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C-reactive protein (CRP), an active regulator of the innate immune system, has

been related to COVID-19 severity. CRP is a dynamic protein undergoing

conformational changes upon activation in inflammatory microenvironments

between pentameric and monomeric isoforms. Although pentameric CRP is

the circulating isoform routinely tested for clinical purposes, monomeric CRP

shows more proinflammatory properties. Therefore, we aimed to determine

the potential of monomeric CRP in serum as a biomarker of disease severity in

COVID-19 patients (admission to intensive care unit [ICU] and/or in-hospital

mortality). We retrospectively determined clinical and biological features as

well as pentameric and monomeric CRP levels in a cohort of 97 COVID-19

patients within 72h of hospital admission. Patients with severe disease had

higher levels of both pentameric and monomeric CRP. However, multivariate

analysis showed increased mCRP but not pCRP to be independently associated

to disease severity. Notably, mCRP levels higher than 4000 ng/mL (OR: 4.551,

95% CI: 1.329-15.58), together with number of co-morbidities, low lymphocyte

count, and procalcitonin levels were independent predictors of disease severity

in the multivariate model. Our results show the potential of mCRP levels as a

marker of clinical severity in COVID-19 disease.
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1 Introduction

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) infection was declared in March 2020 a global pandemic by

the World Health Organization with more than 4 million related deaths since then (1).

COVID-19 is asymptomatic or mild in most cases. Yet, 10% of patients present severe
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2022.1105343/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1105343/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1105343/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.1105343&domain=pdf&date_stamp=2023-01-18
mailto:bmolinsl@recerca.clinic.cat
https://doi.org/10.3389/fimmu.2022.1105343
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.1105343
https://www.frontiersin.org/journals/immunology


Molins et al. 10.3389/fimmu.2022.1105343
disease due to pneumonia, acute respiratory distress syndrome

(ARDS), systemic inflammation, thrombosis, and multiorgan

failure, causing death in 1-3% of patients. Indeed, some patients

with mild symptoms may present a sudden progression to severe

disease (2).

Noteworthy, although hospitalization for COVID-19 is

needed only in a minority of patients and disease management

has majorly improved since the first outbreak in March 2020, the

highly infectious nature of SARS-CoV-2 driving to high

incidence spikes in short periods of time is still posing a threat

to health care systems worldwide. Thus, predicting individual

prognosis is crucial to provide a personalized treatment to

reduce mortality. Age, male sex, hypertension, the presence of

certain co-morbidities, and several blood biomarkers have been

consistently associated with worse prognosis (3, 4).

C-reactive protein (CRP), an acute phase reactant and an

active regulator of the innate immune system, is increased in

COVID-19 patients and has been associated to disease severity

(5, 6). Among its multiple functions, CRP activates the classical

pathway and inactivates the alternative pathway of the

complement system (7). CRP is mainly synthesized in the liver

upon interleukin- (IL-) 6 induction and its levels can increase up

to 100-fold in response to several forms of tissue damage,

infection and inflammation. In plasma, CRP circulates as a

disk-shaped pentamer (also known as pentameric CRP, pCRP)

composed of five 23 kDa non-covalently bound subunits (8).

Nevertheless, low pH, oxidative stress and bioactive lipids from

activated cells can dissociate pCRP into its monomeric subunits

(9, 10) by means of phospholipase A2 activation and subsequent

lysophosphatidylcholine cell surface exposure (11). This

conformation of CRP, named monomeric CRP (mCRP),

shows different biological functions and antigenicity-

expressing neoepitopes than pCRP representing the tissue-

associated insoluble form of CRP. Although there is no

standardized method, circulating levels of mCRP in serum can

be measured by means of customized ELISA (12). Unlike pCRP,

mCRP presents a prothrombotic and proinflammatory

phenotype (13–16). Given that most reports on the role of

CRP in systemic diseases are based on the pentameric

conformation, additional research on the specific implications

of mCRP over pCRP should be addressed.

Considering the hyperinflammatory nature of COVID-19

complications and the fact that mCRP dissociates from pCRP in

proinflammatory microenvironments and it is also the main

active proinflammatory isoform of CRP, we hypothesized that

mCRP could be considered as a more specific prognostic marker

of inflammatory progression and severity than pCRP in

COVID-19. Thus, we aimed to evaluate mCRP and pCRP

levels in COVID-19 patients at hospital admission to

determine their prognostic value to progression to more severe

disease forms.
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2 Methods

2.1 Study design, patients, and
data collection

We performed an observational retrospective study of 97

patients admitted to the hospital (Hospital Clinic of Barcelona,

Spain) for > 48h with confirmed acute SARS-CoV-2 infection by

rRT-PCR performed on nasopharyngeal and throat swabs

between March 1st and September 30th 2020. Included

patients had serum samples preserved in the COVIDBANK

within 72h of admission for further determination of

circulating levels of mCRP. The COVIDBANK is a

biorepository of biological samples from SARS-CoV-2 patients

treated in Hospital Clinic of Barcelona with the aim of providing

samples of quality for SARS-COV-2-related scientific research.

The Institutional Ethics Committee of Hospital Clinic of

Barcelona approved the study (HCB/2020/0874) and patients

gave their informed consent to the COVIDBANK.

Data were retrospectively obtained for all patients included

in the study from the electronic health records. Variables

included were age, sex, and co-morbidities (chronic heart

disease , diabetes mel l i tus , chronic kidney disease ,

hypertension, solid malignant neoplasm, chronic respiratory

disease, haematologic disease, hepatopathy, solid organ

transplant, HIV). Biochemical variables included blood cell

count (eosinophils, basophils, lymphocytes), creatinine, D-

dimer, ferritin, lactate dehydrogenase (LDH), procalcitonin,

troponin, and pCRP at admission. The composite outcome

variable included the need of intensive care unit (ICU)

admission and/or in-hospital mortality at any time during in-

hospital stay. In addition, mCRP levels were determined from

preserved serum samples of the COVIDBANK.
2.2 Serum mCRP determination

Serum mCRP was detected with the ELISA protocol

described by Zhang et al. with some modifications (12, 17).

Briefly, mouse anti-human CRP mAb CRP-8 (Sigma-Aldrich,

C1688) was immobilized as capture antibody at 1:1000 in

coating buffer (10 mM sodium carbonate/bicarbonate, pH 9.6)

for 18h at 4°C. This commercially available monoclonal

antibody has been reported to specifically recognize mCRP,

but not pCRP (18). After washing three times for 2 min each

with TBS, non-specific binding was blocked with filtered 1%

BSA-TBS for 1 hour at 37°C. Samples were diluted 1:100 in

blocking buffer and added into wells for 1h at 37°C. Then,

washing step was repeated and samples were incubated with

sheep anti-human CRP polyclonal antibody (MBS223280,

MyBioSource) at 1:5000 in blocking buffer for 1h at room
frontiersin.org
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temperature (RT), before incubation with a HRP-labelled

donkey anti-sheep IgG (Abcam) at 1:10000 in blocking buffer

for 30 min at RT. Signalling was detected with VersaMax

Microplate Reader and the OD value of each sample was

calculated as OD450–OD570 nm. A standard curve was

prepared by serial dilutions of mCRP (0-50 ng/mL) obtained

by urea-chelation of pCRP (Calbiochem) (16) in blocking buffer

(1% BSA-TBS) in the presence of reference diluted sera (1:100).

The concentration of mCRP in the reference sera was below

detection level and therefore undetectable following 1:100

dilution. Controls using purified pCRP at a concentration of

100 ng/mL, which would be equivalent to 10 µg/mL after 1:100

dilution, only generated background signal, showing specificity

for mCRP.
2.3 Statistical analysis

Categorical variables were described as absolute (N) and

relative (%) frequencies and Chi square or Fisher’s test was used

for comparisons. Quantitative variables following a normal

distribution were represented as mean ± standard deviation

and differences between groups were determined with

Student’s t-test. Variables with a non-normal distribution were

expressed as median and minimum and maximum value and the

Mann-Whitney test was employed to determine significant

differences . Linear relat ionships were analysed by

determination of Spearman correlation coefficient. Statistical

assumptions were made based on significance level below 0.05.

