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Genetic analysis of potential
biomarkers and therapeutic
targets in ferroptosis
from psoriasis

Man-Ning Wu, Dong-Mei Zhou*, Chun-Yan Jiang,
Wei-Wen Chen, Jia-Chi Chen, Yue-Min Zou, Tao Han and Li-
Jia-Ming Zhou

Department of Dermatology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical
University, Beijing, China
Introduction: Ferroptosis is associated with multiple pathophysiological

processes. Inhibition of ferroptosis has received much concern for some

diseases. Nonetheless, there is no study comprehensively illustrating

functions of ferroptosis-related genes (FRGs) in psoriasis.

Methods: In this study, FRGs together with psoriasis-associated data were

obtained in Ferroptosis Database (FerrDb) and gene expression omnibus (GEO)

database separately. This work identified altogether 199 psoriasis-associated

DE-FRGs, and they were tightly associated with immunity and autophagy

modulation. Thereafter, the present study utilized SVM-RFE and LASSO

algorithms to identify NR5A2, CISD1, GCLC, PRKAA2, TRIB2, ABCC5, ACSF2,

TIMM9, DCAF7, PEBP1, and MDM2 from those 199 DE-FRGs to be marker

genes. As revealed by later functional annotation, the marker genes possibly

had important effects on psoriasis through being involved in diverse psoriasis

pathogenesis-related pathways such as cell cycle, toll-like receptor (TLR),

chemokine, and nod-like receptor (NLR) pathways. Moreover, altogether 37

drugs that targeted 11 marker genes were acquired. Besides, based on

CIBERSORT analysis, alterations of immune microenvironment in psoriasis

cases were possibly associated with PRKAA2, PEBP1, CISD1, and ACSF2.

Discussion: Taken together, this work established the diagnostic potency and

shed more lights on psoriasis-related mechanism. More investigations are

warranted to validate its value in diagnosing psoriasis before it is applied in

clinic.
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1 Introduction

Psoriasis, the frequently seen, chronic autoimmune skin

disorder, shows the features of epidermis modification due to

keratinocyte hyperproliferation, excess immunocyte infiltration,

together with inflammatory cytokine accumulation (1). In clinical

practice, psoriasis has a global incidence rate of 2-3% (2).

Nonetheless, its pathogenesis remains largely unclear. Numerous

factors such as environmental and genetic factors are suggested to

enhance psoriasis progression (3). Aberrant infiltrating

immunocyte-activated keratinocyte interaction can induce

psoriatic skin inflammation. IL-17 axis and immunocytes are

related to the psoriasis pathogenesis (4). Keratinocytes have been

identified in previous studies to be initiators for inflammation,

which are important for amplifying inflammatory cascade by

secreting cytokines and chemokines (5–7). The internal changes

in epidermal keratinocytes have induced higher susceptibility to

external triggers, thus facilitating the inflammatory process.

Ferroptosis represents the iron-dependent programmed cell

death type that is proposed in 2012, and it is distinct from

necrosis, apoptosis, autophagy and pyroptosis (8). Ferroptosis

shows the features of mitochondrial atrophy, elevated

mitochondrial membrane density, involvement of specific genes,

along with iron and lipid reactive oxygen species (L-ROS)

accumulation (9, 10). Typically, lipid radical formation, lipid

peroxidase 4 (GPX4) inactivation and glutathione (GSH)

deletion can catalyze iron biochemical metabolism (11). The

iron level in circulation has an essential effect on ferroptosis

occurrence. Iron chelating agent application helps to suppress

Erastin-induced ferroptosis, and transferrin expression onto cell

membrane can enhance cell sensitivity to ferroptosis (8). Through

the release of damage-associated molecular patterns (DAMPs)

and alarmins, ferroptosis can cause not only cell death but also

inflammatory reactions (12). Psoriatic keratinocytes possess an

enhanced ability to resist apoptosis (13), while they are more

susceptible to necroptosis (14). According to several reports,

necroptosis triggers psoriatic inflammation in keratinocytes by

releasing DAMPs and activating inflammasomes. It cannot be

ignored that IMQ-induced psoriasis-like dermatitis can be

effectively treated with Fer-1 by inhibiting ferroptosis.

