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Down syndrome (DS) is associated with increased susceptibility to infections, auto-
immunity, immunodeficiency and haematological malignancies. The exact underlying
immunological pathophysiology is still unclear. The immunophenotype and clinical
characteristics of DS resemble those of Activated PI3K Delta Syndrome (APDS), in
which the PI3K/AKT/mTOR pathway is overactivated. We hypothesized that T cell
exhaustion and the hyperactivation of the AKT signalling pathway is also present in
immune cells of children with DS. In this observational non-interventional cohort study we
collected blood samples of children with DS (n=22) and healthy age-matched controls
(n=21) for flowcytometric immunophenotyping, phospho-flow AKT analysis and
exhaustion analysis of T cells. The median age was 5 years (range 1-12y). Total T and
NK cells were similar for both groups, but absolute values and transitional B cells, naive
memory B cells and naive CD4+ and CD8+ T cells were lower in DS. pAKT and AKT were
increased for CD3+ and CD4+ T cells and CD20+ B cells in children with DS. Total AKT
was also increased in CD8+ T cells. Children with DS showed increased expression
of inhibitory markers Programmed cell dealth-1 (PD-1), CD244 and CD160 on CD8+
T cells and increased PD-1 and CD244+ expression on CD4+ T cells, suggesting T cell
exhaustion. Children with DS show increased pAKT and AKT and increased T cell
exhaustion, which might contribute to their increased susceptibility to infections, auto
immunity and haematological malignancies.

Keywords: down syndrome, AKT pathway, T cell exhaustion, immunophenotyping, immunodeficiencies, activated
PI3 kinase delta syndrome
INTRODUCTION

Trisomy 21 is the most common chromosomal abnormality and is associated with a variety of
clinical conditions, including cardiac pathology, auto-immunity, immunodeficiency,
haematological malignancy and neurological abnormalities such as early dementia (1–4).
Individuals with Down syndrome (DS) are more susceptible to infections, especially those of the
org February 2022 | Volume 13 | Article 7244361
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respiratory tract (5). The increased risk of infections can partly
be explained by abnormal anatomy of the ENT region and
respiratory tract, but defects in the adaptive immune response
likely contribute, such as a decrease in naive and memory B and
T cells, decreased primary antibody responses as well as a
skewing of the different serum immunoglobulins with an
increase of IgG and decrease of IgM (6).

The underlying pathophysiology of the immunological
problems is still unclear. Schoch et al. (7) showed an increased
expression of the inhibitory marker Programmed cell dealth-1
(PD-1) on CD4+ T cells, CD8+ T cells and regulatory T cells,
suggesting an increased state of functional anergy in Down
syndrome. The combination immunodeficiency, auto-
immunity, the propensity to develop haematological
malignancies and T cell anergy/exhaustion has previously been
described in the primary immunodeficiency activated PI3K Delta
Syndrome (APDS) (8–11). In this primary immunodeficiency
the PI3K/AKT/mTOR pathway is overly activated. Increased
intracellular AKT-activity stimulates metabolism, cell
proliferation, survival and growth and at the same time
deregulates the humoral immune response and induces T cell
anergy. Interestingly, hyperactivation of this pathway has been
reported in the frontal cortex of individuals with DS who suffer
from early dementia when compared to controls (12). However,
increased PI3K/AKT activity has not been explored in immune
cells of patients with DS. We hypothesized that the AKT/mTOR
pathway is also hyperactivated in lymphocytes of patients with
DS, which might offer an explanation for the observed T cell
exhaustion, immunodeficiency and immune dysregulation. Our
aim was therefore to explore the extent of T cell exhaustion and
hyperphosphorylation of the PI3K/AKT pathway in children
with DS compared to healthy age-matched individuals.
METHODS

Materials and Method
In this observational non-interventional cohort study with a
cross-sectional design, the immunological characteristics of
children with DS were compared with those of healthy age-
matched controls. Blood samples were collected during regular
healthcare check-ups in the Juliana Children’s Hospital from
May 2018 to January 2020. The acquired blood sample volume
was adjusted to the weight of the child. Clinical data on age,
gender, premedical history, and use of medicines were collected
from the electronic health record. This study was conducted in
accordance with the Declaration of Helsinki. Prior to
commencing this study, approval was obtained from the
Medical Ethics Committee Zuidwest Holland.

Study Population
Children with DS (0-17 years) were asked to participate
whenever in the outpatient department blood samples were
taken for regular healthcare reasons. Blood samples were only
taken if children with DS did not experience an episode of fever
or showed other signs or symptoms of an infection at
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that moment. Healthy age-matched controls were recruited
when undergoing a minor surgical procedure. Healthy children
were matched with a maximum difference of one year with DS
patients. Children were excluded in case of an active infectious
disease, malignancy, mosaic DS, or auto-immune disease other
than those associated with DS (such as coeliac and thyroid
disease). Children who suffered from recurrent respiratory
tract infections or getting surgery because of this reason, were
excluded as a healthy control.

Before enrolment, parents or other legal caregivers and
children ≥12 years of age were asked for informed consent.

Blood Samples
White blood cell (WBC) count was measured on the Sysmex XP-
300 in fresh blood. Before being frozen, peripheral blood
mononuclear cells (PBMCs) were separated using Ficoll-paque
within 24 hours after collection of the blood sample. Procedures
were similar to those previously described (13). Flowcytometric
immunophenotyping was performed on fresh blood using BD
FACSCanto-II flowcytometer. Analysis was done with BD
FACSDiva software. An example of the gating strategy for T
cell subsets and B cells is shown in Figure 1A. Antibody levels
and immunization responses were not available for our cohort of
DS patients. PBMCs were used for phospho-flow analysis. After
washing and staining, cells were measured on the BD LSR-II
flowcytometer. Analysis was done with Kaluza Analysis software
and statistics were performed using Graphpad Prism software.
For the level of exhaustion, frozen PBMC samples were washed,
stained and analysed using BD FACSDiva software. To examine
the extent of T cell exhaustion, the expression of inhibitory
markers PD-1, CD244 and CD160 and their co-expression were
examined on CD4+ and CD8+ T cells. The marker CD57 was
used to identify senescent T cells or terminally differentiated T
cells with reduced proliferative capacity (14, 15). See
Supplementary File for more detailed information on
flowcytometric immunophenotyping, and exhaustion assays.

Phospho-Flow
PBMCs were thawed in cold FCS and RPMI, washed and
resuspended in PBS with BSA and azide. Cells were counted
with Sysmex XP-300. Cells were washed in pure and cold PBS.
FVD (Viability staining Protocol) (InvitrogenTM) coloring
(1000x dilution) was performed to irreversibly label dead cells
prior to fixation and permeabilization, to exclude dead cells when
targeting intracellular components. Cells were incubated for
30min on coolblock (4°C) and shaking platform before being
washed. Cells were divided in two wells per patient/control. Cells
were stained with CD8 BV510 (BD Biosciences) and CD20
BV421 (Biolegend, San Diego, CA, USA) and incubated for
15min in a 37°C stove. Cells were fixated with BD Cytofix
Fixation Buffer and incubated for 10min at 4°C. Unstimulated
cells were washed and permeabilized with BD Phosflow Perm
Buffer III and incubated for 30min at -20°C in the dark. Cells
were washed and stained with AKT AF488 or pAKT AF488
(Both BD Biosciences), CD3 APC (Beckman Coulter, Brea, CA,
USA), CD4 PE and CD69 PE-Cy7(BD Biosciences) and CD25
PerCP-Cy5.5 (Biolegend, San Diego, CA, USA) and incubated
February 2022 | