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The immune suppressive tumor
microenvironment in multiple
myeloma: The contribution
of myeloid-derived
suppressor cells
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Myeloid derived suppressors cells (MDSC) play major roles in regulating

immune homeostasis and immune responses in many conditions, including

cancer. MDSC interact with cancer cells within the tumor microenvironment

(TME) with direct and indirect mechanisms: production of soluble factors and

cytokines, expression of surface inhibitory molecules, metabolic rewiring and

exosome release. The two-way relationship between MDSC and tumor cells

results in immune evasion and cancer outgrowth. In multiple myeloma (MM),

MDSC play a major role in creating protumoral TME conditions. In this

minireview, we will discuss the interplay between MDSC and MM TME and

the possible strategies to target MDSC.
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Introduction

Multiple myeloma (MM) is a paradigm disease in which progression is fueled by

intrinsic alterations of myeloma cells and tumor-host interactions in the tumor

microenvironment (TME) (1). Disease evolution from monoclonal gammopathy of

undetermined significance (MGUS) to smoldering myeloma (SMM), and symptomatic

disease is characterized by a progressive increase of myeloma cells associated with co-

evolving immunological and metabolic changes making the TME unable to hold the

disease in check (1). We and others have shown that immune alterations are already

detectable in the very early stage of the disease (2, 3) and that they persist in the remission

phase (2). The immune MMTME contexture consists of effector cells (i.e, conventional T

cells, unconventional T cells like NKT cells, gd T cells, NK cells etc), professional
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suppressor cells [i.e, regulatory T cells (Tregs), regulatory B cells

(Bregs), myeloid derived suppressor cells (MDSC)], and cells

that are functionally conditioned by the TME and acquire

protumoral functions like bone marrow stromal cells (BMSC),

endothelial cells, osteoblasts (OB), and osteoclasts (4). Recently,

BM-resident neutrophils have also been reported to contribute

to the TME-induced suppressive commitment of MM patients

(5). Unbalanced distribution of effector and suppressor cells

already detectable in MGUS is induced by the progressive

accumulation of myeloma cells driven by genetic and

epigenetic drivers. The bone marrow (BM), which is where

MM originates and propagates, has the capacity to

physiologically host around 2-5% polyclonal plasma cells.

When myeloma cell infiltration overcomes this threshold, the

TME is immunologically and metabolically shaped to support

myeloma cell growth, to induce drug resistance, and to suppress

immune recognition. MDSC play a major role in the protumoral

reset of MM TME.

We have previously shown that MDSC are significantly

increased in the BM of MGUS and MM patients: granulocytic/

polymorphonuclear MDSC (PMN-MDSC), and not monocytic

MDSC (M-MDSC), are responsible for the increase (2). MDSC

frequency is very similar in MGUS, MM at diagnosis, and MM

in relapse. Unexpectedly, we have found that MDSC frequency is

significantly higher in MM in remission (2), indicating that there

is no correlation between the proportion of BM myeloma cells

and MDSC expansion. Similar data have been reported in mouse

models in which MDSC start to accumulate in the TME as early

as one week after tumor inoculation when the frequency of

myeloma cells is very low (<10%) as in MGUS individuals (6).

Approximately, 20-40% of MDCS express the Programmed

Cell Death-Ligand 1+ (PD-L1+) (2) and therefore are very well-

suited to engage and suppress immune effector cells like Vg9Vd2
cells and NK cells expressing the Programmed Cell Death-1

(PD-1) receptor (2). MDSC are PD-L1+ in MGUS and MM

irrespective of the disease stage, including MM in remission

when most myeloma cells have been cleared from BM (2). The

p e r s i s t e n c e o f PD - L 1+ MDSC c an h i n d e r t h e

immunomodulatory activity of drugs like bortezomib or

lenalidomide after autologous stem cell transplantation.

