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Metabolic tracers in evaluation
of immune responses to
immune checkpoint inhibitor
therapy for solid tumors
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Unique patterns of response to immune checkpoint inhibitor therapy,

discernable in the earliest clinical trials, demanded a reconsideration of the

standard methods of radiological treatment assessment. Immunomonitoring,

that characterizes immune responses, offers several significant advantages

over the tumor-centric approach currently used in the clinical practice: 1)

better understanding of the drugs’ mechanism of action and treatment

resistance, 2) earlier assessment of response to therapy, 3) patient/therapy

selection, 4) evaluation of toxicity and 5) more accurate end-point in clinical

trials. PET imaging in combination with the right agent offers non-invasive

tracking of immune processes on a whole-body level and thus represents a

method uniquely well-suited for immunomonitoring. Small molecule

metabolic tracers, largely neglected in the immuno-PET discourse, offer a

way to monitor immune responses by assessing cellular metabolism known to

be intricately linked with immune cell function. In this review, we highlight the

use of small molecule metabolic tracers in imaging immune responses, provide

a view of their value in the clinic and discuss the importance of image analysis in

the context of tracking a moving target.
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Introduction

Not a new concept in cancer treatment (1), immunotherapy has gained the well-

deserved attention because of the remarkable clinical outcomes achieved in a subset of

patients with advanced solid tumors who previously had very limited treatment options (2).

Immunotherapy that encompasses various treatment strategies - cancer vaccines, oncolytic

viruses, cytokine and cell therapy, immune checkpoint inhibitors (ICI) - aims to augment
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natural immune responses to eliminate malignancy. Immune

checkpoint inhibitors (ICI), monoclonal antibodies targeting

immune checkpoints, such as programmed death-1 (PD-1), its

ligand (PD-L1) (3), or cytotoxic T lymphocyte antigen-4 (CTLA-4),

disrupt immune tolerance by blocking regulators of T cell activation

and allowing effective anti-tumor response (4). The demonstration

of the efficacy of ipilimumab (targeting CTLA-4) in metastatic

melanoma (5) and its subsequent regulatory approval in 2011, led

to a rapid expansion in the use of ICIs in immunooncology in a

number of tumor indications and unprecedented tissue/site-

agnostic authorization. The number of T cell-targeted

immunomodulating therapies under development is steadily

increasing as is the number of clinical trials evaluating them,

reaching over 4000 investigations in 2020 (6).

The remarkable clinical successes achieved with ICIs have

been met with several challenges stemming in large part from a

mechanism of action that is different from conventional cytotoxic

drugs and lack of predictive biomarkers of response (7). Unique

patterns of response to ICIs, such as pseudoprogression and

hyperprogression, represent a difficult conundrum that

confounds treatment decision process for clinicians (8).

Pseudoprogression, observed since early clinical trials, is a

transient increase in tumor size followed by tumor regression.

In pseudoprogression, the initial increase in tumor size, caused by

intratumoral immune cell infiltration and inflammation, signifies

a good response to therapy that would require treatment

continuation past the apparent progression phase. On the other

hand, a more recently described phenomenon of rapid tumor

growth, hyperprogression, would necessitate immediate cessation

of ICI treatment and alternative therapies. Updated radiological

response criteria, such as iRECIST, were developed to address the

response patterns unique to immunotherapeutics, but only assess

changes in the tumor burden (9). Although tumor rejection is the

ultimate goal of immmunotherapies, tumor-centric approach to

response assessment neglects effects of immunotherapy on its

intended targets - immune cells. By being target-focused,

immunomonitoring methods have the potential to provide: 1)

better understanding of the drugs’ mechanism of action and

treatment resistance, 2) earlier assessment of response to

therapy, 3) patient/therapy selection, 4) evaluation of toxicity

and 5) more accurate end-point in clinical trials. Multiple

sophisticated technologies, both tissue- and blood-based, have

been developed that aid in immune contexture phenotyping (10).