To determine the variables associated with disease severity

(need for ICU admission and/or in-hospital mortality), a

multivariable logistic regression model was performed adding

the variables with a P value lower than 0.2 in the bivariate

analysis. Variables with more than 10% of missing values were

excluded. Quantitative variables added to the multivariate

analysis were dichotomized as follows: age (>70), pCRP (>10

µg/mL), mCRP (>4000 ng/mL), creatinine (>1.1 mg/dL in

women and >1.3 mg/dL in men), D-dimer (>500 ng/mL),

lymphocytes (<0.004 x109/L), procalcitonin (>0.5 ng/mL),

ferritin (>306 ng/mL in women and >336 ng/mL in men),

troponin (>50 ng/mL). Cut-off values of pCRP, creatinine, D-

dimer, lymphocyte count, procalcitonin, and ferritin were

chosen based on their abnormal levels associated to pathology.

The final model was reached through backward stepwise

removal of variables with p-value higher than 0.1 and using

Wald tests to demonstrate that each model was better than its

previous iteration. Odds ratio (OR) with 95% confidence interval

(CI) were calculated. To assess the predictive ability of each

model, we calculated the area under the receiver operating

characteristic (ROC) curve with its respective 95% confidence

interval (95% CI) and determined the cut-off value to maximize

sensitivity and specificity. Statistical analyses were performed

using SAS v9.4 software (SAS Institute Inc., Cary, NC, USA).
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3 Results
Study population consisted of 97 patients admitted to

Hospital Clıńic of Barcelona between March and September

2020 for > 48h with confirmed acute SARS-CoV-2 infection. The

mean age was 60 ± 17 years and 59 (61%) were males. The most

common co-morbidities were hypertension (50,5%), diabetes

mellitus (28.9%), chronic heart disease (23.7%), chronic

respiratory disease (21.6%), solid malignant neoplasm (15.5%),

and chronic kidney disease (15.5%). Other minor co-morbidities

included chronic liver disease, hematologic disease, solid organ

transplant, and HIV infection. A total of 27 (27.8%) patients

were admitted to the ICU and the in-hospital mortality rate was

25.8% (Table 1). Although the majority of patients that died

were previously admitted to ICU (15/25, 60%), some died in

normal ward (10/25, 40%). Severe disease was defined as ICU

admission and/or in-hospital mortality.

Patients with severe disease (37/97) were older (68.76 ± 14.8

vs. 55.02 ± 16.1 years, P<0.001) and had more co-morbidities

(2.43 [0.00-5.00] vs. 1.20 [0.00-5.00], P<0.001). Patients with

higher levels at admission of creatinine (1.17 [0.24-6.49] vs. 0.85

[0.50-4.05] mg/dL, P=0.012), D-dimer (1200 [400-28400] vs.

450 [200-6000] ng/mL, P<0.001), procalcitonin (0.18 [0.03-

15.03] vs. 0.08 [0.00-1.58] ng/mL, P<0.001), troponin (11.65

[0.00-304] vs. 3.25 [0-803] ng/L, P<0.001), pCRP (11.61 [1.65-

33.50] vs. 5.63 [0.00-33.34] µg/mL, P=0.013), and mCRP (3551.3

[30-9806] vs. 206 [30-8086], ng/mL P<0.001) and lower

lymphocyte count (0.60 [0.10-2.90] vs. 1.15 [0.30-2.20] 109/L,

P<0.001) were also more likely to develop severe disease.

Chronic kidney and heart disease, hypertension, and solid

malignant neoplasm were also associated to disease severity

(Table 1). As shown in Figure 1, patients that required ICU

admission and/or died had higher levels of both monomeric

(*P<0.001) and pentameric CRP (*P=0.013). mCRP significantly

correlated with pCRP (r=0.377, P<0.001), although the

correlation coefficient was only intermediate (Figure 1C).

When analysing the ratio log_mCRP/pCRP no association

with disease severity was found. In fact, when determining the

correlation of log_mCRP/pCRP with established severity

markers only a statistically significant correlation was observed

for creatinine (r=0.241, P=0.019) and troponin (r=0.264,

P=0.015), but not for procalcitonin (r=-0.007, P=0.94),

lymphocyte count (r=-0.173, P=0.096), ferritin (r=-0.157,

P=0.139), and D-dimer (r=0.133, P=0.208). Instead, mCRP

significantly correlated with more markers of severity

including procalcitonin (r=0.278, P=0.007), lymphocyte count

(r=-0.335, P=0.001), creatinine (r=0.205, P=0.044), troponin

(r=0.275, P=0.01), and D-dimer (r=0.329, P=0.001) but not

with ferritin (r=0.087, P=0.410). Nevertheless, in most cases

correlation coefficient was weak (r<0.3).

