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Galectins play relevant roles in tumor development, progression and

metastasis. Accordingly, galectins are certainly enticing targets for medical

intervention in cancer. To date, however, clinical trials based on galectin

inhibitors reported inconclusive results. This review summarizes the galectin

inhibitors currently being evaluated and discusses some of the biological

challenges that need to be addressed to improve these strategies for the

benefit of cancer patients.
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Introduction

Galectins are a family of proteins defined by their Carbohydrate Recognition Domain

(CRD). Through that domain, galectins bind to galactosides, such as N-acetyllactosamine

residues attached to biomolecules (1). Interestingly, the binding of glycans to galectins’

CRD is subject to allosteric regulations (2, 3). Even if carbohydrate binding is the

classifying criteria for these proteins, it has long been known that galectins can also

interact with other biological molecules in a carbohydrate-independent manner (4)

[reviewed in (5, 6)]. Altogether, the list of galectin interactors reported so far has

dramatically grown in the last years (extensive bibliography (7–12), cited as examples).

Through this panoply of interactions, galectins regulate physiological cell properties such

as differentiation; adhesion and migration; cell cycle and survival, immune patrolling,

RNA splicing, and gene transcription (5, 6, 13).

Expression of galectins is strongly altered in cancer; comprehensive reviews address

this point elsewhere (8, 14, 15). Albeit not oncogenic drivers, galectins exacerbate the

malignant phenotype (16–18). Indeed, galectins regulate homotypic and heterotypic

aggregation of cancer cells, cancer cell migration and invasion [reviewed in (17)],
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tumor angiogenesis [reviewed in (19, 20)] and immune escape

[reviewed in (7, 8, 15)]. Consequently, increased galectin

production in cancers generally predicts a poor clinical

outcome for patients (21–24). Among the 16 galectins

identified in mammals (12 in humans, as found in GenBank

https://www.ncbi.nlm.nih.gov/genbank/ accessed on 20

November 2022), galectins-1, -3, -7, -8, and -9 have been

extensively evaluated in cancer patient samples. Pre-clinical

experimentation has demonstrated that galectin inhibitors are

interesting anti-tumor tools, particularly when combined with

irradiation (25–34), chemo- (34–42), anti-angiogenic- (43, 44),

and immune-therapies (37, 45, 46). Interestingly, some of the

described galectin inhibitors are currently being evaluated at the

clinical level. This review aims to summarize galectins’ inhibitory

strategies being tested, those that gave encouraging results in pre-

clinical studies, and the challenges their effective use may entail.
Current galectin inhibitors

Current galectin inhibitors are listed in Table 1 (in vivo pre-

clinical evaluations) and Table 2 (clinical trials). This topic was

previously covered by (112–116). However, this manuscript

aims to update on the current developments in the field,

including some strategies not previously considered. It also

assesses the challenges to scaling up the use of galectin

inhibitors in the clinic. In this review, compounds are

classified according to their mechanism of action (their

influence over CRD -competitive vs. allosteric inhibitions-) or

their glycan independence (Figure 1).
Galectin inhibitors affecting carbohydrate
recognition

Competitive inhibitors of carbohydrate-binding
to galectins

The lectin functions of this family of proteins are the most

widely studied. Indeed, galectins bind to b-galactosides through
their CRD. For instance, considering its canonical ligand lactose,

the C4’ and C6’ hydroxyls of the galactose and C2 and C3 of

glucose are primarily responsible for the hydrogen-bond

interactions with conserved residues of CRD in galectin-3

(117) and galectin-1 (118). Basis of the molecular glycan-

protein interactions has also been described for other galectins

(119, 120). The fine specificity of galectins for different

oligosaccharides stems from residues surrounding this main

binding site. Consequently, each galectin has a different

glycan-binding preference contributing to its specific biological

activities (121). The first described galectin inhibitors are

molecules capable of binding to the CRD and preventing

further ligand binding. Galectin inhibitors based on these
Frontiers in Immunology 02
competitive interactions consist of chemically modified mono

or disaccharides structured around galactose (58, 122–125),

lactose (58, 125–127), thiodigalactose (TDG) (34, 128–132),

talose (133, 134) and lactulose (135). One of the first tempts to

use this type of inhibitor in cancer consisted of administering a

b-D-lactosyl-steroid. This treatment significantly increased the

survival of mice grafted with lymphoma and glioblastoma cells

(47, 136). Moreover, this compound increases the anti-tumor

cytotoxic effects of cisplatin in mice (47).

Several chemical modifications of glycans have been

developed to improve these molecules’ inhibitory properties.

For example, introducing a sulfur atom into the glycoside

linkage in TDG makes the molecule more resistant to

glycosidases (137). The in vivo anti-tumor properties of some

of these compounds were challenged in pre-clinical studies. For

instance, TDG administration reduces pulmonary metastasis in

murine breast and colon cancer models (48). TDG promotes

immune infiltration, reduces angiogenesis, and protects cells

against oxidative stress (49). The most advanced TDG in clinical

studies is TD139 (also named as GB0139), developed by Galecto

Biotech (Copenhagen, Denmark). TD139 recognizes galectin-3

CDR with high affinity (Kd 68 nM) (138). However, its absolute

selectivity for galectin-3 is relative since it also binds to galectin-

1 CDR (Kd 220 nM) and other galectins with lower affinities

(138). This compound was initially evaluated in pre-clinical

models of lung fibrosis (50, 51). Interestingly, TD139 was also

evaluated in a clinical trial as a potential therapeutic for

idiopathic pulmonary fibrosis (NCT02257177; www.

clinicaltrials.gov [accessed November 24, 2022]; Table 2) (139).

More recently, a series of monosaccharide galectin-3

inhibitors with high affinities and good selectivity over other

galectins have been described (140). From this series, GB1107

(3,4-dichlorophenyl 3-deoxy-3-[4(3,4,5-trifluorophenyl)-1H-

1,2,3- triazol-1-yl]-1-thio-a-D-galactopyranoside) from

Galecto Biotech; has good affinity (Kd 37 nM) and bind to the

CRD of galectin-3. Both, TD139 and GB1107 are membrane-

permeable small molecules (141). GB1107 is characterized by

good biodisponibility upon oral administration and low

clearance (52). It was demonstrated that the oral

administration of GB1107 reduced human and mouse lung

adenocarcinoma growth and blocked metastasis in murine

models (52). Mechanistically, treatment with GB1107

promotes tumor M1 macrophage polarization and CD8(+) T-

cell infiltration (52). Moreover, GB1107 potentiated the effects of

a PD-L1 immune checkpoint inhibitor to increase expression of

cytotoxic (IFNgamma, granzyme B, perforin-1, Fas ligand) and

apoptotic (cleaved caspase-3) effector molecules (52, 53). In

addition, GB1107 and cetuximab displayed a synergistic

inhibitory effect on the growth of oral squamous cell

carcinoma (54). Phase I studies with GB1211 (which shares a

chemical template with GB1107) have been completed

(NCT03809052, Table 2), and Galecto Biotech initiated safety

and efficacy clinical studies with GB1211 combined with
frontiersin.org
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TABLE 1 In vivo pre-clinical studies with galectin inhibitors.

Inhibitor Structure Pre-clinical model References

a) Carbohydrate compounds

b-D-lactosyl-steroid Lymphoma and glioblastoma (47)

Thiodigalactose (TDG) Pulmonary metastasis in
murine breast and colon
cancer models

(48, 49)

Modified-thiodigalactose
(TD139)

Lung fibrosis (50, 51)

GB1107 Human and mouse lung
adenocarcinoma in murine
models
Synergy with negative
immune checkpoint.
Oral squamous cell
carcinoma; synergy with
cetuximab

(52, 53)

(54)

Lactulose-L-leucine Breast and prostate cancers
in murine models

(55, 56)

Dendrimers : galactose- or
lactose-conjugated porphyrin
derivatives

Photodynamic anti-tumor
therapy
Bladder cancer model
Radiation-induced
fibrosarcoma

(57)

(58)

(Continued)
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TABLE 1 Continued

Inhibitor Structure Pre-clinical model References

Modified citrus pectin (MCP) Heterogenous chemical definition, with the following general structure

Several methods of preparation: US7491708B1, ES2537936B1, US 2016/
0030467 A1 patents

Melanoma
Thyroid cancer
Breast and colon cancers
Prostate cancer

(59)
(60)
(61)
(62)

PectaSol-C Derived from MCP
Low molecular weight, 5 % galacturonic acid
US 2011/0294755A1 patent, EcoNugenics

Not in vivo pre-clinical
studies in animals found
(only original MCP)

GCS-100 derived from MCP
US8877263B2 patent, La Jolla Pharmaceutical Company

Mastocytoma (63)

GM-CT-01 or DAVANAT

US 2014/0235571 A1 patent, Galectin Therapeutics Inc

Toxicity studies on mice,
rats and dogs
Colon Cancer

(64)

(64)

GR-MD-02 (belapectin) 1,4-linked (methyl) galacturonic acid backbone interspersed with a-1,2 linked
rhamnose, the rhamnose carrying 1,4-b-D-galactose residues or 1,5-a-L-
arabinose oligomers.

US8871925B2 patent, Galectin Therapeutics Inc.

Sarcoma, breast, and
prostate cancer

(65)

Carbohydrate-complexed
nanoparticles

Citrus pectin-nanoparticles
Galactose-Tuftsin peptide-nanoparticles

Colon cancer
Melanoma

(66)
(67)

b) Peptides, peptidomimetics and proteins

Anginex peptide ANIKLSVQMKLFKRHLKWKIIVKLNDGRELSLD In vivo angiogenesis (68)

Teratocarcinoma (69)

Melanoma, Ovarian and
breast carcinoma

(26, 32, 43,
44)

(Continued)
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TABLE 1 Continued

Inhibitor Structure Pre-clinical model References

Peptidomimetics: 6DBF7
dibenzofuran (DBF)-modified
peptide

[DBF] Melanoma, lung, and
ovarian carcinoma

(70, 71)

DB16 SVQMKL-[DBF]-AIVKLNA Melanoma, lung, and
ovarian carcinoma

(71)

DB21 SVQNvaKL-[DBF]-IIVKLNA Melanoma, lung, and
ovarian carcinoma

(71)

OTX008 Melanoma, glioblastoma,
thyroid and ovarian
carcinoma

(40, 43, 72,
73)

PTX013 Melanoma (74)

Dominant negative mutants Gal-3C (lacks N terminal) Multiple myeloma (75)

Breast cancer (76)

Ameliorates heart failure
after myocardial infarction

(77)

Gal-3 (Ser6–>Glu Ser6–>Ala) mutant unable to phosphorylate Breast cancer (78)

Neutralizing antibodies anti-galectin-1-mAb Head and neck cancer (45)

Lung carcinoma and
melanoma

(79)

Kaposi' s sarcoma (80)

anti-galectin-3-mAb Breast and ovarian cancers (81)

anti-galectin-9 mAb Colon adenocarcinoma (82)

Breast cancer (83)

Pancreatic carcinoma (84)

(Continued)
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TABLE 1 Continued

Inhibitor Structure Pre-clinical model References

Myeloid Leukemia (85)

c) Oligonucleotides

Aptamers AP-74 M-545 DNA aptamer (galectin-1 specific) Lung cancer (86)

siRNA and shRNA-coding
vectors (few exemples cited)

galectin-1 shRNA Hepatocellular carcinoma (87)

Peripheral nerve sheath
tumors

(88)

Gastric cancer (89)

Osteosarcoma (90)

Lung carcinoma (91)

Glioblastoma (37, 92–95)

Prostate cancer (96)

Melanoma (97, 98)

Kaposi's sarcoma (80)

galectin-3 shRNA Hepatocellular carcinoma (99)

Melanoma (100)

Pancreatic cancer (101)

Prostate cancer (102)

galectin-8 shRNA Prostate cancer (103)

galectin-4 shRNA Colorectal cancer (104)

Regulation of mi-RNA miR-424-3p (galectin-3) using resveratrol Ovarian and colorectal
cancers

(105)

d) Compounds from chemical synthesis

Benzimidazole compounds LLS30 Ovarian cancer
Prostate cancer

(106)
(107)

LLS2 Peripheral nerve sheath
tumors

(88)

Glycans symbols (according to https://www.ncbi.nlm.nih.gov/glycans/snfg.html).

D-galacturonic acid, D-galactose, L-rhamnose, L-arabinose, D-xylose, Me: methyl ester
F
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atezolizumab in the treatment of non-small-cell lung cancer

(NCT05240131, Table 2).

Finally, it should be mentioned that chemical modifications

of galactosides and their evaluation as galectin inhibitors in

cancer are an intense field of research. First, synthetic

glycoamines evidenced anti-tumor activity (55, 56, 142, 143).

Indeed, lactulose-L-leucine mimics cancer-associated

Thomsen-Friedenreich glycoantigen and binds to galectin-3.

At a molecular level, it was demonstrated that this compound

binds to the CRD of galectins-1 and -3 with higher affinity than

lactose and TDG (135). In a murine breast cancer model, the

administration of lactulose-L-leucine (and fructosyl-D-

leucine) inhibited spontaneous metastasis in nude mice (56).

The same group demonstrated the beneficial effects of

lactulose-L-leucine in controlling and preventing prostate

cancer metastasis to the bone (55). Other inhibitory

molecules arising from chemical modifications of galactosides

can also be cited (122, 144–146); however, they do not reach

the level of in vivo evaluation.

To improve galectin inhibitors’ properties, inspiration was

found in the clustering nature of galectin glycan interactions.

Indeed, the synthesis of multivalent glyco-clusters with

improved galectin inhibitory potential has been reported (147–
Frontiers in Immunology 07
152). Interestingly, cell aggregation can either be inhibited or

enhanced depending on the number of lactose groups in

functionalized dendrimers (153). Unfortunately, no evaluation

of their in vivo biological effects in pre-clinical models was yet

reported. Another strategy based on the same conceptual

framework tested dendrimers obtained by galactose

conjugation to the porphyrin derivatives (154). In this case, a

photodynamic anti-tumor therapy was successfully reported in a

pre-clinical in vivo bladder cancer model (57).

Pectins are another group of galectin-binding, inhibitory

compounds. Natural pectins are large and heterogeneous

polysaccharides found in plants which constitutes fiber

components of our diet. Pectins have molecular weights

ranging from 60 to 130 kDa and are constituted by

three main polysaccharides: homogalacturonan (HG),

rhamnogalacturonan-I (RG-I), and substituted galacturonans

(GS) (155, 156). Pectins must be modified by pH and heat to

gain solubility and biological effects. Indeed, hydrolysis induces

galactoside exposure, and now, modified pectins bind galectins

(157, 158). Contrary to what was often supposed, some

experimental data prompt the existence of non-conventional

sites of pectin binding in galectins (159–162). On the contrary,

other in vitro data support that pectin-mediated biological effects
TABLE 2 Clinical trials with galectin inhibitors.

Clinical
trial #

Phase Inhibitor Combinatory
treatment

Targeted-
galectin
(reported)

Disease Last
Update

Status
(mention if the results are

available)

Healthy subjects

NCT03809052 I GB1211 None gal-3 Healthy subjects March 17,
2021

Completed, with results

Cancers

NCT05240131 I/II GB1211 Atezolizumab gal-3 Non-small cell lung
cancer

October 3,
2022

Recruiting

NCT01681823 II PectaSol-C None gal-1/-3 Biochemical relapsed
prostate cancer

January
29, 2020

Completed (108, 109),

NCT00514696 II GCS-100 None gal-3 Chronic lymphocytic
leukemia

June 17,
2013

Completed, unreported results

NCT00776802 I/II GCS-100 Etoposide/
Dexamethasone

gal-3 Relapsed/refractory
diffuse large B-cell
lymphoma

June 25,
2013

Withdrawn (Lack of funding),
unreported results

NCT00609817 I GCS-100 Bortezomib/
Dexamethasone

gal-3 Relapsed/refractory
multiple myelome

June 25,
2013

Terminated (Lack of funding),
unreported results

NCT00054977 I GM-CT-01 5-Fluorouracil gal-1/-3 Advanced solid cancers:
colorectal, lung, head
and neck, and prostate
cancers

March 12,
2012

Completed, unreported results

NCT00388700 II GM-CT-01 5-Fluorouracil,
Leucovorin,
bevacizumab

gal-1/-3 Colorectal cancer February
14, 2018

Withdrawn (Financing and
re-organization), unreported results

(Continued)
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TABLE 2 Continued

Clinical
trial #

Phase Inhibitor Combinatory
treatment

Targeted-
galectin
(reported)

Disease Last
Update

Status
(mention if the results are

available)

NCT00110721 II GM-CT-01 5-Fluorouracil gal-1/-3 Colorectal cancer March 6,
2012

Terminated (study protocol amended
to a new treatment regimen: study
DAVFU-006.), unreported results

NCT00386516 II GM-CT-01 5-Fluorouracil gal-1/-3 Advanced gall bladder
and bile duct cancer

August 1,
2017

Withdrawn (Financing and re-
organization), unreported results

NCT01723813 I/II GM-CT-01 Peptide
vaccination

gal-1/-3 Metastatic melanoma March 12,
2019

Terminated due to end of validity of
the peptide vaccine; no reported
results, unreported results

NCT02117362 I GR-MD-
02

Ipilimumab gal-1/-3 Metastatic melanoma March 21,
2019

Completed, unreported results

NCT00054977 I GR-MD-
02

5-fluorouracil gal-1/-3 Advanced solid tumors:
colorectal, lung, breast,
head and neck, prostate

March 12,
2012

Completed, unreported results

NCT02575404 I GR-MD-
02

Pembrolizumab gal-1/-3 Advanced melanoma,
non-small cell lung
cancer, and head and
neck squamous cell
cancer

July 15,
2022

Active, not recruiting
(110)

NCT04987996 II GR-MD-
02

Pembrolizumab gal-1/-3 Metastatic melanoma,
head and neck
squamous cell
carcinoma

September
10, 2022

Suspended (Study delayed due to
ongoing discussions with the owner
of one of the investigational agents),
unreported results

NCT02117362 I GR-MD-
02

Ipilimumab gal-1/-3 Metastatic melanoma March 21,
2019

Completed, unreported results

NCT01724320 I OTX008 None gal-1 Advanced solid tumors November
9, 2012

Unknown, unreported results

NCT04666688 I/II Lyt-200 Chemotherapy,
Anti-PD-1

gal-9 Relapsed/refractory
metastatic solid tumors

March 11,
2022

Recruiting

Non-cancer diseases

NCT02257177 I/II TD139 gal-3/others Idiopathic pulmonary
fibrosis

April 8,
2021

Completed, with results

NCT03832946 II TD139 gal-3/others Idiopathic pulmonary
fibrosis

May 24,
2022

Active, not recruiting

NCT04473053 I/II TD139 gal-3/others COVID-19 September
16, 2021

Active, not recruiting

NCT04607655 I/II GB1211 gal-3 Non-alcoholic
steatohepatitis (NASH)
and liver fibrosis

February
4, 2021

Withdrawn (Due to COVID-19
pandemic and change in the clinical
development strategy for the GB1211
compound), unreported results

NCT05009680 I/II GB1211 gal-3 Hepatic impairment August 3,
2022

Active, not recruiting

NCT01960946 I/II MCP/
PectaSol C

gal-1/-3 Hypertension February
21, 2021

Completed, results in (111)

NCT01717248 I GCS-100 gal-3 Chronic kidney disease June 20,
2013

Completed, unreported results

NCT01843790 II GCS-100 gal-3 Chronic kidney disease September
1, 2015

Completed, unreported results

NCT02312050 II GCS-100 gal-3 Chronic kidney disease May 19,
2015

Unknown, unreported results

(Continued)
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are (or partially are) mediated by glycans (163–166). Adding

complexity to the field, modified pectins are generally

administered orally. Nevertheless, pectins are not digestible in

the human intestinal tract, and their modifications are believed

to increase their absorbability (167, 168). Moreover, it has been

postulated that products of pectin fermentation by the human

microbiota should contribute to their systemic in vivo biological

effects (169). It should also be mentioned that pectins induce

galectin-independent biological effects (170, 171). Altogether,

these arguments indicate that more basic research is needed to

clarify the fine mechanisms through which pectins induce their

biological effects.

In this context, one of the most studied galectin inhibitors is

the modified citrus pectin (MCP), which is obtained by partial

hydrolysis of citrus pectin. In vitro studies demonstrated that

MCP binds galectin-3 through galactoside residues (59, 62).

Functionally, MCP inhibits galectin-3 binding to endothelial

cells, and more importantly, the adhesion of breast tumors to

endothelial cells (61). In addition, MCP treatment induces

important metabolic changes in tumor-associated macrophages,

which impacts on tumor growth and metastasis (172, 173).