In this review we focus on the Positron Emission Tomography

(PET) imaging biomarkers and the role they play in assessing

immune response to ICI. PET imaging agents that target key

players of the immune response could offer a powerful

noninvasive tool for a holistic, whole-body evaluation of

complex immunologic processes and simultaneous assessment

of both on- and off-target effects. Although Immuno-PET

traditionally refers to the use of radiolabeled monoclonal

antibodies and their fragments, here, we highlight small

molecule metabolic tracers and their application in imaging
Frontiers in Immunology 02
immune responses. We also provide a view of the value of these

imaging agents in the clinic and discuss the challenges of image

analysis associated with tracking a moving target.
Imaging targets

Compelling evidence supports the significance of immune

contexture, both before and during therapy, in the clinical

outcome of cancer patients (11). Of all the immune cells

frequently found in the tumor microenvironment, the

presence of CD8+ cytotoxic T cells has been found to have the

most significant positive predictive value on the patient survival.

The positive predictive value of CD8+ cytotoxic T cells was

found across 17 solid cancer types, including colorectal, breast,

melanoma, lung, head and neck and others (12). Because of the

vital role that the CD8+ T cells play in therapy response and

clinical outcome, imaging agents that are being developed for

non-invasive immunomonitoring aim to characterize different

aspects of the CD8+ subset – their abundance (13, 14), activation

(15, 16) or effector function (17). The degree of specificity for

CD8+ T cells among the metabolic tracers that are the focus of

this mini review, varies depending on what metabolic pathway

they target (18). As the contributions of other immune subsets,

in particular CD4+ T cells, on antitumor immune response is

increasingly being recognized (19), imaging agents that, in

addition to CD8+, assess other immune subtypes as well may

be of great value for assessment of immune response

to immunotherapies.
Metabolism and T cell function

Cellular metabolism is intricately linked to T cell function,

dynamically adapting to support all aspects of T cell response:

activation, proliferation, survival and effector function (20). As they

exit quiescence spurred by immunologic and microenvironmental

cues, T cells undergo metabolic reprogramming that involves

diverse changes and upregulation of glycolysis, glutaminolysis,

amino acid metabolism, fatty acid oxidation and synthesis, and

mitochondrial metabolism and biogenesis. This metabolic rewiring

supports not only the increased demands for bioenergy, but also for

biomass and production of effector molecules.

The transformation of normal cells into highly proliferating,

dysregulated cancer cells is also supported by alterations in

metabolism. The similarities in metabolic needs and pathways

employed by both activated immune cells and cancer cells results

in a metabolic competition within the tumor microenvironment

(21). The metabolically hostile tumor microenvironment is now

recognized as one of the key mechanisms of impaired antitumor

immunity and is being targeted in novel immunotherapeutic

approaches (22). For metabolic tracers, the overlap between

cancer cells and activated immune cells represents a significant
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challenge as it affects the specificity of the agents (Figure 1).

However, despite this confounding factor, metabolic tracers have

shown utility and great potential in evaluating and predicting

response to ICI.
Upregulated glycolysis

Increased uptake of glucose and accompanying lactate

production were one of the earliest recognized hallmarks of

cancer metabolism. A radiolabeled analog of glucose, 18FDG,

that reports on utilization of glucose in tumors is routinely used

in diagnosis, staging and restaging of oncologic patients. Because

of its widespread use in oncology, the utility of FDG in

assessment of response to ICI has been the most studied of all

metabolic tracers. The majority of the studies, focusing primarily

on melanoma and non-small lung cancer, aimed to evaluate

therapy induced changes in the tumor metabolism. These

investigations resulted in an evolving set of PET specific

criteria that have been developed to address response patterns

observed with immunotherapy (23).