Quantitative variables were then dichotomized and added to

the multivariate analysis: number of pathologies, high levels of
frontiersin.org
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mCRP (>4000 ng/mL) and procalcitonin (>0.5 ng/mL), and low

lymphocyte count (<0.004 x109/L) were independently associated

to disease severity. Lymphocyte count (OR: 4.615, 95% CI: 1.493-

14.26), procalcitonin (OR: 18.199, 95% CI: 2.235-148.17), and

mCRP (OR: 4.551, 95% CI: 1.329-15.58) were retained in the

model as independent predictors of severity (Table 2). The area

under the ROC curve (AUC) was 0.869 (95% CI: 0.794-0.945, and

the best cut-off had a 86.1% sensitivity and 75.0% specificity)

showing a good ability to predict in-hospital mortality (Figure 2).
Frontiers in Immunology 04
4 Discussion

Since the first outbreak in early 2020 huge labour has been

devoted to understand COVID-19 pathophysiology and to

identify prognosis factors for disease severity worldwide. The

wide range of signs, symptoms and clinic severity urge to a

personalized approach for disease management. In this regard,

certain blood biomarkers such as IL-6, ferritin, D-dimer, and

CRP may be able to anticipate the development of the cytokine
TABLE 1 Clinical and analytical features of COVID-19 patients upon admission and significant risk factors for disease severity (ICU admission
and/or in-hospital mortality) on bivariate analysis.

Variable Total N=97 Non-severe disease N=60 Severe disease N=37 P-value

Age, mean (SD), years 60.3 (16.9) 55.02 (16.1) 68.76 (14.8) *<0.001

Male, N (%) 59 (60.2) 36 (61.0) 23 (39.0) 0.911

Pre-existing comorbidities, N (%)

Chronic heart disease 23 (23.7) 7 (30.4) 16 (69.6) *<0.001

Diabetes mellitus 28 (28.9) 15 (53.6) 13 (46.4) 0.285

Chronic kidney disease 15 (15.5) 3 (20.0) 12 (80.0) *<0.001

Hypertension 49 (50.5) 24 (49.0) 25 (51.0) *0.008

Solid malignant neoplasm 15 (15.5) 5 (33.3) 10 (66.7) *0.013

Chronic respiratory disease 21 (21.6) 15 (71.4) 6 (28.6) 0.308

Other pathologies 3 (33.3) 6 (66.7) 0.064

Haematologic disease 2 (2.1) 1 (50.0) 1 (50.0) 1.000

Chronic liver disease 3 (3.1) 0 (0) 3 (100) 0.053

Solid organ transplant 3 (3.1) 1 (33.3) 2 (66.7) 0.556

HIV 3 (3.1) 1 (33.3) 2 (66.7) 0.556

Number of pathologies, median (min-max) 1.67 (0.00-5.00) 1.20 (0.00-5.00) 2.43 (0.00-5.00) *<0.001

Analytical variables, median (min-max)

Basophils, 109/L 0.00 (0.00-0.10) 0.00 (0.00-0.10) 0.00 (0.00-0.10) 0.838

Eosinophils, 109/L 0.00 (0.00-0.50) 0.00 (0.00-0.40) 0.00 (0.00-0.50) 0.150

Lymphocytes, 109/L 1.00 (0.10-2.90) 1.15 (0.30-2.20) 0.60 (0.10-2.90) *<0.001

Creatinine, mg/dL 0.87 (0.24-6.49) 0.85 (0.50-4.05) 1.17 (0.24-6.49) *0.012

D-dimer, ng/mL 650 (200-28400) 450 (200-6000) 1200 (400-28400) *<0.001

Ferritin, ng/mL 596 (12-6126) 487 (12-4309) 740 (21-6126) 0.127

LDH, U/L 302 (148-971) 298 (148-675) 332 (168-971) 0.178

Procalcitonin, ng/mL 0.12 (0.00-15.03) 0.08 (0.00-1.58) 0.18 (0.03-15.03) *<0.001