Interestingly, these MCP biological effects are carbohydrate

dependent (59). In vivo administration of MCP inhibits

melanoma (59), thyroid (60), breast and colon tumor growth,

angiogenesis and metastasis (61, 173), and spontaneous

metastasis in a rat prostate cancer model (62). Due to the high
Frontiers in Immunology 09
chemical variability of dietary MCP supplements on the market,

more defined MCP variants have been described: PectaSol-C,

GCS-100, GM-CT-01 and GR-MD-02. PectaSol-C has a

molecular weight ranging from 5-10 kDa with 5% of

monogalacturonic acid content (174). In vitro studies

demonstrated the potential interest of PectaSol-C MCP in
TABLE 2 Continued

Clinical
trial #

Phase Inhibitor Combinatory
treatment

Targeted-
galectin
(reported)

Disease Last
Update

Status
(mention if the results are

available)

NCT02155673 II GCS-100 gal-3 Chronic kidney disease December
26, 2016

Completed, unreported results

NCT02333955 II GCS-100 gal-3 Chronic kidney disease January
15, 2015

Withdrawn (Corporate decision),
unreported results

NCT01899859 I GR-MD-
02

gal-1/-3 Non-alcoholic
steatohepatitis, portal
hypertension, and
advanced liver fibrosis

February
23, 2015

Completed, unreported results

NCT02462967 II GR-MD-
02

gal-1/-3 Portal hypertension, and
advanced liver fibrosis

October 8,
2020

Completed, with results

NCT02421094 II GR-MD-
02

gal-1/-3 Liver fibrosis October 8,
2020

Completed, with results

NCT02407041 II GR-MD-
02

gal-1/-3 Psoriasis September
7, 2020

Completed, with results

NCT04332432 I GR-MD-
02

gal-1/-3 Subjects with normal
hepatic function and
subjects with hepatic
impairment

March 28,
2022

Completed, unreported results

NCT04365868 IIb/III GR-MD-
02

gal-1/-3 Esophageal varices in
NASH cirrhosis

September
22, 2022

Recruiting

Data from www.clinicaltrials.gov. [Accessed November 24, 2022].
FIGURE 1

Galectin inhibitory strategies.
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prostate (174, 175), breast (175) and ovarian cancers (176, 177),

particularly if used combined with other therapies (175, 177).

Interestingly, phase II pilot studies demonstrated the tolerability

and encouraging biological results obtained by the use of this

inhibitor in prostate patients (108, 109) (NCT01681823, Table 2).

GCS-100 is a complex polysaccharide prepared from

modified citrus pectin. Mechanistically, GCS-100 detaches

galectin-3 from CD4+ and CD8+ tumor-infi ltrating

lymphocytes, boosts cytotoxicity and restores IFN-gamma

secretion (63). Similar effects were obtained by using N-

acety l lactosamine , suggest ing GCS-100 effects are

carbohydrate-dependent (63). Interestingly, GCS-100 induces

tumor rejection only when associated with vaccination in pre-

clinical model of mastocytoma secretion (63), implying GCS-100

modulates the tumor immune attack. Altogether, these

promising results prompt La Jolla Pharmaceuticals to launch

GCS-100-based clinical trials. Following a phase I dose

escalation safety study in patients with refractory solid tumors

(178), a phase II study was completed in patients with chronic

lymphocytic leukemia (179) (NCT00514696, Table 2). In these

exploratory trials, GCS-100 was well tolerated, and 25% of

patients showed a partial response (179). In addition, the use

of GCS-100 has also been evaluated in chronic kidney disease

(Phase I NCT01717248 and phase IIa NCT01843790, Table 2).

In 2015, La Jolla Pharmaceuticals announced that they were

discontinuing the development of GCS-100 after the Food and

Drug Administration (FDA) required a more complex

characterization of the compound to advance into late-stage

development (NCT00776802 and NCT00609817, Table 2).

Another pectin-derived polysaccharide able to inhibit

galectins is GM-CT-01 or DAVANAT®. This polysaccharide

is extracted from guar seeds and subjected to controlled partial

chemical degradation (developed by Galectin Therapeutics,

formerly Pro-Pharmaceuticals) . A backbone of the

galactomannan is composed of (1!4)-l inked b-D-

mannopyranosyl units, to which single a-D-galactopyranosyl
is attached by (1!6)-linkage (64). The average repeating unit of

GM-CT-01 consists of seventeen b-D-Man residues and ten a-
D-Gal residues (Man/Gal ratio is 1.7), and an average polymeric

molecule contains approximately 12 of such repeating units (for

the average molecular weight of 51,000 Da). In vitro, GM-CT-01

boosts the cytotoxic properties of CD8(+) tumor-infiltrating

lymphocytes and their ability to produce IFN-gamma (180).

Indeed, this pectin prevents glycosylated cytokines (IFNg
between others) be captured by galectin-3 and therefore

allowing the chemokine gradient needed to attract

lymphocytes towards the tumor (181). Pre-clinical studies in

mice defined GM-CT-01 non-toxic doses (alone or combined

with other chemotherapies) (64). Moreover, such studies

demonstrated GM-CT-01 beneficial effects in colon cancer

models (64). Interestingly, a phase I clinical trial was

completed in cancer patients with advanced solid tumors by

administration of DAVANAT® combined with 5-fluorouracil
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treatment (NCT00054977, Table 2). Combinatory treatment was

well-tolerated. While phase II trials were announced, these trials

were never initiated, having a “withdrawn/terminated status” in

www.clinicaltrials.gov (NCT00388700, NCT00110721,

NCT00386516, Table 2). In addition, melanoma peptide

vaccination plus GM-CT-01 was evaluated in melanoma

(NCT01723813). This clinical trial was “terminated due to end

of validity of peptide vaccine” with no reported results.

Finally, GR-MD-02 (belapectin) is a galactoarabino-

rhamnogalacturonan-rich polysaccharide obtained through

chemical processing from apple pectin (developed by Galectin

Therapeutics, Norcross, Georgia, USA). GR-MD-02 is a

galectin-3 inhibitor which synergizes with anti-OX40

treatment to promote tumor regression and increases survival

of tumor-bearing mice (65). This occurs through a CD8(+) T

cell-dependent mechanism, reducing the immunosuppresion

mediated by myeloid-derived suppressor and regulatory Foxp3

(+)CD4(+)T cells (65). GR-MD-02 administration induced a

significant reduction of liver fibrosis in experimental models of

non-alcoholic steatohepatitis (182, 183). GR-MD-02 is being

evaluated in melanoma, squamous head and neck, and non-

small cell lung cancer patients combined with the negative

immune checkpoint inhibitors pembrolizumab (anti-PD-1,

NCT02575404, and NCT04987996, this last suspended) and

ipilimumab (anti-CTLA-4, NCT02117362; Table 2). No results

are available yet from those clinical studies. Interestingly, this

compound has also been evaluated in clinical trials for non-

alcoholic steatohepatitis, portal hypertension, and advanced liver

fibrosis (NCT01899859 and NCT02462967, Table 2). In this

case, GR-MD-02 was safe but not associated with significantly

ameliorating hepatic disease (184).

An area under intense investigation tries to achieve

formulations with improved pharmacokinetic properties for

this type of carbohydrate-based inhibitors. This is the case of

lactose-, galactose- or pectins-complexed nanoparticles (185–

187). Apart from improving the pharmacokinetic properties of

the inhibitor, these nanoparticles can also serve as delivery

carriers of cytotoxic drugs toward the tumor (66, 188, 189).

Moreover, attempts are being made with nanoparticle

modifications to improve selective targeting of the tumor (or

tumor-associated stroma) (67, 190).

Interestingly, non-carbohydrate inhibitors for galectins have

also been proposed. First, the anti-tumor properties of several

synthetic heterocyclic compounds able to bind galectin-1 have

been evaluated. Molecular docking experiments described fine

interactions between these molecules and the CRD domain of

galectin-1 (191–194). Moreover, in vitro results indicate these

compounds have anti-tumor cytotoxic properties (191–194).