In conclusion, MDSC play a major role in the establishment

of the immune suppressive TME in MM. The aim of this

minireview is to discuss the mechanisms exploited by MDSC

in cooperation with myeloma cells, professional immune

suppressor cells, and other bystander cells to promote

myeloma cell growth in the BM of MM patients. We will also

discuss possible interventions to dampen the immune

suppression operated by MDSC and other suppressor cells to

recover the antimyeloma activity of immune effector cells.
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MDSC subsets and differentiation

MDSC play a major role in the regulation of immune

homeostasis in healthy individuals, and the regulation of

immune responses in infectious diseases, autoimmunity, aging,

pregnancy, transplantation, and obesity (7). In cancer, the

immune suppressive activity of MDSC is exploited by tumor

cells to evade immune surveillance and support their survival

and accumulation (7).

MDSC are derived from bone marrow hematopoietic stem

cells (7). There are two major subsets of MDSC in humans:

PMN-MDSC and M-MDSC. The first one are phenotypically

and morphologically similar to neutrophils (CD15+ and/or

CD66b+), whereas M-MDSC are similar to monocytes (CD14

+)(7). More recently, a third subset of phenotypically distinct

immature early-MDSC (e-MDSC) has been identified in cancer

patients (8). In this review we will use the termMDSC to identify

both PMN-MDSC and M-MDSC unless otherwise specified.

MDSC development occurs in two partially overlapping

waves (9). The first one is driven by cytokines and soluble

factors including granulocyte-macrophage colony-stimulating

factor (GM-CSF), macrophage colony-stimulating factor (M-

CSF), granulocyte colony-stimulating factor (G-CSF),

interleukin 6 (IL-6), and vascular endothelial growth factor

(VEGF). These cytokines and soluble factors are produced by

tumor cells and/or BMSC in the TME and promote MDSC

differentiation from hematopoietic progenitor cells via STAT3

and STAT5 activation (10, 11, 12). Mesenchymal stromal cells

(MSC) also induce MDSC expansion via the hepatocyte growth

factor (HGF), c-Met, and STAT3 phosphorylation (10). The

second wave is driven by a different set of cytokines and

inflammatory soluble factors like interleukin 13 (IL-13), toll-

like receptor (TLR) ligands, and prostaglandin E2 (PGE2)

yielding to the functional MDSC activation via the STAT1 and

NF-kB pathways (10–12). The TME is highly predisposed to

drive the expansion and activation of MDSC at the expense of

other myeloid-derived cells like monocytes, macrophages and

dendritic cells (DC) (8).
Immuno suppressive MDSC features

The immune suppressive MDSC activity is dependent on: 1)

the depletion of essential CD8+ T- cell nutrients in the TME; 2)

the production of immune suppressive cytokines and/or soluble

factors; 3) the expression of cell surface inhibitory molecules

[i.e., (PD-L1)]; 4) the protumoral metabolic TME rewiring at the

expense of immune effector cells.
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Amino acid depletion

MDSC express the xc- transporter and import cystine, but,

unlike DC and macrophages, they are unable to export cysteine

because they lack the ASC neutral amino acid transporter (13).

Considering the progressive TME invasion by tumor cells and

MDSC at the expense of other cells which can supply

extracellular cysteine, the TME becomes depleted of cysteine

jeopardizing the activation of CD8+T cells that are unable to

convert cystine to cysteine to meet their metabolic

requirements (13).

MDSC also deplete the TME of tryptophan via the enzyme

indoleamine 2, 3-dioxygenase (IDO) (14). T lymphocytes are

very susceptible to tryptophan shortage which restrains their

proliferative responses by inducing an integrated stress response

and the inactivation of the mTOR pathway (15, 16). Tryptophan

catabolites can also induce the apoptosis of cytotoxic T cells (17,

18), and the concurrent differentiation of Tregs (16). L-arginine

(L-arg) is another essential amino acid which is critical for T-cell

immune functions. Arginine metabolism is regulated by the

inducible nitric oxide synthase (iNOS) isoenzymes, arginase

(Arg 1/2) activity, and proline and polyamines synthesis.