Oxidative stress (OS) has been recently suggested to be tightly

associated with ferroptosis, while ferroptosis can be activated by

excess ROS generation (15). Relation of ferroptosis with psoriasis

remains largely unclear, but OS in psoriasis is suggested to cause

abnormalities in the ferroptosis-related pathways (16, 17). To take

an example, epidermal GPX4 deletion promotes cyclooxygenase-2

expression and lipid peroxidation within the entire skin, thus

inducing epidermal hyperplasia and dermal inflammatory

infiltration within perinatal mice. Besides, GPX4 deletion

decreases keratinocyte adhesion into the culture while increasing

intracellular lipid peroxidation degree (18). As reported in one

paper, the important ferroptosis regulator GPX4 shows decreased

expression in psoriatic skin lesions compared with unaffected skin
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and samples from normal controls (NCs). Meanwhile, the cellular

import of iron was increased, suggesting that there is activation of

ferroptosis in psoriatic skin lesions (19). At present, ferroptosis

inhibitors are identified to resist inflammation in the acute kidney

injury, neurodegenerative disorder and intracerebral hemorrhage

experimental models (20–22). Therefore, more studies are needed

to investigate whether ferroptosis is involved in the psoriasis

pathogenesis. Consequently, this work aimed to examine

whether Ferroptosis-related genes could be the accurate

biomarkers for psoriasis and analyze their effects on immune

microenvironment by bioinformatics analysis.
2 Materials and methods

2.1 Data source

The present work acquired gene expression profiles in

psoriasis and healthy samples in GEO database. GSE117239

dataset included altogether 324 samples, with 240 psoriasis and

84 healthy samples, which served as the training set in our

analysis. GSE13355 dataset contained 58 psoriasis and 64

healthy samples, which served as validation set for verifying

marker gene levels. In addition, FRGs (n=322) adopted in the

present work were acquired based on FerrDb. Table S1 displays

more details of genes. Drugs that targeted marker genes were

predicted using Drug Gene Interaction Database (DGIdb).
2.2 Differentially expressed genes
identification

Expression profiles for 199 FRGs in psoriasis and healthy

samples obtained based on GSE117239 database were collected.

Later, differentially expressed FRGs (DE-FRGs) were detected

between two groups byWilcoxon rank-sum test in R with p<0.05

being set as the significance level. And adjust P-values by

Benjamini-Hochberg correction for multiple testing (Table S2).
2.3 Functional annotation

To further analyze functions of DE-FRGs, Gene Ontology

(GO) together with Kyoto Encyclopedia of Genes and Genomes

(KEGG) enrichment was conducted on these genes by R

software “clusterProfiler” package (V4.4.4).
2.4 Best gene biomarkers for the
diagnosis of psoriasis

Using glmnet package, this work adopted the least absolute

shrinkage and selection operator (LASSO) algorithm for
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reducing data dimension (23, 24). DE‐FRGs in psoriasis versus

healthy samples were preserved to select features, while LASSO

algorithm was employed to identify psoriasis-related gene

biomarkers. At the same time, this work utilized SVM package

to construct the support vector machine‐recursive feature

elimination (SVM‐RFE) model, and mean misjudgment rates

were used for comparison with 10‐fold cross‐validations (25).

Additionally, overlapped biomarkers obtained by both

algorithms were deemed as the best gene biomarkers for

psoriasis. Receiver operating characteristic (ROC) curves were

plotted, and area under the curve (AUC) values, sensitivity,

specificity and accuracy were determined to evaluate whether

our selected gene markers were of diagnostic value. Moreover, by

using R package glm, a seven marker genes-based logistic

regression model was built for predicting GSE117239 dataset

sample types. Likewise, ROC curves were used to evaluate

whether our constructed logistic regression model was of

diagnostic value.
2.5 Single‐gene gene set enrichment
analysis

The R software GSEA (V.4.1.0) package was adopted for

ssGSEA. For exploring pathways enriched by those seven marker

genes, associations of marker genes with the remaining genes

were analyzed based on GSE117239 dataset. Thereafter, each

gene was sorted based on the high-to-low correlations, while

those sorted genes were listed into the gene set for analysis.

