetal immune tolerance

(96). Different Prevotella copri strains have shown distinct functional

capacities depending on the diets (97).
Conclusion

Overall, pregnant sows with higher abundances of bacterial

species from Bacteroides (especially Bacteroides fragilis) and

Treponema porcinum in the gut had a relatively higher risk of

giving birth to stillborn piglets. LPS produced by stillbirth-

associated bacterial species might impair intestinal barrier, activate

the host immune response, and induce the production of

inflammatory cytokines, and finally result in the death of relatively

weak piglets (stillborn piglets) in a farrow of experimental sows.

However, some SCFAs-producing bacterial species provided SCFAs

that not only provided the host more energy, but also inhibited host

inflammation response, and should benefit for normal development

of fetus. The results from this study gave the insights into how

maternal gut microbiome affects the development of fetus, and

provided the basic knowledges to decrease the occurrence of sows

giving birth to stillborn piglets through regulating the sow gut

microbiota to benefit for the pig production.
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SUPPLEMENTARY FIGURE 1

The factors influencing gut microbial composition and the comparison of a-
diversity of gut microbial compositions between stillbirth and normal sows based
on 16S rRNA gene sequencing data. (A) The CCA analysis was used to evaluate the

effects of the factors including population, number of stillbirths, parity and
maternal infanticide on the gut microbial composition based on 16S rRNA gene

sequencing data. (B) Comparison of the a-diversity of gut microbiome between

stillbirth and normal sow group using richness, ACE, chao, Shannon and Simpson
indices. Boxplots showing the difference of each index between stillbirth and

normal sow group in the F6, DN1, D2 cohort by Wilcoxon rank-sum test, and a
false discovery rate (FDR) < 0.05 was set as the significance threshold.

SUPPLEMENTARY FIGURE 2

OTUs significantly enriched in stillbirth sows and normal sows based on 16S rRNA

gene sequencing data by Wilcoxon rank-sum test (central log-ratio transformation).
The volcano plots show the differential OTUs with corrected P value (FDR) < 0.05

and log2 FC > 0. The circles represent theOTUswhichwere enriched in the stillbirth
group and the triangles indicate theOTUswhichwere enriched in the normal group.

Purple circles show the OTUs belonging to Clostridiales, orange triangles indicate
the OTUs belonging to Bacteroidales, and the grey ones indicate the differential

OTUs annotated to other taxonomy. (A) F6 cohort, (B) DN1 cohort, (C)DN2 cohort.

SUPPLEMENTARY FIGURE 3

Co-abundance network analysis based on 16S rRNA gene sequencing data in
the F6 cohort. (A) Co-abundance network analysis of OTUs in the F6 cohort. (B)
Differential abundance of CAGs in the F6 cohort between stillbirth and normal
sow group by Wilcoxon rank-sum test.

SUPPLEMENTARY FIGURE 4

The bacterial species whose abundances was listed in the top 20 in the DN1 and

DN2 cohort based on metagenomic sequencing data and differential bacterial
species identified by Wilcoxon rank-sum test (central log-ratio transformation).

Stackplot with the same color repsents the same bacterial species in the DN1 (A)
and DN2 (B) cohort. The volcano plots show the bacterial species which were

differentially enriched in stillbirth sows and normal sows in the DN1 (C) and DN2 (D)
cohorts with corrected P value (FDR) > 0.05 and log2 Fold Change > 0, the purple
circles represent the bacterial species which were enriched in stillbirth sows and the

orange triangles indicate the bacerial species that were enriched in normal sows.

SUPPLEMENTARY FIGURE 5

The distribution of fecalmetabolite profiles between stillbirth and normal sows. The

Partial Least Squares Discriminant Analysis (PLS-DA) showed that both untargeted

metabolites (A) and lipid molecules (B) profiles showed different distribution
between the stillbirth and the normal sow group from DN1 and DN2 cohort.

SUPPLEMENTARY FIGURE 6

Comparison of the concentration of PGF2 alpha, PE and lysoPE between
stillbirth and normal sow group in the DN1 cohort by Wilcox sum-rank test.

False discovery rate (FDR) < 0.05 was set as the significance threshold.
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