As shared avidity for glucose between immune and tumor

cells impedes the analysis of FDG uptake in the immune cells

within the tumor microenvironment (TME) (24), a few studies

that explored the use of FDG as an agent for assessment of the

immune, rather than tumor response to therapy focused on

examining post-therapy signal changes in non-tumor tissue. To

identify the metabolic patterns induced by a successful

antitumor immune response, Schwenck et al. retrospectively

analyzed changes in FDG uptake in the primary and
Frontiers in Immunology 03
secondary lymphoid organs, specifically bone marrow and

spleen, in metastatic melanoma patients treated with ICI (25).

While no differences in FDG uptake were found in the spleens,

the post-therapy signal change in the bone marrow showed

significant differences between responders and non-responders.

Post immunotherapy, responding patients showed an increase in

FDG signal in the axial skeleton, while in non-responders the

signal decreased. The authors suggested that the observed

increase in FDG signal in the bone marrow post-therapy

might indicate an increase in hematopoiesis argued to be

necessary for successful immunotherapy. In addition to the

change in the FDG signal post therapy, the analysis also

revealed a higher baseline signal in the bone marrow of the

responders. This finding seems to be in contrast to the studies

that found higher FDG activity in the bone marrow to be

inversely correlated with survival (26–28). A systematic review

that included studies totaling more than 2500 patients suggested

a direct relationship between the tumor and bone marrow

glucose metabolism and systemic inflammation. The inverse

association of bone marrow metabolism with survival could

indicate immunosuppression associated with host systemic

inflammation (27).

In addition to evaluation of lymphoid tissue, another

approach to assessing immune response using FDG is to

analyze off-target toxicity associated with excessive immune

reaction. Immune-related adverse effects (irAEs) can affect any

organ but are most commonly observed in the gastrointestinal

tract, endocrine glands, skin and liver (29). As some studies found

irAEs to be associated with a better response to immunotherapy,

presumably by indicating an immune flare necessary for an
A B

FIGURE 1

(A) Highly proliferating tumor and immune cells share metabolic needs. (B) The effects of immunotherapy on immune cells using metabolic
tracers can be assessed in the tumor microenvironment but also at sites where no metabolic competition with tumor cells exists: the bone
marrow, lymph node, thyroid.
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antitumor effect, Nobashi et al. investigated whether FDG-

detectable irAEs could be a favorable prognostic marker (30).

The retrospective analysis involving 40 patients with different

types of cancer treated with check point inhibitors found that

approximately 82% of patients with FDG-detectable irAEs had a

complete response on the final restaging scan. Interestingly,

patients who had an increase in FDG signal in the thyroid early

in the therapy, had the greatest clinical benefit from the therapy

(Figure 2). Those results suggested that thyroiditis, generally

appearing within first weeks after the start of immunotherapy,

has a potential to serve as an early indicator of immunotherapy

efficacy. The recent investigations of autoimmune thyroid disease

revealed the role of PD-1/PD-L1 mechanism in maintaining the

immune tolerance in the thyroid and suggested that the disruption

of the PD-1/PD-L1 pathway with ICIs may cause the loss of the

tolerance and development of thyroiditis (31).

Sarcoid-like lymphadenopathy, a symmetric nodal FDG

uptake pattern akin to the one observed in sarcoidosis, has
Frontiers in Immunology 04
been noted in about 5% of patients treated with check point

inhibitors (30). Also suggested to represent an immune flare

response that could indicate antitumor immune activity,

sarcoid-like lymphadenopathy was investigated by Sachpekidis

et al. in 41 patients with unresectable melanoma treated with

ipilimumab (anti-CTLA-4 antibody) (32). An increased,

symmetrical FDG uptake in the mediastinal and hilar lymph

nodes was observed either in the interim (after 2 cycles of

ipilimumab) or at the end of the treatment (after 4 cycles of

ipilimumab) in 10% of the patients (Figure 3). Interestingly, all

patients with this radiological finding demonstrated disease

control, indicating its association with response to therapy

rather than disease progression. However, the lack of this

characteristic nodal uptake did not imply resistance to therapy

as 27 responding patients did not show a sarcoid-like reaction.