Further, this work deemed the KEGG pathway set as the

predefined set for detecting enrichment levels in the gene set.

Specific enrichment results of each marker gene were integrated

into Table S3.
2.6 Single‐gene gene set variation
analysis

R software GSVA (V.1.38.0) package was utilized for GSVA

(26). The present work adopted KEGG pathway set to be

background gene set for GSVA of diverse marker genes.

Meanwhile, limma package was utilized for analyzing different

GSVA scores for marker genes in high- and low-expression

groups upon the significance levels of |t| >2 and p<0.05. The

pathway was activated into high‐expression group for t>0;

otherwise, it was activated into low-risk group.
2.7 Immune infiltration analysis

CIBERSORT, an approach for characterizing cellular

composition in complicated tissues based on gene expression

data (27). The present work estimated 22 infiltrating immune

cell types in GSE117239 dataset samples with CIBERSORT

software (Table S4). Besides, CIBERSORT was also used to
Frontiers in Immunology 03
predict the immune genes and the immune functions in

each tissue.
2.8 Statistical analysis

Wilcoxon rank-sum test was adopted to compare 2 groups.

Relations of 199 DE‐FRGs were analyzed by Pearson correlation

analysis. Jvenn package was employed for Venn diagram

plotting. Statistical analysis was completed with R software.
2.9 Validation in a single cell dataset

This work obtained scRNA-seq count matrix based on

GSE162183 dataset. This dataset covered 6 samples, with 3

psoriasis and 3 normal samples, and the 3 psoriasis tissues

(GSM4946164, GSM4946165, GSM4946166) were selected for

analysis. Quality control (QC) was conducted with Seurat R

package (28). The cell removal criteria were as follows, (a) RNA

counts <50 and (b) mitochondrial gene expression ratio >5%.

NormalizeData function in Seurat was utilized to normalize

data. We later selected 14 most significant principal components

as well as 1500 most significant variable genes in later analysis.

Thereafter, Seurat’s FindClusters function (resolution = 0.5) was

used to detect cell clusters, while 2D t-distributed stochastic

neighbor embedding (tSNE) was adopted for display (29). By

adopting SingleR package, this study compared cells in diverse

clusters to annotated reference dataset (30). Cluster annotation

was completed based on those identified cell markers and

comparison results.

3 Results

3.1 DE‐FRGs identification from
GSE117239 database

There were 199 DE-FRGs identified from 322 FRGs in

psoriasis versus healthy samples in GSE117239 dataset, which

included 99 with up-regulation whereas 100 with down-

regulation. Figure 1A displays the clustering heatmap for DE‐

FRGs expression profiles in diverse samples, and Figure 1B

exhibits gene associations.

3.2 Functional annotation of DE‐FRGs

For elucidating DE‐FRGs-associated biological functions as

well as pathways, GO functional annotation together with

Reactome pathway analysis was carried out. Therefore, GO-

molecular function (MF) annotation revealed the significant

enrichment of DE‐FRGs into “transcription coregulator

activity”, “RNA polymerase II specific DNA-binding

transcription factor binding”, and “DNA-binding transcription

factor binding” (Figure 1C). With regard to cellular component
frontiersin.org
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(CC), DE‐FRGs were markedly associated with “mitochondrial

matrix”, “organelle outer membrane”, and “mitochondrial outer

membrane”. In addition, GO-biological process (BP) annotation

suggested the close relation of DE‐FRGs with “response to

oxidative stress”, “cellular response to oxidative stress”, and

“cellular response to chemical stress”. Based on Reactome

pathway analysis, MicroRNAs in cancer, FoxO signaling

pathway and Chemical carcinogenesis-receptor activation were

remarkably enriched (Figure 1D). According to the above

results, DE‐FRGs might have critical effects on psoriasis

pathogenesis through regulating autophagy, cytokines, kinases

and immune cells.