However, in vivo anti-tumor pre-clinical evaluations of such

compounds remain to be performed. Second, bacteriophage

display library systems for interaction screening allowed the

discovery of galectin-binding peptides. For instance, a Thomsen-

Friedenreich antigen-specific peptide (P-30) able to bind
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galectin-3 has been described (195). This peptide modulates

breast and prostate tumor homotypic aggregation and tumor cell

adhesion to the endothelium (195). Using similar technological

approaches, stapled-peptides ligands binding galectin-3 were

described (196). These peptides bind to the CRD of galectin-3

and the best one has an intermediate affinity (Kd 0.45 mM) (196).

However, no functional studies have been reported for these

peptides. As already mentioned, formulations with improved

pharmacokinetics are being evaluated. In this context,

nanoparticles combining carbohydrates (inhibitor) and

peptides (addressers) have been described, a strategy that

significantly improves their biodistribution and the biological

effects (67).

Finally, genetic engineering methods are used to inhibit the

glycan-dependent functions of galectins. For instance, a

dominant negative mutant formed by the last 143 carboxyl-

terminal amino acid residues and lacking the N-terminal

domain of galectin-3 (named Gal-3C) has been described. This

Gal-3C molecule preserves the CRD but lacks cooperative

binding and crosslinking properties of the wild-type galectin-3

(197). Indeed, it is hypothesized that the administration of an

excess of soluble Gal-3C competes with endogenous galectin-3

for carbohydrate binding sites (76). In this context, Gal-3C

reduces angiogenesis by abrogating extracellular galectin-3

interaction with avb3 integrin through its carbohydrate

recognition domain (198). Interestingly, Gal-3C inhibits

CXCL12-induced leukocyte migration in (non-cancer)

inflammatory conditions (199). Gal-3C also inhibits tumor cell

motility and invasion (75, 200). Hence, Gal-3C alone or

combined with other chemotherapies can reduce ovarian,

breast cancer, and multiple myeloma growth and drug

resistance (75, 76, 200). Interestingly, Gal-3C can be used in

vivo without toxic effects (76); this treatment ameliorates heart

failure after myocardial infarction (77). Galectin-9 mutants have

also been described. Indeed, mutations in galectin-9 CRD

abolish its binding to the negative checkpoint Tim-3; this

interaction occurs via the carbohydrates (201). Dominant

negative mutants can also interfere with nuclear partners in a

glycan-dependent manner. This is the case of the interactions

between galectin-1 and Foxp3. This transcription factor

functions as a master controller of regulatory T cells (Treg).

Moreover, the interaction between galectin-1 and Foxp3

controls a panoply of genes and functions in breast cancer

cells (202). Consequently, galectin-1 mutants that lack the N-

terminus and do not bind Foxp3 can be used to inhibit breast

tumor proliferative and invasive properties (202). These results

show that negative dominants could be interesting tools to

inhibit galectins.

Non-competitive allosteric inhibitors of
carbohydrate-binding to galectins

Some inhibitors do not directly interact with the CRD of

galectins, but their inhibitory effects are still glycan-dependent.
Frontiers in Immunology 11
Indeed, these molecules function as allosteric inhibitors,

interacting outside the CRD but inducing changes in this

region, thereby inhibiting glycan binding and biological effects.

For instance, in vivo galectin-1 inhibition through the

administration of lactose-conjugated purpurinimide

photosensitizers reduced the growth of radiation-induced

fibrosarcoma (58). Molecular modeling analysis indicated that

this compound does not interfere with the CRD (203). Similar

photodynamic strategies with galactose-bound porphyrin

demonstrated anti-tumor effects in bladder cancers (57). In

this case, galectin-1 inhibition generates oxidative stress and

apoptosis of tumor cells over-expressing this lectin (57).

However, allosteric inhibition can also be performed using

non-carbohydrate molecules. Based on the significant role of

galectins in the interaction between tumor and endothelial cells

during tumorigenesis, a cytokine-like peptide named anginex

was described as a potent anti-angiogenic tool (68). This

biological effect is mediated through galectin-1 binding (69),

although this peptide also binds other galectins (204). The anti-

tumor effects of anginex were demonstrated in several

experimental cancer models (26, 32, 43, 44). Anginex’s

angiostatic beta-sheet-forming structure inspired the design of

the 6DBF7, a peptidomimetic that also interacts with galectin-1

(70, 71). This 6DBF7 molecule inhibits glycan binding of

galectin-1 in a noncompetitive, allosteric manner (71). Based

on these studies, other potent analogs (DB16 and DB21) have

also been described (71). These peptides inhibit angiogenesis and

tumor growth significantly better than 6DBF7 or anginex (71).

To overcome the susceptibility of these peptides to hydrolysis by

proteases, Dings et al. designed a non-peptidic topomimetic of

anginex and 6DBF7 based on a calixarene scaffold. Indeed, calix

[4]arene compound 0118/OTX008/PTX008 binds to galectin-1

at a site away from the lectin’s carbohydrate binding site, thereby

attenuating lactose binding to the lectin (205). It should be

mentioned that the specificity of this compound is relative since

it also binds to galectin-3, albeit more weakly (206).

Pharmacokinetics and anti-tumor activity of OTX008 alone or

combined with other treatments were evaluated in melanoma,

glioblastoma, thyroid and ovarian carcinoma (40, 43, 72, 73,

207). A phase I study of OXT008 in patients with advanced solid

tumors was reported (NCT01724320, Table 2). Unfortunately,

this study is listed with an “unknown recruitment status”; no

updates have been posted since 2012. Chemical modifications of

PTX008 were also described; it is interesting to mention the

PTX013 compound. This compound is more potent as a

cytotoxic tumor agent than the parenteral PTX008. This

higher inhibitory potency of PTX013 was demonstrated both

in vitro (head and neck, breast, ovarian, renal, lung, and prostate

cancer lines, several of them radiation resistant), and

importantly in vivo (melanoma) (74).

Galectin inhibition can also be achieved using specific

neutralizing monoclonal antibodies (mAb). It must be noted

that, for this strategy, mechanisms of galectin inhibition
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(competition or allosteric inhibition) depends on each antibody.

In the case of galectin-1, one of these antibodies (Gal-1-mAb3)

has been characterized, and the epitope recognized by this mAb

localizes outside the CRD although it is still capable of inhibiting

N-acetyllactosamine-galectin-1 interaction (208). This antibody

recognizes specifically galectin-1 with high affinity (EC50 =

523nM). This neutralizing antibody reproduces the anti-

angiogenic and immunopotentiating activities observed with

other types of inhibitors (208, 209). In particular, blockade of

galectin-1 (Clone 25C1; Novo Castra) significantly reduces the

in vitro inhibitory effects of human and mouse CD4+CD25+

Treg cells (210). Moreover, another anti-galectin-1 neutralizing

mAb ameliorates the negative immune checkpoint (PD1)

response in irradiated mice carrying oral cancer cells (45).

In the case of galectin-3, earlier studies described mAbs

recognizing non-CRD domains but causing a profound

modulation of its lectin activities (211). On the other hand, a

galectin-3-specific mAb (14D11) competes with lactose for the

carbohydrate-binding pocket of galectin-3 (81). This antibody

inhibits invasion of Mucin-16-expressing cancer cells,

prolonging overall survival in animal tumor models (81).

However, inhibition of galectin-3 also impacts the tumor

stroma cells. Indeed, the use of an anti-galectin-3 mAb

(B2C10) promotes IFN-g secretion by in vitro stimulated CD8

+ tumor-infiltrating T lymphocytes (63).