MDSC express both iNOS and Arg-1 that induce L-arg

depletion in the TME leading to inhibition of CD3-z
expression in T cells, and induction of apoptosis (7, 9, 19).
Cytokines and soluble factors

The production and release of suppressor cytokines and

soluble factors is another mechanism exploited by MDSC to

protect tumor cells from immune recognition and killing. Nitric

oxide (NO), reactive oxygen species (ROS), peroxynitrite (PNT)

(a short-lived product of NO reaction with ROS), interleukin 10

(IL-10), and transforming growth factor-b (TGF-b) are released
by MDSC with slightly difference between PMN-MDSC and M-

MDSC subsets (7, 9, 20, 21). The hyper-production of ROS and

PNT in the TME impairs the ability of CD8+ T cells to bind to

peptide–major histocompatibility complexes and to respond to

specific peptides (21). NO also hampers the Fc receptor-

mediated effector functions of NK cells (22). IL-10 recruits

Tregs in the TME and decreases CD8+ T-cell antigen

sensitivity by inducing cell surface glycoprotein branching

(23). TGF-b is induced by IL-13 (24) and interferon-g (IFN-g)
(25), and contributes to T-cell suppression through Tregs

development (25). Kynurenine is another soluble immune

suppressive factor that is generated in the TME as a

consequence of tryptophan catabolism by MDSC. Kynurenine

can inhibit T-cell and NK cell proliferation and drive the

differentiation of naïve T cells into Tregs (16).
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Cell surface molecules

The cell surface expression of immune checkpoints ligands

(ICP-L) like PD-L1 is another mechanism used by M-MDSC to

suppress immune effector cells (2, 7, 9), while PMN-MDSC

preferentially exploit the Fas/Fas-ligand pathway to induce T-

cell depletion in the TME (26). The V-domain immunoglobulin

suppressor of T cell activation (VISTA) is a novel co-inhibitory

ligand/receptor highly expressed by MDSC in the TME that

suppresses T-cell effector functions and contributes to acquired

resistance to PD-1/PD-L1 blockade (27). Lastly, CXCR2 is

another cell surface molecule that is critical in mice models

and paediatric sarcoma to promote the accumulation of MDSC

in the TME and hamper the efficacy of anti-PD-1 treatment (28).
Protumoral metabolic TME rewiring

The TME is a very dynamic ecosystem that is progressively

molded by tumor cells to locally create protective conditions to

support their growth and resistance to therapy, from

conventional chemotherapy to immunotherapy (29, 30).

Hypoxia is a major metabolic feature of TME (30), especially

in solid tumors, almost always associated with the extracellular

acidification induced by lactate accumulation. Tumor cells

rewire their metabolism to survive and proliferate in the TME

by: 1) increasing glucose and amino acid uptake, glycolytic flux,

and lactate production; 2) modifying glutamine metabolism,

tricarboxylic acid cycle, and oxidative phosphorylation; 3)

increasing the production of mitochondrial ROS; 4)

modulating fatty acid synthesis and oxidation (FAO) (30).

MDSC partially mimick the metabolic rewiring of tumor cells

by adapting their lactate, glucose, and lipid metabolism to the

hypoxic and acidic TME conditions (31, 32). As a result, MDSC

survive in the TME, contribute to the exacerbation of the

protumoral metabolic TME commitment, and maintain

unaltered their immune suppressor activity (33–35).
Immune suppressive and metabolic
features in MM

MM is a hematologic cancer characterized by the

accumulation of malignant plasma cells (myeloma cells) in the

BM. Progressive colonization of BM results in a deep

remodelling of the BM niche that becomes committed to

support myeloma cell growth, immune evasion, and drug

resistance (1).

MDSC play a major role in establishing the protumoral TME

commitment. We have shown that MDSC accumulation in the
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BM is already detectable in MGUS, and their expansion persists

throughout the entire period of the disease (2), including the

remission phase (2). In our hands, PMN-MDSC was the main

subpopulation to be expanded in MGUS and MM (2), while

other groups have reported the predominance of M-MDSC in

MM at diagnosis and in relapse (36, 37). Immunogenomic

characterization identified CD11b+CD13+CD16+ cells as the

PMN-MDSC subset with strongest capacity to suppress anti-

myeloma activity T-cell immune responses (38). MDSC-like

suppressive activity is also exhibited by MM neutrophils (5),

suggesting that an accurate characterization of MDSC should be

based on phenotypic markers, immunosuppressive potential,

and transcriptional network.