3.3 11 DE‐FRGs served as genes to
diagnose psoriasis

To consider changes in psoriasis cases compared with

normal subjects, this work focused on predicting whether DE-

FRGs could be used in disease diagnosis. Subsequently, 2

different machine learning algorithms LASSO and SVM-RFE

were adopted for analysis based on GSE117239 dataset, for the
Frontiers in Immunology 04
sake of screening DE‐FRGs significantly distinguishing psoriasis

from healthy subjects. The penalty parameter was tuned by 10-

fold cross-validation in LASSO logistic regression, which

selected 32 psoriasis‐related features (Figures 2A, B).

Afterwards, SVM‐RFE algorithm was applied in filtering 13

DE‐FRGs for identifying the best feature gene combination. At

last, this work detected 11 genes (minimal RMSE =0.111,

maximal accuracy =0.889) to be best feature genes (Figures 2C,

D). Thereafter, marker genes acquired based on the above two

algorithms were intersected to obtain 11 marker genes (NR5A2,

CISD1, GCLC, PRKAA2, TRIB2, ABCC5, ACSF2, TIMM9,

DCAF7, PEBP1, MDM2) in subsequent analyses (Figure 2E).

Using R package glm, these 11 marker genes identified were

used to build the logistic regression model. According to later

ROC curve analysis, the logistic regression model built based on

these 11 marker genes well distinguished psoriasis from healthy

samples, and the AUC value was 0.981 (Figure 2F). Besides, for

elucidating whether single genes could be used to differentiate

psoriasis from healthy controls, this work plotted ROC curves

for those 11 marker genes. According to Figure 2G, AUC value

was >0.57 of these 11 genes. Consequently, our logistic
A B

DC

FIGURE 1

DE-FRGs expression levels in psoriasis and functional analyses for the DE-FRGs. (A) Violin plots show expression patterns of DE-FRGs across
samples. (B) The correlation of these genes. (C) GO enrichment analyses indicated that DE-FRGs were significantly related to the function of
‘response to oxidative stress’, ‘mitochondrial matrix’ and ‘transcription coregulator activity’. (D) Reactome pathway analyses indicated that the
MicroRNAs in cancer, FoxO signaling pathway, and Chemical carcinogenesis−receptor activation were enriched.
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regression model was accurate and specific in distinguishing

psoriasis from healthy samples compared with single

marker genes.
3.4 Marker genes showed tight relation
with various psoriasis‐related pathways

For better exploring the possible roles of marker genes in

distinguishing psoriasis from healthy samples, the single‐gene

GSEA‐KEGG pathway analysis was carried out. Figure S1

displays those 6 pathways associated with marker genes.

Marker genes were comprehensively analyzed, as a result, they

were found to be significantly associated with cell cycle, cytokine

cytokine receptor interaction, chemokine pathway, nod like

receptor pathway, jak stat pathway, rig-i-like receptor pathway,

toll like receptor pathway, together with different disease

pathways (graft versus host disease, prion disease, and type I

diabetes mellitus). Furthermore, markers genes were

significantly related to Adherens junction, Pathway in cancer,

TGF BETA pathway, Regulation of actin cytoskeleton, PPAR

pathway, Allograft rejection, Hematopoietic cell lineage,

Aminoacyl TRNA biosynthesis, Intestinal immune network for

IgA production, and Steroid biosynthesis as well. Besides,
Frontiers in Immunology 05
ACSF2, MDM2 and TRIB2 were tightly associated with the

‘jak stat pathway’. All marker genes, except for ABCC5 and

DCAF7, were all related to ‘nod like receptor pathway’.

Thereafter, this work analyzed pathways with differential

activation levels in psoriasis compared with normal groups

according to GSVA and marker gene expression levels.