The scientific interest in developing anti-galectin-9 mAb is

major since this protein participates in various mechanisms of

immune escape by tumors: control of T cell survival (212), T cell

effector exhaustion and differentiation (82, 201, 213, 214),

lymphocyte migration towards the tumor via an endothelial

cell reprogramming (45), Treg function (215–220), regulation of

antigen presentation (221–223), and myeloid suppressive cells

(224). Confirmation of these functions by the use of blocking

antibodies is becoming very frequent. Such is the case of two

antibodies (clones 292-13 and 292-18A) reacting with high

affinity with the N-CRD of human galectin-9; their use

protects T cells from galectin-9 mediated cell death and

promotes tumor-cell killing by T cells (225). The same group,

but using a commercial anti-galectin-9 mAb (RG9-1 from

InVivoMAb), demonstrated prevention of CD8+T cell

exhaustion and near complete Treg depletion when this mAb

is combined with anti-GITR (glucocorticoid-induced tumor

necrosis factor receptor-related protein)-specific antibody (82).

Two other anti-galectin-9 mAb have also been reported (Gal-

Nab1 and Gal-Nab2). In this case, antibodies recognize an

epitope comprising 213-224 amino-acid sequence with high

affinity (in the order of nM) (226). Again, these antibodies

protect T cells from galectin-9-mediated cell death (226). An

anti-galectin-9 was combined with anti-Tim-3 mAb to improve

taxane-based chemotherapy in breast cancer (83). Apart from

the direct effects on adaptive immunity, blockade of galectin-9

by antibodies potentiates immune attack in pancreatic

carcinoma through modulation of macrophage function (84).
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Nevertheless, galectin-9 blockade by antibodies also acts directly

on tumor cells. Indeed, leukemia stem cells secrete galectin-9,

which through the interaction with Tim-3 constitutes an

autocrine loop critical for leukemic self-renewal and

development (85). Indeed, galectin-9 neutralization is a potent

way to prevent the reconstitution and the self-renewal of human

acute myeloid leukemia cells in a xenogeneic transplantation

model (85). Finally, an anti-galectin-9 mAb (Lyt-200) is

currently under clinical investigation in phase I/II trial for its

safety and efficacy in patients with relapsed/refractory metastatic

solid tumors (NCT04666688, Table 2). In this clinical trial, Lyt-

200 is evaluated alone and in combination with chemotherapy or

anti-PD-1.

The use of neutralizing antibodies to block other galectin

members in cancer is more incipient, and in most cases,

polyclonal antibodies are evaluated. For instance, neutralizing

surface-bound galectin-4 in human colorectal cancer induces

significant transcriptional changes and chemokines production

in tumor cells (227).

While neutralizing antibodies carry several benefits over

small inhibitory carbohydrate molecules, they also have several

drawbacks. Some of the concerns are related to their selectivities

and biodistributions. Antibodies inhibit extra-cellular galectins,

and lack restricted biodistribution in the body. These

characteristics imply that antibody-mediated inhibition of

galectins could act as partial inhibitors (lack of intracellular

effects), and do not discriminate between non-transformed and

transformed cells resulting in adverse effects. More studies are

needed to fully understand the effects induced by galectin-

neutralizing antibodies and their potential transfer to the clinic.

Finally, nucleotide-based molecules are a different family of

galectin inhibitors. In this sense, a single-stranded DNA aptamer

(AP-74 M-545) has been described as an antagonist of galectin-1

(86). This aptamer shows higher affinity (KD = 3.7 nM) and

specificity than the previous inhibitors. Administration of this

compound induces in vivo anti-tumor effects through activation

of the immune system. Indeed, this aptamer prevents T cells

from apoptosis and restores T cell-mediated immunity (86).

This study did not evaluate aptamer dependence on glycans, so

this point remains to be clarified.
Carbohydrate-independent galectin
inhibitors

Apart from their extracellular glycan-dependent functions,

galectins also display intracellular functions, most of which are

glycan-independent. Therefore, the development of molecules

inhibiting these functions may be convenient. In this respect,

small benzimidazole compounds (LLS2 and the improved

LLS30) bind to the interface between the dimeric galectin-1

subunits within 6 Å from the b-galactoside binding pocket (106).
The binding of these compounds to galectin-1 decreased
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membrane-associated H-Ras and K-Ras and contributed to the

suppression of CXCR4, pErk, and AKT signaling pathways (88,

106, 107). Interestingly, pre-treatment of prostate tumor cells

with LLS30 reduced their adhesion on collagen-, fibronectin-,

and laminin-coated surfaces (107). In vivo administration of

these compounds promotes anti-cancer effects in ovarian (106),

hepatic (87), malignant peripheral nerve sheath (88), and

prostate (107) pre-clinical cancer models. Importantly,

combining these compounds with taxanes in in vitro and in

vivo experiments resulted in synergistic cytotoxicity against

several human cancer cell lines (ovarian, pancreatic, prostatic,

and breast cancer cells) (106). These compounds have a direct

cytotoxic effect on tumor cells and the cancer-associated stroma

(e.g., fibroblasts) (87).

In addition, two tetrahydroisoquinoline natural products

(DX-52-1 and HUK-921) inhibit cell migration through

interactions with galectin-3 (228). This interaction occurs

outside the b-galactoside-binding site of galectin-3. While this

compound’s exact mechanism of action remains to be

understood, experiments demonstrated that this effect is

glycan-independent (228).

While the use of dominant negative mutants for in vivo

therapies is still way off, this type of inhibitor allowed us to

understand several aspects of the glycan-independent

intracellular signaling of galectins. For example, galectins-1

and -3 are constituents of the pre-mRNA splicing machinery

(229–233). This interaction is glycan-independent (234), and a

N-terminal galectin-3 polypeptide exhibited a dominant

negative effect on splicing (231). Interestingly, silencing of

galectin-3 was sufficient to alter the splicing patterns of several

genes, including the transcripts coding for the SET nuclear

oncogene (235). Moreover, galectin-3 regulates promoter

activity of different genes highly involved in malignant

transformation such as cyclin D1 (236), FOXD1 (237), the

thyroid-specific transcription factor TTF-1 (238), and MUC2

(239). A galectin-3 mutant that cannot be phosphorylated at the

Ser6 site demonstrated that this post-translational modification

is critical for galectin-3 function as a modulator of gene

expression (78, 240).

At the cytoplasm, galectins-1 and -3 are recruited by the

small GTPase Ras, which become integral parts of plasma

membrane nanoclusters (241). Indeed, mutations in a

hydrophobic pocket of the galectin-1 CRD induce a dominant

negative mutant that cannot interact with H-Ras anymore and,

therefore, abrogates signal output (242). Nevertheless, the

biological interaction between galectins and Ras does not

depend on carbohydrate binding (242, 243). Inspired by that

observation, a galectin-3 dominant negative was also created.

Similarly, this galectin-3 dominant negative does not interact

with K-Ras anymore and abrogates signal output from the Raf/

mitogen-activated protein (MAP)/extracellular signal-regulated

kinase (ERK; MEK) pathway (241, 244, 245). This initial
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molecular model of galectin-Ras interactions was then revised

by demonstrating that galectin-1 does not directly bind to H-

Ras, but instead to the Ras binding domain of Ras effectors, such

as Raf (246). Whatever the exact interactor in Ras signaling,

galectin-1 and -3 dominant negative mutants reduce cell growth

and transformation (243–245). Finally, dominant negative

galectins interfere with another type of cytoplasmic

interactions with regulatory potential for tumorigenesis.

Indeed, galectin-3 bears the NWGR conserved motif with

several members of the Bcl-2 family, and using a galectin-3

mutant modifies this delicate balance between cell survival and

death (247). In conclusion, several reports have shown the utility

of inhibiting the carbohydrate-independent functions of

galectins. No report is yet found on their use in pre-clinical as

well as clinical trials.
Negative control of galectin gene
expression (ablation of all its functions)

Since the description and widespread use of RNA

interference to control gene expression, its use to inhibit

galectins has been intensive. RNA interference strategies

include transient (siRNA) or stable (shRNA-encoding vectors)

effectors. Interestingly, this strategy should affect galectin

functions more than former inhibitors since it modulates

glycan-mediated and -independent effects, and with higher

specificity since the nucleotide sequence is highly different

between galectins’ members. It is impossible to cite all the

publications that have used this approach to downregulate

galectins in this review; we only mention a few examples.

Indeed, RNA interference was often used to confirm basic

aspects of tumor biology (which includes intrinsic effects on

the transformed cells themselves (88–91, 99–101, 103, 237, 248–

258), the modulation of the tumor-associated stroma (80, 96, 97,

201, 259–265) and, importantly, as a synergic therapy option for

cancer (37, 42, 92, 98, 101, 102, 104, 266–270). Several properties

of this gene control strategy deserve to be highlighted compared

to the aforementioned galectin inhibitors. First, these inhibitory

molecules have the highest reported affinities for their messenger

RNA target. Indeed, siRNA concentrations in the picomolar

range can induce efficient gene expression knockdown, and

intracellular amounts of less than 2,000 siRNAs molecules per

cell were demonstrated to induce potent biological effects (271).

Second, the actions of this type of inhibitor are highly specific.

Indeed, siRNAs can downregulate the expression of mRNA

transcripts through a highly specific nucleotide hybridization

process; it can differentiate single base changes in genes (272,

273). These two properties (affinity and selectivity) make siRNA

(and their chemical modifications) an efficient approach to

inhibit any target through their gene expression knockdown,

and their evaluation in clinical trials is promising [reviewed in
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(274–277)]. Although protein-based drugs, including

monoclonal antibodies, are highly specific, their targets are

primarily limited to cell surface receptors or circulating

proteins. On the contrary, specific degradation of the galectin

transcript by siRNA leads to significant protein downregulation,

affecting all the functions galectins are involved in,

independently of their glycan dependence. However, various

hurdles must be resolved before bringing siRNA into clinical use.

First, a selective biodistribution (it would be highly desirable to

address siRNA towards the tumor or the tumor-associated

stroma, avoiding a non-specific biodistribution that would be

responsible for adverse effects). Second, it is needed to improve

siRNA stability and reduce their clearance to increase their half-

life in the biological fluids. Finally, it is necessary to prevent off-

target effects including nucleotide-based immune activation

(278, 279). To do this, delivery systems have been developed

to protect siRNA from nuclease degradation and facilitate

cellular uptake at target sites [chemically modified RNAs (280,

281), nanoparticles (37, 92, 93, 282) and lipoplexes (283)]. These

strategies have demonstrated effectiveness to some extent.

However, all these approaches face different problems

concerning safety, production costs, and often poor correlation

between in vitro and in vivo efficacy, making their development a

significant challenge.

On the other hand, the endogenous expression of several

galectins is subject to gene control by miRNAs. It has been

reported that miRNA-22 and -2467 regulate the expression of

galectin-1 (284–286), miR-424-3p, -873 and -128 regulate

galectin-3 (105, 287–290), miR-1236-3p regulates galectin-8

(291) and miR -455-5p and -22 regulate galectin-9 (292, 293).

This finding offers another level of intervention that could be of

great interest as therapeutical strategies for various cancers. For

example, the utility of miR-424-3p modulation has been

demonstrated for ovarian and colorectal cancers (105, 287,

288). In this regard, it has been shown that resveratrol

stimulates the transcription of miR-424-3p, which suppresses

the expression of galectin-3 (105). In the future, it is expected

that the development of gene control strategies through miRNAs

will provide new means for controlling galectin levels in the

tumor microenvironment.

Finally, developing genome editing strategies such as

CRISPR Cas-9 for galectins in the clinic is confronted with

ethical obstacles (induction of genome alterations in non-

targeted cells) (294, 295). Indeed, the safe and effective

delivery of genome editing enzymes represents a substantial

challenge that must be tackled to enable the next generation of

genetic therapies. However, such genetic strategies will probably

contribute to a better fundamental understanding of the role of

galectins in cancer. Despite this limitation regarding their direct

in vivo use in cancer patients, these strategies could represent

real options for in vitro approaches (development of cell-based

anti-tumor vaccines or cell conditioning before being infused

into patients) (296).
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Challenges for clinical application of
galectin inhibitors

This chapter itemizes the properties that differentiate

galectin inhibitors from each other, and that should be taken

into account when scaling up their use in the clinic:
1-Affinity: this is one of the most distinctive parameters of

current inhibitors. In general, molecules with higher

affinity will require lower doses to obtain in vivo

biological effects and, therefore, may induce fewer

adverse effects (297, 298). However, it should be noted

that affinity calculations are performed in vitro; these

molecules have IC50 (inhibitory concentration 50)

ranging from mM to pM (as discussed throughout the

review for each type of inhibitor). Routine methods used

to measure affinity and selectivity include fluorescence

polarization binding (299), competitive binding enzyme-

linked immunosorbent assays (300), isothermal titration

calorimetry (301), biolayer interferometry (138), and

surface plasmon resonance (302). These binding assays

primarily focus on the CRD, although other non-CRD

interactions can also be detected (159). In the case of

genetic-based strategies, inhibitors are evaluated by

determining galectin transcript or protein levels and

functional assays. This methodological heterogeneity

makes assessing inhibition potency a real challenge. In

addition, although these in vitro determinations allow the

compounds to be compared with each other in controlled

conditions, they do not define their real inhibitory

capacity in vivo. Indeed, in addition to affinity

determination in controlled conditions, several other

parameters will determine their in vivo inhibitory

potential. We can cite their abilities to diffuse across

membranes (which determine their tissue biodistribution

and extra/intra-cellular localization), the properties of the

local microenvironment, and the presence of other

biological competitive interactors (141).

2-Specificity for a galectin member (and isoform): this is

another fundamental challenge in the field of galectin

inhibitors due to the high amino acid sequence

homology in the core site between the different

members of the galectins (303, 304). Compounds

should recognize the correct galectin member.

Moreover, several galectin members display multiple

isoforms generated from alternative splicing [we can

cite galectins-8 (305), -9 (306), and -12 ((307, 308)

LGALS12 galectin 12 [Homo sapiens (human)]-Gene-

NCBI)]. In this context, gene inhibition strategies are

compelling alternatives in terms of specificity. However,

other post-translational modifications generate galectin

variants such as the cleaved or phosphorylated forms of
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galectin-3 (240, 309–311) and the O-GlcNAcylation of

galectins; this last modification plays a major role in

their secretion (312–315). Furthermore, it is worth

noting that the quaternary structural conformations of

galectins are highly dependent on the properties of the

microenvironment. For example, the balance between

galectin-1 monomers and dimers depends on the redox

state of the cellular microenvironment (316).