Considering the sheer volume of FDG scans, the studies that

focus on the clinical value of inflammation in tissues other than

tumors can bring better understanding of response to
A B DC

FIGURE 2

Immune related thyroiditis. (A) FDG scan of a metastatic melanoma patient prior to starting immunotherapy (B) Three months into anti-PD-1
therapy, FDG uptake in multiple metastatic lesions decreased while the signal in thyroid increased. Bilateral hilar adenopathy that developed after 6
months (C), disappered at 9 months (D). Adapted with permission from Wolters Kluwer Health, Inc. under the terms of CC-BY-NC-ND license:
Nobashi T, Baratto L, Reddy SA, et al. Predicting Response to Immunotherapy by Evaluating Tumors, Lymphoid Cell-Rich Organs, and Immune-
Related Adverse Events Using FDG-PET/CT. Clin Nucl Med. 2019;44:e272-e279. https://journals.lww.com/nuclearmed/pages/default.aspx.
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immunotherapies. Although relatively small in scope, these

studies suggest the significance of off-target inflammation as

an indicator of systemic immune response. Validation of these

results in larger cohorts of patients is needed and prudent.
Increased biosynthesis

Heightened proliferation, observed both in cancer and

stimulated T cells, imposes needs for an increase in cellular

biomass and genome replication. The biosynthetic requirements

for proteins, lipids and nucleic acids in proliferating cells

consequently result in amplified demand for their building

blocks, amino and fatty acids, and nucleotides. Imaging agents

based on these building blocks can thus assess the changes in

biogenesis that occur in cancer and immune cells post therapy.
Frontiers in Immunology 05
Nucleic acid synthesis

Nucleotide pools, critically important for cells genomic

stability, growth, proliferation and survival, are intricately

controlled by the de novo and salvage nucleotide networks

(33). Salvage nucleotide pathway, occurring both in the cytosol

and mitochondria, recycles pre-formed nucleic bases,

nucleosides and nucleotides and is more energy-efficient than

the de novo pathway. In proliferating tissues, lymphoid organs

and the brain, the salvage pathway is the critical source of

nucleotides (34, 35). This reliance on salvage pathway in

lymphoid tissues motivated the development of radiolabeled

nucleosides for imaging immune activation.

The first agent designed to image immune cell activation,

[18F]FAC (1-(2’-deoxy-2’[18F] fluoroarabinofuranosyl)

cytosine), is a substrate for deoxycytidine kinase (dCK) in the
FIGURE 3

Sarcoid-like lymphadenopathy. (A) Transaxial FDG image of the thorax of a metastatic melanoma patient prior to starting immunotherapy
(B) After two cycles of anti-CTLA-4 therapy FDG avidity in the mediastinal and hilar lymph nodes was evident. Adapted with permission from
Springer Nature:Sachpekidis C, Larribere L, Kopp-Schneider A, Hassel JC, Dimitrakopoulou-Strauss A. Can benign lymphoid tissue changes in
(18)F-FDG PET/CT predict response to immunotherapy in metastatic melanoma? Cancer Immunol Immunother. 2019;68:297-303.
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salvage pathway and was reported by Radu et al. in 2008 (36). In

preclinical models, [18F]FAC showed better selectivity for

lymphoid organs than FDG and allowed visualization of

antitumor immune response in the spleen and lymph nodes.

However, [18F]FAC’s clinical use was precluded by its rapid

deamination in vivo, particularly in humans. [18F]CFA (2-

chloro-2′-deoxy-2′-[18F]fluoro-9-b-D-arabinofuranosyl-

adenine), a next-generation, metabolically stable, dCK agent,

showed accumulation in the lymphoid organs, bone marrow,

spleen and the axillary lymph nodes, in healthy volunteers (37).