Consequently, NR5A2 down-regulation might cause psoriasis

via the activation of ‘MATURITY ONSET DIABETES OF THE

YOUNG’, while its overexpression activated ‘FOLATE

BIOSYNTHESIS’, ‘NOD LIKE RECEPTOR SIGNALING

PATHWAY’, and ‘EPITHELIAL CELL SIGNALING IN

HELICOBACTER PYLORI INFECTION’ (Figure S2A).

Besides, CISD1 overexpression was found to activate

‘CIRCADIAN RHYTHM MAMMAL’, and its down-regulation

was associated with ‘PYRIMIDINE METABOLISM’ (Figure

S1B). In addition, GCLC down-regulation was associated with

‘FOLATE_BIOSYNTHESIS’, and its up-regulation led to

activation of ‘COMPLEMENT AND COAGULATION

CASCADES’ (Figure S2C). ACSF2 up-regulation was found to

activate numerous psoriasis‐related pathways, including RIG-I

LIKE RECEPTOR, TOLL LIKE RECEPTOR, NOD LIKE

RECEPTOR pathways (Figure S2D). Notably, TRIB2 up-

regulation was directly associated with ‘TAURINE AND

HYPOTAURINE METABOLISM ’ . In the TRIB2 low‐
A B D

E F G

C

FIGURE 2

11 DE-FRGs were identified as diagnostic genes for psoriasis. (A, B) By LASSO logistic regression algorithm, with penalty parameter tuning
conducted by 10-fold cross-validation, was used to select 32 psoriasis-related features. (C, D) SVM-RFE algorithm to filter the 13 DE-FRGs to
identify the optimal combination of feature genes. Finally, 11 genes (maximal accuracy = 0.889, minimal RMSE = 0.111) were identified as the
optimal feature genes. (E) The marker genes obtained from the LASSO and SVM-RFE models. (F) Logistic regression model to identify the AUC
of disease samples. (G) ROC curves for the 11 marker genes.
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expression group, ‘CYTOKINE CYTOKINE RECEPTOR

INTERACTION’ and ‘TOLL LIKE RECEPTOR SIGNALING

PATHWAY’ were significantly enriched (Figure S2E).

Moreover, PEBP1 up-regulation was associated with various

psoriasis pathogenesis-related pathways, like ‘NOD LIKE

RECEPTOR SIGNALING PATHWAY ’ , ‘ JAK‐STAT

SIGNALLING PATHWAY ’ , ‘CYTOKINE CYTOKINE

RECEPTOR INTERACTION’, and ‘TOLL LIKE RECEPTOR

SIGNALING PATHWAY’ (Figure S2K).
3.5 The immune microenvironment of
psoriasis tissue

According to our above-mentioned analysis, marker genes

showed tight association with immunity. In the meantime,

evidence supported that psoriasis was closely related to the

immune microenvironment. Consequently, CIBERSORT

algorithm was utilized for exploring different immune

microenvironment in psoriasis cases relative to healthy

controls. According to Figure 3A, Mast cells resting exhibited

a decreased proportion in psoriasis compared with healthy

samples, whereas plasma cells, T cells follicular helper, T cells
Frontiers in Immunology 06
CD4 memory activated, monocytes, NK cells activated,

Dendritic cells activated, Neutrophils and Eosinophils had

higher proportions in psoriasis samples.

As suggested by Pearson correlation analysis, Mast cells

resting were significantly positively related to PRKAA2, PEBP1,

NR5A2 and ACSF2 respectively, and strongly negatively

correlated with CISD1. Plasma cells were strongly positively

related to PEBP1 and ACSF2, and negatively correlated with

TRIB2. Dendritic cells activated were significantly positively

related to CISD1 and MDM2, but markedly negatively

correlated with ACSF2 and PEBP1. Additionally, T cells CD4

memory activated had strong negative correlations with PRKAA2,

DCAF7 and ACSF2. ACSF2 was also negatively correlated with

Eosinophils, and PRKAA2 was negatively correlated with NK cells

resting (Figure 3B).