Troponin, ng/L 7.20 (0.00-803) 3.25 (0.00-803) 11.65 (0.00-304) *<0.001

pCRP, µg/mL 6.43 (0.00-33.50) 5.63 (0.00-33.34) 11.61 (1.65-33.50) *0.013

mCRP, ng/mL 1860 (30-9805) 206.0 (30-8086) 3551.3 (30-9806) *<0.001

Log, mCRP/pCRP 5.44 (-0.11-7.82) 4.75 (-0.11-7.82) 5.64 (0.54-7.27) 0.216

*Statistically significant.
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storm leading to COVID-19 complications (19, 20). Here, we

provide insights on the potential of the conformational isoforms

of CRP to predict disease severity, defined as ICU admission

and/or in-hospital mortality. Our results show that high levels of

circulating mCRP in COVID-19 patients at hospital admission

are independently associated to disease severity.

CRP is a dynamic protein subjected to conformational

changes upon activation in inflammatory microenvironments
Frontiers in Immunology 05
between circulating (pCRP) and monomeric (mCRP) tissue-

based isoforms. Notably , mCRP mani fes ts potent

proinflammatory effects and activates platelets (16), leukocytes

(15), and endothelial cells (21). Moreover, mCRP deposition has

been localized in inflamed tissues, thus suggesting an active role

in the progression of several inflammatory disorders including

Alzheimer’disease (22), cardiovascular disease (23), and age-

related macular degeneration (24). Although mCRP could

represent a more accurate marker of inflammation, pentameric

pCRP is the CRP isoform determined for clinical purposes.

Currently, there are no commercially available assays to

determine serum or plasma levels of mCRP, likely due to the

insoluble nature of the monomeric subunit. However, several

reports have developed customized ELISA assays to determine

circulating mCRP using specific antibodies against mCRP. Some

authors have generated their own antibodies against mCRP (25–

27), others have used mCRP antibodies (clone 8C10) developed

by Potempa et al. (28), while others have used the commercially

available clone CRP-8 that has been described to specifically

recognize mCRP (12, 29). In our study, we followed the protocol

described by Zhang et al., and used the monoclonal antibody

CRP-8 to quantify circulating mCRP in our cohort as this

protocol avoided cross-reactivity with pCRP. Alternatively,

flow cytometry has also been used by some authors to

determine circulating mCRP (30, 31).

The precise nature of the mCRP detected by ELISA is

unclear as both highly denaturated or globular mCRP forms

may be present in serum samples. Given the reduced solubility of

mCRP it is conceivable that detected mCRP can be also bound to

microparticles. Alternatively, circulating mCRP can be found in

a globular form with binding properties similar to the

pentameric form as recently described by Williams et al. (29).

Indeed, further research regarding the structure and function of

physiological circulating mCRP is warranted.

No standardized method for circulating mCRP determination

has been established yet and different techniques and protocols

may result in different mCRP values, which currently limit the

translational application of mCRP in the clinical setting. Yet, few
A

B

C

FIGURE 1

mCRP and pCRP levels in COVID-19 patients. Box-and whisker
plots of mCRP (A) and pCRP (B) levels according to disease
severity (ICU-admission and/or in-hospital mortality). Median
values are highlighted by solid lines. Statistical analysis was
conducted using Mann-Whitney test (*P < 0.05, **P < 0.001).
Correlation between mCRP and pCRP (C).
TABLE 2 Significant risk factors for disease severity (ICU admission
and/or in-hospital mortality) on multivariate regression analysis.

Variable OR 95% CI P- value

Number of pathologies *0.036

1 vs. 0 10.660 1.448-78.48

2 vs. 0 12.135 1.787-82.41

2 vs. 1 1.138 0.344-3.77

mCRP >4000 ng/mL 4.551 1.329-15.58 *0.016

Lymphocytes <0.004x109/L 4.615 1.493-14.26 *0.008

Procalcitonin >0.5 ng/mL 18.199 2.235-148.17 *0.007

*Statistically significant.
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studies have determined circulating mCRP levels in several