Development and suppressor functions of MDSC are

supported by myeloma cells and bystander cells via direct and

indirect mechanisms. Direct mechanisms operated by myeloma

cells include: 1) IL-6 production (39, 40) which prevents MDSC

differentiation and promotes MDSC accumulation and

activation via the STAT3 signaling pathway (41); 2) the

induction of Mcl-1, an anti-apoptotic protein sustaining

MDSC survival (42); 3) the secretion of galectin-1 that targets

CD304 on MDSC and enhances their immune suppressive

capacity (43); 4) the production of chemokine ligand 5 (CCL5)

and macrophage migration inhibitory factor (MIF) (44). MIF

has also been reported to potentiate the immune suppressive

activity of MDSC via CD84-mediated PD-L1 upregulation (45);

5) the release of exosomes that promotes MDSC growth and NO

production (46)

Bystander cells in the TME also cooperate with myeloma

cells in the induction and activation of immune suppressive

MDSC via direct mechanisms including: 1) IL-6 release (47, 48);

2) exosome release by BMSC (49); 3) production and release of

immune suppressive molecules [i .e . Prostaglandin-

Endoperoxide Synthase 2 (PTGS2), TGF-b, Nitric Oxide

Synthase 2 (NOS2), IL-10 and IL-6] by MSC and OB (50, 51).

In addition to the direct mechanisms listed above, myeloma

cells and bystander cells promote the accumulation and

activation of MDSC via indirect mechanisms. An example is

the metabolic rewiring operated by myeloma cells and bystander

cells that creates an hypoxic and nutrient-depleted TME that

promotes the accumulation and activation of MDSC at the

expense of immune effector cells (52–54). Lactate over-

production shifts MDSC differentiation toward PMN-MDSC

(55), which is the subset that we and others have shown to be

increased in the peripheral blood (PB) and BM of MM patients

(2, 56).

The accumulation and activation of MDSC is beneficial to

myeloma cells creating a very effective protumoral loop (3, 57).

MDSC facilitate the self-renewal of myeloma stem-cells, enhance

their tumorigenic potential via epigenetic regulation (58), and

promote myeloma cell survival via AMPK phosphorylation

leading to increase b-oxidation, ATP production, and

increased NADPH levels (59). MDSC production of S100A9, a
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calcium-binding protein that promotes the release of TNF-a, IL-
6, and IL-10 in autocrine pathway through TLR4 interaction,

attracts myeloma cells in the TME (60) and supports myeloma

cell growth via the activation of the canonical NFkB
pathway (61).

Indirect mechanisms operated by MDSC to support

myeloma cells are deprivation of nutrients, production of

soluble factors, and the expression of cell surface inhibitory

molecules. The common denominator is the impairment of anti-

myeloma immune responses. In addition, PMN-MDSC are

educated to express angiogenesis-related proteins to support

tumor angiogenesis (62).

MDSC upregulate enzymes that contribute to the shortage of

amino acids essential for immune effector T cells. Arginase 1

(Arg-1) expression and NO production by MDSC limit the

availability of L-Arg needed for effective TCR-mediated

signaling (63, 64). MDSC can utilize glutamine for anaplerosis

like myeloma cells (65, 66), exacerbating glutamine deprivation

in the TME (54).

Several soluble factors and cytokines contribute to the

immune suppressor activity of MDSC in the TME, like IL-10,

IL-6, TGF-b, CD40-CD40 Ligand, and IFN-g. These cytokines

tip the scales in favor of Tregs (44, 67), whose number is directly

correlated with MDSC expansion (56). Lastly, CD38 expression

on MDSC (68) contributes to the discontinuous multicellular

pathway of adenosine (Ado), an immune suppressive nucleoside

highly represented in the TME of MM patients (69).

The expression of immune checkpoint (ICP)/ICP-L

contributes to the impairment of anti-myeloma immune

responses. We have previously demonstrated that PD-L1 is

expressed by BM MDSC in all disease states (2) and can

contribute to hold in check anti-myeloma activity of PD1+

effector cells such as T cells, NK cells, and Vg9Vd2 T cells.

Recently, it has been reported in solid tumors that MDSC can

boost the immune suppressive activity of Bregs against T cells

via the PD-1/PD-L1 axis (70, 71).