For investigating different immune profiles in psoriasis and

normal samples, different immune-related genes (IRGs) and

immune-related functions were compared. As a result,

immunostimulatory genes showed higher expression levels

within psoriasis than normal tissues, such as CD86, CD48,

TNFRSF4, TNFRSF25, ICOS, and CXCR4. By contrast, some

immunosuppressive genes like VTCN1 and TGFBR1, were up-

regulated in normal cases. A variety of immune functions in

psoriasis compared with normal samples were compared, as a
A B

D

C

FIGURE 3

Immune landscape analysis. (A) Implemented the CIBERSORT algorithm to explore the differences in the immune microenvironment between
psoriasis patients and normal samples. (B) Pearson correlation analysis (*p < 0.05, **p < 0.01,*** p < 0.001). (C) Immune gene expression and (D)
immune function in psoriasis compared with normal tissue.
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result, Inflammation promoting, cytolytic activity, T cells and B

cells functions might be more potent among psoriasis samples,

thereby suggesting the immune active status of psoriasis samples

(Figure 3C). Different immune functions in psoriasis compared

with normal samples were compared. Most of immune functions

were significantly enriched in psoriasis relative to normal

samples, such as ‘B cells’, ‘Macrophages’, ‘human leukocyte

antigen (HLA)’ and ‘inflammation promoting’. Such results

suggested that psoriasis patients exhibited increased and

complex immune components (Figure 3D).
3.6 Marker gene‐targeted drugs
prediction

To identify drugs possibly targeting marker genes, DGIdb

database was adopted for analysis, with tow-parameter

interaction relation being set at defaults (Table S5). Figure 4

displays Cytoscape software-based result visualization.

Altogether 37 drugs that targeted marker genes were queried,
Frontiers in Immunology 07
which included 16 for MDM2, 7 for ABCC5, 5 for PRKAA2, 4

for GCLC, 2 for NR5A2, 2 for PEBP1, and 1 for TRIB2.

However, drugs targeting CISD1, ACSF2, TIMM9 and DCAF7

genes were not predicted. HESPERADIN was an inhibitor of

PRKAA2, while RO-5045337 was an inhibitor of MDM2.
3.7 Marker gene expression levels in
validation set

At last, marker genes expression levels were validated based

on GSE13355 dataset. According to our results, NR5A2, CISD1,

PRKAA2, TRIB2, ABCC5, ACSF2, TIMM9 and PEBP1 showed

similar expression profiles to those in GSE117239 dataset.

Typically, CISD1 (p = 3.9e-10), TRIB2 (p < 2.22e−16), and

ABCC5 (p=0.0012) levels among psoriasis cases increased

compared with healthy controls, whereas PRKAA2 (p < 2.22e

−16), ACSF2 (p = 3e−15), TIMM9 (p= 0.049), PEBP1 (p < 2.22e

−16) and NR5A2 (p=1.8e−13) levels decreased among psoriasis

cases (Figure 5).
FIGURE 4

Prediction of marker gene-targeted drugs. The drugs may target marker genes through the DGIdb database and the interaction relationship
between the two.
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3.8 Validation in a single-cell dataset

This work recruited six psoriasis together with matched

healthy samples. Altogether 39,938 cells conformed to QC,

including 19969 in psoriasis samples, whereas the remaining

in healthy samples. The cells were later classified as 14 clusters

(Figure 6A). There were 7 main cell types discovered from

psoriasis, including Chondrocytes, Endothelial cells, Tissue

stem cells, Keratinocytes, Monocyte, Epithelial cells, and T

cells (Figure 6B). Subsequently, 11 marker genes were

analyzed, which were NR5A2, CISD1, GCLC, PRKAA2,

TRIB2, ABCC5, ACSF2, TIMM9, DCAF7, PEBP1 and MDM2.