Inhibitor specificity is a major point since different galectin

members (and even different isoforms) often induce

opposite biological effects (317–319) (240, 311, 320,

321). Therefore, the in vivo biological results can be

complex if compounds simultaneously inhibit different

galectin members (or different isoforms). Furthermore,

many galectins play relevant physiological roles (13,

322). Thus, the ideal galectin inhibitor should alter

tumor pathology without affecting physiological

processes. These inhibitory molecules should be as

selective as possible for a particular galectin member

(appropriate isoform).

With state-of-the-art, it is not easy to establish a pecking order

as to which galectin member should be inhibited to obtain

maximal anti-cancer effects. All scientific reports that

focus on individual galectins extol their experimental

findings. However, to our best knowledge, no systematic

study compared the anti-cancer effects obtained by

inhibiting multiple galectins (individually or combined)

using the same experimental design, especially considering

the in vivo complexity. In addition, this scenario is

complex since each type of cancer has particularities, so

this study must be carried out for each cancer.

3-Galectin function(s) that should be inhibited in cancer:

galectin-mediated biological processes in cancer involve

interactions more complex than initially proposed and not

only restricted to glycan-dependent ones (Figure 1). In this

context, there is a lot of information about the glycan-

dependent functions of galectins. On the contrary, our

comprehension of the glycan-independent ones is more

limited. At this level, an implicit question in selecting the

best galectin inhibitory strategy for cancer is: what

function(s) of these proteins should be preferentially

inhibited? Is it sufficient to inhibit the lectin-mediated

functions of galectins, or should the non-lectin functions

also be inhibited for maximum anti-tumor activity?

Noteworthy, complete inhibition of galectins by RNA

interference-based approaches was generally used to

confirm already-known biological functions of galectins

(Table 1). To the best of our knowledge, no new biological

functions have been reported by using these approaches.

Therefore, more research is needed to clarify this point and

to define which galectin functions should be targeted for

cancer treatments.
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4-Where galectin inhibition should be accomplished: This

point is closely related to the previous one. Since

galectins play relevant physiological functions, it would

be highly advantageous to inhibit them selectively where

they play a role in tumorigenesis. In this sense, we have

some clues for certain galectins. For instance, galectin-1

downregulation in transformed (17, 123, 131–135) and

tumor-associated stroma cells (46, 47, 125, 126, 136) have

demonstrated beneficial effects in pre-clinical studies.

Therefore, these reports clarify the cellular targets where

galectin-1 should be inhibited to obtain beneficial anti-

tumor effects. In addition, the sub-cellular localization

where galectins play their functional roles must also be

considered. For instance, galectin-3 was described at

different sub-cellular compartments; inhibition of this

protein in each of these localizations often causes

opposite biological effects (182). These questions should

be addressed for all the galectin members.

5- Appropriate pharmacokinetics; specific biodistribution

towards the cell targets: Several of these inhibitors are

polar molecules, of low molecular weight, with different

capabilities to diffuse through the plasma membrane

and, therefore, acting inside the cell (141). On the

contrary, large molecules such as inhibitory antibodies

are predicted only to engage extracellular galectins.

Moreover, like most molecules, galectin inhibitors are

trapped in organs with high blood flow, such as the liver,

and inactivated through metabolic processes. Moreover,

small molecules generally suffer rapid renal clearance

(323). Such phenomena reduces the half-life of these

molecules, and in consequence, their inhibitory

efficiency. Furthermore, other pharmacokinetic

properties may also be taken into consideration. In

particular, many of the inhibitors are sensitive to

enzymatic hydrolysis by glycosidases (324), proteases

(325) or nucleases (326). Additionally, inhibitors’

random biodistribution can generate adverse effects

due to the inhibition of galectins in tumor-unrelated

cells. Therefore, developing degradation-resistant

molecules with tumor (and its stroma)-selective

biodistribution would be highly desirable.

6- Not expensive and easy translation to clinics should also

be addressed.

7- Development of resistance to inhibitory treatments:

tumors are highly dynamic biological entities capable

of surviving by inducing resistance mechanisms. In the

case of inhibiting the lectin functions of galectins, it is

worth noting that the glycome is highly adjustable (by

enzymatic remodeling without requiring neosynthesis).

Thus, we might think that tumor cells would be capable

of changing the glycan structures through sialylations

(327) or sulfations (328); modifications which have a
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high impact on galectin biological effects. Otherwise, the

same reasoning applies to glycan-independent functions

of galectins and resistance development. In this context,

it has been shown that the synergism between different

treatments allows the use of lower doses of compounds

and thus avoids the development of resistance (329).

Therefore, this topic represents a significant issue for

their transfer to the clinics.
Faced with the critical challenges of galectin inhibitors,

regulating the cell glycosylation pattern appears as an

alternative option [reviewed in (330, 331)]. Indeed, the

creation of glycan ligands for galectins depends on the

activities of various glycosyltransferases and glycosidases in the

cell (332). In pre-clinical studies, glycome regulation is obtained

through control of glycosyltransferases and glycosidases-coding

genes (333–339), the use of metabolic inhibitors of glycan

biosynthesis (340, 341), or carbohydrate-specific and blocking

antibodies (342–344). While such biological disruptions are

easily obtained at a pre-clinical level, their therapeutic

implementation in patients must also overcome important

challenges. In particular, as the glycome is a major

determinant of multiple physiological processes, it is essential

to avoid side effects. Once again, this type of intervention should

be tumor (or tumor-associated stroma)-selective. Moreover, it is

pertinent to point out that glycome regulation would only affect

some galectin functions (those glycan-dependent). On the other

hand, certain galectin inhibitors affect broader functions

(including glycan-independent ones such as gene control). The

authors consider that both strategies (galectin and glycome

regulations) should be evaluated more in-depth, and

synergistic or additive anti-tumor effects could be obtained

through their combinations.
Final considerations

The first reports about the usefulness of galectin inhibitors

appeared in the early 2000s. Since then, a remarkable compendium

of basic studies supports their potential utility in cancer, especially

in synergy with other treatments (Table 1). However, none of the

described galectin inhibitors have achieved clinical success; most did

not go beyond the initial phases of clinical trials (Table 2). A

detailed analysis of this Table 2 shows that most studies did not

translate into better treatments for patients, not even in a better

fundamental understanding, as results are often not reported.

Therefore, clinical and pre-clinical results must be communicated

(even if the observed results differ from those expected) since they

contribute to the continuous amelioration of these strategies.

Analyzing all the inhibition strategies reported so far, the

authors opine that molecular biology techniques (e.g., RNA
tiers in Immunology 16
interference) offer attractive advantages in affinity and member

specificity compared to inhibitors with a carbohydrate nature or

those obtained from chemical synthesis. In the case of blocking

antibodies, there are important biodistribution drawbacks,

which limit galect in inhibit ion in specific cel lular

compartments. Despite these particular aspects, much

remains to be understood about the pharmacokinetic

parameters, toxicity, and tumor resistance mechanisms for all

galectin inhibitors.

Finally, since the available literature indicates that galectin

inhibition induces effective anti-tumor effects, especially when

combined with other strategies (e.g., irradiation, anti-angiogenic,

chemotherapies, etc.), this concept should also be considered

when designing therapeutic approaches. We conclude that many

basic studies are still needed for an efficient clinical translation of

galectin inhibitors.
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