Lastly, MDSC can trans-differentiate into functional

osteoclasts (72) to combine immune suppressive functions and

direct protumoral functions (73). In mice models, G-MDSC

have also been shown to promote angiogenesis (62), another

major protumoral TME disruption occurring in human

MM (62).

The direct and indirect mechanisms involved in the cross-

talk between MDSC, myeloma cells, immune effector, immune

suppressor cells, and other bystander cells in the TME of MM

patients are shown in Figure 1.
Therapeutic interventions

The correlation between the frequency of MDSC and the

clinical outcome identifies these cells as potential targets of

immune-based therapeutic interventions (74). However, the
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therapeutic targeting of MDSC is not easy given their

multifaceted biological functions and multiple interactions in

the TME. Possible strategies are: 1) to restrain their

accumulation in the PB and TME; 2) to prevent their

functional activation in the TME; 3) to block their protumoral

interactions with myeloma cells and bystander cells.

MDSC a c c umu l a t i o n c a n b e r e s t r a i n e d b y

immunomodulatory drugs (IMiDs) (44) and proteasome

inhibitors (PI) (59). A cereblon (CRBN)-dependent and

-independent down-regulation of CCL5 and MIF is a possible

mechanism of IMiDs activity onMDSC (44) that can be improved

by Arg-1 inhibitors (75). Clinical data confirm the capacity of

IMiDs to restrain MDSC in vivo as shown by the decrease of PB

MDSC in MM patients treated with pomalidomide,

dexamethasone, and daratumumab (76). Daratumumab can also

exert a favourable immune modulatory activity in the TME of

MM patients by depleting CD38+ MDSC via antibody-dependent

cellular cytotoxicity (ADCC) and complement-dependent

cytoxicity (CDC) (68). Data from mice models indicate that

demethylating agents like decitabine (DAC), IL-18, and

zoledronic acid (ZA) can also affect MDSC survival in the TME

(72, 77, 78). ZA is currently used inMM and other solid cancers to

prevent osteoclast activation and bone lesions, but this molecule is

also endowed with pleiotropic immune modulatory activity (79),

including the capacity in murine models to reduce the numbers of

MDSC and prevent their differentiation into osteoclasts (72).
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Targeting CD84 and the CD304-Gal1 axis are other strategies

used in myeloma mouse models to restore anti-myeloma T-cell

responses by reducing MDSC accumulation and PD-L1

expression (45).

The immune suppressive activity of MMMDSC has also been

inhibited in vitro using ABR-238901, a small molecule inhibiting

S100A9 interactions (60), and tasquinimod (74). Anti-estrogen

therapy may also restrain MDSC suppressive activity, since 17b-
estradiol increases their ability to suppress T-cell proliferation

(80). iNOS and Arg-1 activities have been down-modulated in

mice models with tadalafil (81), a PDE5 inhibitor that has been

used with some evidence of clinical efficacy in relapsed/refractory

MM patients in combination with lenalidomide (82). Protumoral

MDSC cellular interactions in the TME can also be limited by

interrupting ICP/ICP-L interactions (2). Daratumumab in

combination with the anti-PD1 monoclonal antibody cetrelimab

has been reported to decrease the number of circulating MDSC

and increase that of CD8+ T cells in the PB of MM patients in

relapse (83). In acute myeloid leukemia (AML), knockdown of

VISTA, a negative checkpoint regulator in the B7 family, reduced

the MDSC-mediated inhibition of T cells (84). Data are not

available in MM yet, but VISTA up-regulation is also expected

in the BM of MM given the hypoxia and low pH as reported in

solid cancer (85).

In conclusion, understanding the mechanisms underlying

the immune suppressive activity of MDSC in MM will pave the
FIGURE 1

Myeloma cell and surrounding cells promote MDSC differentiation and suppressive functions. In turn, MDSC undermine anti-tumor immune
responses and guarantee myeloma cells survival and growth. Red arrows: direct mechanisms; blue arrows: indirect mechanisms. Created by
BioRender.com.
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ground to the therapeutic targeting of these cells to improve the

efficacy of immune-based treatments in MM.
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