These gene levels were later marked in respective cell types

(Figures 6C). The results of normal tissue were shown in

(Figures 6D–F). Marker genes within psoriasis samples showed

major distribution within Endothelial cells. NR5A2, CISD1,

TIMM9, TRIB2 and PEBP1 were marker genes of Endothelial

cells. In addition, PEBP1, CISD1 and MDM2 were predominantly

expressed in Chondrocytes and Tissue stem cells. PEBP1 was

highly expressed in Keratinocytes. For immune cells, T cells and

Monocytes were related to PEBP1, MDM2, TIMM9 and DCAF7

in psoriasis group. Marker genes within healthy samples showed

major distribution in Endothelial cells. NR5A2 and PEBP1 were

marker genes of Endothelial cells.
4 Discussion

Recently, an increasing number of articles demonstrate that

OS is tightly associated with ferroptosis (8, 17). Ferroptosis

represents the iron-dependent, lipid peroxidation-mediated cell

death pattern. It is related to different in-vivo pathophysiological

processes, like neuropathy, ischemia/reperfusion injury and

tumor immunity. Ferroptosis is closely related to inflammation
Frontiers in Immunology 08
within psoriatic lesions. Aberrant lipid metabolism and

expression can be detected among psoriasis patients, in

particular within keratinocytes collected in psoriatic lesions

(31). Lipid oxidation pathway is markedly activated within

keratinocytes from psoriasis at the single-cell level, while lipid

peroxidation will be promoted in the case of psoriasis (17). The

ferroptosis-related cell death is activated within psoriatic

lesions as well. For instance, GPX4 shows high expression

within various epidermis layers from healthy samples, but low

expression within psoriatic skin (17). Moreover, transferrin

receptor (TFRC) displays remarkable up-regulation within

psoriatic tissues, whereas ferritin light chain (FTL) and

ferritin heavy chain 1 (FTH1) exhibit down-regulation (17).

FTL and FTH1 are related to iron storage, entry and

homeostasis. Selenium level decreases, which is associated

with psoriasis severity among cases experiencing long-

duration of disease. Furthermore, selenium deficiency is

found to impact GPX4 biosynthesis, and this can account for

the reduced ferroptosis vulnerability and antioxidant ability

among psoriatic cases (32, 33). Nevertheless, little is known

about whether ferroptosis is significant in psoriasis.

Consequently, the present work focused on identifying

possible FRGs in psoriasis based on bioinformatics analysis.

We chose numerous appropriate gene chips and used diverse

genes and microarray data, which reduced the error rate

increased our result reliability, thereby offering the significant

clinical reference for prevent and treat psoriasis.

The present work selected altogether 11 DE-FRGs, namely,

NR5A2, CISD1,GCLC,PRKAA2,TRIB2,ABCC5,ACSF2,

TIMM9,DCAF7,PEBP1,MDM2. For those 11 marker genes,

their AUC values were >0.57, demonstrating that they were

accurate and specific in differentiating psoriasis cases from

healthy samples. Notably, PEBP1, PRKAA2, and ACSF2 had

the highest AUC values. PEBP1, the scaffold protein inhibitor of
FIGURE 5

Expression of the marker gene in the validation set. The expression of marker genes in the GSE13355 dataset.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1104462
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wu et al. 10.3389/fimmu.2022.1104462
protein kinase cascades, is found to form complexes with 15LO1

and 15LO2 (the 15LO isoforms), while changing the

corresponding substrate competence for generating

hydroperoxy-PE. Insufficient hydroperoxy-PE reduction

because of GPX4 dysfunction or deletion may cause

ferroptosis (34). In addition, PRKAA2, a gene responsible for

encoding AMPKa2, is suggested to regulate several gene levels

related to late myogenesis and differentiation (35). PRKAA2 can

suppress cell growth via p53 pathway as an AMPK subunit,

which thus induces ferroptosis by inhibiting SLC7A11

transcription (36–38). On the other hand, acyl-CoA synthetase

family member 2, the ACSF2 product, is related to initial fatty

acid metabolism through the catalysis of thioesterification into

CoA, as a result, it can participate in multiple anabolic and

catabolic pathways. Impairment of acyl-CoA synthetases is

reported to be related to metabolic syndrome and insulin

resistance (39, 40). Nevertheless, little is known about ACSF2’s

function in executing ferroptosis.