Its utility in detecting immune response was assessed in

recurring glioblastoma (GBM) patients after dendritic cell

(DC) vaccination with and without anti-PD-1 treatment (38).

Functional PET imaging with [18F]CFA was used in

combination with advanced magnetic resonance imaging

(MRI) to differentiate between tumor progression and pseudo-

progression, a clinical challenge that complicates GBM patient

management. An increase in posttreatment [18F]CFA signal was

noted in the peripheral lymph nodes in two patients, with

different intratumoral tracer uptake (Figure 4). As the study

included only two patients, the clinical significance of the

observed changes could not be established.

The selectivity of [18F]FAC for immune cells motivated the

development of [18F]F-AraG as an agent for imaging activated T
Frontiers in Immunology 06
cells (39). [18F]F-AraG is a 18F-labeled analog of 9-b-D-

Arabinofuranosylguanine (40), a compound that has shown

selective accumulation in T cells (41, 42) and whose prodrug,

nelarabine, is FDA-approved for treatment of patients with T

cell acute lymphoblastic leukemia and T cell lymphoblastic

lymphoma (43). A substrate for deoxyguanosine kinase (44), a

kinase in the salvage pathway present solely in mitochondria and

critical in supplying nucleotides for mitochondrial DNA

(mtDNA) synthesis (37, 45, 46), [18F]F-AraG’s ability to

visualize activated T cells lies in its association with

mitochondrial biogenesis (47). In response to activation, T

cells undergo metabolic reprogramming and dramatically

increase both mitochondrial mass and mtDNA (48, 49)

resulting in an increased demand for nucleotides. [18F]F-

AraG’s specificity for T cells over tumor cells (15, 47, 50), a

rather rare characteristic in metabolic tracers, comes from the

interplay of enzymes in the salvage pathway, most notably dGK

and sterile alpha motif and HD-domain containing protein 1

(SAMHD1), a key regulator of nucleotide pools (47, 51).

Preclinically, [18F]F-AraG has been used to evaluate T cell

involvement in graft versus host disease (GVHD) (50),

rheumatoid arthritis (52), and multiple sclerosis (53). In

immunoncology, preclinical studies confirmed [18F]F-AraG’s

specificity for activated T cells and utility in predicting response
A

B

FIGURE 4

[18F]CFA PET and advanced MRI fusion images of two GBM patients (A, B) treated with dendritic cell vaccination and anti-PD-1 therapy.
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to immunotherapy (15), as well as in patient/therapy selection and

assessment of immune priming therapies (54). The ability of [18F]

F-AraG to image T cells activation and thus provide early

indication of adaptive response to immunotherapies in cancer

patients is currently being investigated in multiple Phase II trials.

An AI-assisted whole body evaluation of the change in [18F]F-

AraG signal in four head and neck squamous cell carcinoma

(HNSCC) patients after a single dose of anti-PD-1 antibody,

revealed both inter and intra-patient heterogeneity in immune

response to therapy (55). Importantly, the change in [18F]F-AraG

signal trended with the clinical outcome. The patients with areas

of stable or increasing signal post therapy had longer survival than

patients with disappearing or decreasing hotspots (Figure 5).

As different metastatic sites within a patient have distinct

immune contextures that affect their growth and response to

immunotherapy (56), quantification of a system-wide immune

response treatment response could offer a more comprehensive

assessment of response and provide an opportunity for therapy

modification to avoid resistance and optimize patient outcome.
Frontiers in Immunology 07
As a cell proliferation tracer, a deoxy thymidine analog, [18F]

FLT, has shown promise in assessing tumor response to various

standard therapies, such as chemo- and radiotherapy in different

types of cancer (57). Because [18F]FLT accumulates both in

proliferating tumor and immune cells (58), the assessments of

the immune responses to immunotherapy using [18F]FLT were

focused not on the tracer accumulation in the tumor but in the

lymphoid tissues, namely in the proximal lymph nodes (59) and

in the spleen (60). Intranodal vaccination of melanoma patients

with antigen loaded DCs led to a markedly increased [18F]FLT

signal in the treated LNs, but not in control LNs (59).