diseases including skin related autoimmune disorders (0-120 ng/

mL) (12), Adult-Onset Still-s disease (0-1000 ng/mL) (25),

systemic lupus erythematosus (1-7 ng/mL), antineutrophil

cytoplasmic antibody-associated vasculitis (5-20 ng/mL) (28),

atherosclerosis (0-50 ng/mL) (27), and chronic pulmonary

obstructive disease (600-1000 ng/mL) (26). In these studies,

mCRP levels were lower than those for hospitalized COVID-19

patients from our study. As a matter of fact, the study of Karlsson

et al. also included a control group of healthy subjects with a mean

level of mCRP below 10 ng/mL (28). Although differences may be

attributed to the method used to determine mCRP it is

conceivable that COVID-19 patients at hospital admission may

present increased levels of mCRP compared to other pathologies.

Because mCRP dissociates from pCRP, it is also conceivable that

high levels of pCRP, as the ones of our cohort, lead to higher levels

of mCRP. Indeed, mCRP significantly correlated with pCRP

although the correlation coefficient was not particularly strong.

Given the wide range of COVID-19 clinical presentation,

severe disease was considered on either ICU admission and/or

in-hospital death in order to search for high external validity

findings. Accordingly, our results showed that both mCRP and

pCRP were significantly associated to disease severity in the

bivariate analysis. Interestingly, mCRP, but not pCRP, was

independently associated to disease severity in the multivariate

analysis. Because mCRP represents the proinflammatory

conformation of CRP we also aimed to determine whether the

ratio mCRP/pCRP was associated to disease severity.

Nevertheless, unlike mCRP, this variable was not associated to

disease severity. Notably, the multivariate model including

mCRP, number of pathologies, low lymphocyte count, and

procalcitonin had an AUC of 0.869, with a 86.1% sensitivity

and 75.0% specificity in the best cut-off showing a good ability to

predict in-hospital mortality. Although our results suggest that

mCRP could serve as a prognostic factor of disease severity in

COVID-19, a standardized method for determining circulating

mCRP should be established before its clinical application.
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Whether mCRP plays a role in the progression of COVID-19

or is merely a marker remains unclear. A recent study showed

that mCRP can bind to the SARS-CoV-2 spike receptor binding-

domain (RBD) and competes with the binding of the spike RBD

to angiotensin-converting enzyme 2 (ACE2) receptor (32).

Increased levels of CRP induced by SARS-CoV-2 infection

may eventually lead to unrestrained inflammation. Indeed,

CRP apheresis can reduce the immune response in COVID-19

patients, as showed in a case series report of seven patients (33).

Targeting mCRP in COVID-19 patients could represent a novel

therapeutic target. Besides CRP apheresis, approaches aimed at

inhibiting either CRP dissociation into mCRP (34, 35) or

antibodies against mCRP (36) could represent attractive

a l t e rna t i v e s to p r even t the cy tok ine s to rm and

hyperinflammatory status associated to COVID-19. Yet,

caution should be taken when targeting CRP as the effects of

CRP isoforms may differ depending on the infection stage; in

early phases of infection CRP acts as a soluble pattern

recognition receptor targeting necrotic or damaged tissue,

while in late phases of infection, unrestrained levels of CRP

may cause hyperinflammation with its subsequent

complications. mCRP is mainly generated within inflamed

tissues and has a short circulating half-life (21), thus

suggesting that circulating mCRP might not play a direct role

in autoimmune induction. Yet, it may act as an indicator of local

mCRP accumulation and subsequent inflammation.

Immunostaining of mCRP in damaged infected tissue could

shed light on the role of mCRP in COVID-19 pathophysiology.

In summary, despite certain intrinsic limitations including

retrospective and single centre nature together with limited

sample size, our study shows for the first time the role of

circulating mCRP as a prognostic factor of disease severity in

COVID-19 which should be confirmed in prospective

multicentric studies. It should be also pointed that our patient

cohort was recruited during the first outbreak of the pandemic,

before proper treatments and vaccines were available, which may

differ with the phenotype of current COVID-19 patients as

disease is now better understood and treated. Determination

of mCRP levels in vaccinated COVID-19 patients would help to

better understand the role of mCRP in COVID-19. Further

studies are warranted to elucidate the role of mCRP in the

different stages of SARS-COV-2 infection in order to identify

novel targets to prevent the eventual progression to

cytokine storm.
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