Subsequently, single‐gene GSEA‐KEGG pathway analysis was

performed to explore potential functions of marker genes. It was

found that nod-like receptors (NLRs), toll-like receptors (TLRs) and

RIG-I-like receptors (RLRs) were closely related to marker genes.

TLRs are the transmembrane receptors detected on intracellular

membranes and cell surface (lysosomal wall and endoplasmic

reticulum) (41). RLRs and NLRs are the intracellular receptors.

After stimulation, receptors can activate various related pathways to
Frontiers in Immunology 09
increase generation of pro-inflammatory molecules like interferon I

(IFN-I) and proinflammatory cytokines like interleukin-1 (IL-1),

IL-6, and tumor necrosis factor (TNF). Molecules produced during

the process increase the immune cell reflex and activate the

nonspecific response system (42, 43).

Furthermore, this work also analyzed the immune cells in

psoriasis compared with healthy samples. Compared with

normal samples, activated memory CD4+ T cells, Plasma cells,

activated NK cells, follicular helper T cells, monocytes, activated

dendritic cells, Eosinophils and neutrophils showed higher

infiltration levels, while memory resting mast cells displayed a

lower infiltration level. Infiltration levels of the above immune

cells mostly conformed to prior studies (44). In addition,

immune genes and immune function analysis also reported

up-regulated gene levels in psoriasis group, which

demonstrated that immune expression was aggravated in

psoriatic tissues. In our analysis, it was found that PRKAA2

was closely related to ferroptosis and psoriasis, and metformin

stimulated the expression of PRAKK2. A significant metformin-

genetic variants interaction is reported among genes that encode

other proteins related to AMP-activated protein kinase, such as

PRAKK2 (45). Previous study has also demonstrated that

metformin administration increases p-ERK1/2 and p-AMPK

levels within HaCaT cells, but remarkably suppresses human

keratinocyte growth by activating MAPK pathway. Our analysis

results were consistent with previous studies.
A B D E
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FIGURE 6

Cell-type classification in psoriasis and normal tissue. (A) and (D) t-SNE plot of 14 cell clusters in psoriasis tissue and healthy tissue. (B) and (E) t-
SNE plot exhibiting the cell types in psoriasis. (C) and (F) t-SNE plot of the marker genes.
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Meanwhile, marker gene levels were validated based on

GSE13355 dataset. According to our results, ABCC5, CISD1,

TRIB2, NR5A2, PEBP1 and PRKAA2 expression trends

conformed to those in GSE117239 dataset. Typically, ABCC5

(p = 0.0012), CISD1 (p= 3.9e−10) and TRIB2 (p < 2.22e−16)

levels in psoriasis cases increased compared with healthy

samples, whereas NR5A2 (p = 1.8e−13), PEBP1 (p < 2.22e

−16) and PRKAA2 (p < 2.22e−16) levels decreased in

psoriasis samples.

In line with our aforementioned bioinformatics analysis,

those 11 DE-FRGs expression was assessed based on GSE13355

dataset. Consequently, the gene levels increased in psoriasis

tissues but decreased in healthy samples, consistent with the

results obtained from GSE117239 dataset.
Conclusion

In conclusion, NR5A2, CISD1, GCLC, PRKAA2, TRIB2,

ABCC5, ACSF2, TIMM9, DCAF7, PEBP1, and MDM2 are

identified as marker genes for ferroptosis in psoriasis. Among

them, PEBP1, PRKAA2 and ACSF2 are associated with

ferroptos is and part ic ipate in regulat ing immune

microenvironment in psoriasis cases. Our future studies will

focus on the above genes, so as to shed more lights on psoriasis

pathogenesis and management. Psoriasis management on the

basis of ferroptosis research can be beneficial for psoriatic cases.
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