Interestingly, the signal in the treated LNs correlated with the

level of antigen-specific antibodies and proliferation of T cells in

peripheral blood. Treatment of metastatic melanoma patients

with anti CTLA-4 antibody, resulted in significant increase in

[18F]FLT signal in the spleen of some patients, at a median of

two months after the start of therapy (60). Unlike with [18F]FLT,

immune reactivity could not be followed with FDG after either

the DC vaccination or anti-CTLA-4 treatment.
A

B

FIGURE 5

AI-assisted whole body evaluation of the change in [18F]F-AraG signal in head and neck squamous cell carcinoma patients. (A) The change in
SUV mean in patients pre and post anti-PD-1 therapy. Different colors represent positive (>30% increase in signal, green), negative ( >30%
decrease in signal, red) and no change in signal post therapy (within ± 30% signal change range, grey). (B) The [18F]F-AraG signal change post
anti-PD-1 therapy trended with patients’ outcome. The patients with areas where the signal disappeared or decreased post therapy, indicative of
the lack of T cell activation, had shorter overall survival than the patients with areas of stable and increasing signal.
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Upregulated lipogenesis

Alterations in lipid metabolism in proliferating cells

supports their increased need for energy and cell membrane

synthesis. Imaging agents that evaluate lipid metabolism

alterations have largely been developed with the purpose of

diagnosis of those cancers in which FDG shows limited value,

such as in prostate or brain cancer. Although some of these

agents accumulate in inflammation as well, their use in assessing

immune responses have not been investigated (61). An increased

accumulation of [18F]-Fluorocholine, a promising agent that

reflects upregulation of cell membrane synthesis, has been

observed in the non-metastatic mediastinal, axillary, inguinal

and cervical lymph nodes in about 6.3% of prostate cancer

patients (62, 63). Considering the uptake in other inflammatory

processes involving T lymphocytes and activated macrophages

(64), as well as the recent report that suggests a close relationship

between PD-L1 immune checkpoint, choline metabolism and

inflammation (65), it would be interesting to study whether the

lymphoid tissue uptake of [18F]-Fluorocholine or other imaging

agent that evaluates lipid metabolism might provide useful

information on immune response to ICI therapy.
Amino acid metabolism and
peptide synthesis

Amino acid-based PET tracers can measure increase in

protein synthesis and amino acid transport in highly

proliferative cells (66). To date, primary focus of investigations

involving radiolabeled amino acids has been their utility in brain

tumor imaging (67). Despite high demand for amino acids in

effector T cells and upregulation of amino acid transporters

during T cell activation (68), no studies as yet assessed the value

of amino acid PET agents in evaluating immune response

to immunotherapy.
Imaging-based treatment response
in the clinic

It is estimated that about 40% of cancer patients in the United

States are eligible for ICIs (69). Other novel immunotherapies such

as CAR-T cell therapy have also been increasingly adopted

clinically. As a result, imaging-based evaluation of treatment

response has become more and more important in clinical

practice. The main goal of current imaging-based treatment

response evaluation is identification of patients who do not

respond to the immunotherapy regimen and may benefit from

change of treatments as early as possible. Traditionally, lesion size-
Frontiers in Immunology 08
based response criteria, RECIST 1.1, has been the most widely used

for evaluating treatment response. However, the change in

anatomic size typically occurs relatively late after treatment and

RECIST 1.1 does not consider the metabolic changes after

treatment, an early tumor response biomarker. FDG PET based

PERCIST (70) and EORTC (71) criteria were thus proposed to

incorporate metabolic changes to assess treatment response. Other

widely adopted metabolism-based treatment criteria include

Lugano Classification for lymphoma treatment response.

However, the observed atypical patterns of tumor response after

ICIs, such as pseudoprogression and hyperprogression, pose

challenges even to these, FDG metabolism-based criteria of

treatment response. Several new criteria have therefore been

proposed to evaluate treatment response specifically for

immunotherapy. irRECIST (72) and iRECIST (9) are lesion size

based and modified from RECIST 1.1. PECRIT (73) and PERCIMT

(74) are based on both size and metabolic changes and modified

from RECIST, PERCIST and EORTC. The main changes in these

new criteria include a confirmation scan in 4-12 weeks for

evaluating pseudoprogression and different approaches to

incorporate new lesion measurements.

In addition to the interim and end-of-therapy imaging-based

treatment assessments, pretherapy imaging that can predict treatment

response and toxicities would be invaluable for immunotherapies. For

many cancers treated with immunotherapy, durable responses are

observed only in about 20% patients (75) while severe immune-

related adverse effects (irAEs) could be seen in up to 10-15% patients

withmortality ranging from about 0.4% in patients treated with single

agent to 1.2% in combined therapy (76). Another undesirable

outcome associated with immunotherapy is hyperprogression, the

incidence of which varied from 5.9% to 43.1% based on a meta-

analysis of 3109 patients (77). The mechanism of hyperprogression is

poorly understood and difficult to predict. Pretherapy scans with

predictive value could help improve response rates and avoid severe

immunotherapy induced side effects and poor outcome due to

hyperprogression. PD-L1 immunohistochemistry assays have been

used clinically as a predictive tumor biomarker to determine whether

patients will benefit from ICIs. However, the level of expression can

vary between different cancer types, specific assay types and more

importantly, PD-L1 expression can be heterogeneous at different

locations. While it is unrealistic to biopsy many lesions at multiple

time points, non-invasive PET imaging can offer a whole-body

assessment of PD-L1 expression levels. Indeed, 89Zr labeled anti-

PD-1 PET radiotracer 89Zr-pembrolizumab (78), 89Zr-nivolumab (3)

and anti-PD-L1 radiotracer 89Zr-atezolizumab (79) have shown

correlation between uptake and treatment response. Interestingly,
89Zr-pembrolizumab tumor uptake did not correlate with PD-L1 or

PD-1 immunohistochemistry (3).

The majority of patients treated with ICIs have mild irAEs

and can continue treatment under monitoring while patients

with moderate to severe irAEs (Grade 2 and higher) may require
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suspension of treatment and possible corticosteroid treatment

(80). Incidence, involved organs, severity and onset depend on

cancer types and ICIs received. The onset of irAEs varies

significantly with a median onset of approximately 40 days

(81). The main goal of imaging is to aid early identification of

irAEs and treatment. While most irAEs are monitored clinically,

imaging can be helpful in the workup, which include CT chest

for pneumonitis, CT abdomen and pelvis for colitis and its

complications, adrenal CT for metastases or hemorrhage, CTPA

or VQ scan for venous thromboembolism, MR brain for

hypophysitis, aseptic meningitis, encephalitis or demyelinating

disease, MR spine for Guillain-Barré or peripheral neuropathy,

cardiac MR for myocarditis, MR for myositis and MR of affected

joints to differentiate arthritis, metastasis or septic arthritis (80).

While many of the inflammatory findings related to irAEs can be

visualized on FDG PET/CT, whether metabolic changes

correlate with clinical symptoms or severity of irAEs remains

to be verified (82). FDG PET/CT has not been incorporated in

routine clinical practice for irAEs workup.

PET imaging tracers that target components of the immune

system itself in addition to tumor response could increase

specificity of imaging findings after immunomodulating therapy,

especially when these imaging signals can be quantified.

Compared to antibody and fragment-based agents, the small

molecule radiotracers targeting altered T cell metabolism

typically have better tumor penetration and fast plasma

clearance and thus allow patient-convenient same day imaging.

In addition, these small molecule radiotracers make it possible to

better evaluate systemic immune activation in the setting of ICI

therapy and therefore potentially increase accuracy of predicting

response and aid in the early detection of severe irAEs.
Image analysis considerations

Taking into consideration association between immune

activation, irAEs and tumor response (83), several non-

traditional image analysis approaches were investigated. Wong

et al. found the increased spleen to liver ratio (SLR) on pre-

treatment FDG PET is associated with poor overall survival (84).

The authors postulated that failure to control tumor despite

activated immune system on pre-treatment scan could attribute

to the lack of efficacy after further immune stimulation by ICIs.

In addition, Prigent et al. reported that a 25% increase in

SLRmean from baseline is correlated with poor outcome in

melanoma patients treated with immunotherapy (85). It was

suggested that splenic uptake is more indicative of innate

immune activation that could promote tumor progression

rather than T cell activation. In addition to SLR, bone marrow
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to liver ratio (BLR) has also been correlated with poor survival in

melanoma patients treated with ICIs (28). More studies are

needed to elucidate these findings for better understanding of the

systemic responses needed for proper tumor control.

Abundance of tumor infiltrative T cells are associated with

better tumor response (86), however, imaging these T cells with

FDG PET is difficult due to increased FDG uptake in both tumors

and activated immune cells in the tumor microenvironment.

Several novel artificial intelligence (AI) AI based imaging

analysis tools have been developed and show improved

prediction of immunotherapy response based on radiomic

signatures (87, 88). In addition, Tunali et al. have shown that

radiomic features can predict hyperprogression in non-small cell

lung cancer patients after immunotherapy (89). These radiomics-

based analyses still need to be validated in larger clinical studies

before they can be implemented in the clinical practice. Compared

to conventional radiology and FDG PET, radiotracers targeting

immune cells pose additional challenge for image analysis.

Infiltrative CD8+ cytotoxic T cells are heterogeneously

distributed, with large variations within the same tumor lesion

and between different tumor sites (90). In addition, the dynamic

nature of T cell recruitment and activation makes it important to

optimize time of imaging after the start of therapy. Given these

characteristics of T cells, signal quantification metrics other than

the most commonly used, SUVmax need to be investigated (55). A

closer look into the SUVpeak, SUVmean, SUV based heterogeneity

index, metabolic volume of the radiotracer, total lesion metabolic

uptake, SLR or BLR, may be necessary to further understand the

utility of metabolic radiotracers in immunotherapy.
Conclusion and future direction

Given the link between cellular metabolism and signaling

pathways, cell function and fate, tracers that assess

immunometabolism may find utility in several aspects of

immunooncology, from drug discovery to patient selection and

assessment of immunotherapy response. Although for some tracers,

the similarities in metabolism between activated immune cells and

cancer cells may confound assessment of immune responses within

the TME, evaluation of immune activity in non-tumor tissue

provides clues on the systemic immune processes. This is of high

significance as recent findings, such as the effect of microbiome on

the immunotherapy response, denote the critical significance of

processes outside of tumors and the need for a better understanding

of the systemic immunity in cancer (91).

The key to fully capturing the ability of these agents to reveal

complex immunological networks lies in the development of

new, whole-body image analysis approaches. Patient-level
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1113924
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Levi and Song 10.3389/fimmu.2022.1113924
quantitative analysis of the response is perhaps the most pressing

in metastatic patients as different metastatic sites have distinct

immune contextures that affect their growth and response to

immunotherapy (90). Automated quantitative image analysis

overcomes the impracticality of manual measurement of all sites

of interest and may allow extraction of predictive information

relating to systemic immune responses. The advantages and

promising clinical performance of the automated platforms

developed for specific tracers (92, 93) may inspire

investigations of such analysis approaches for immune-

metabolic tracers.
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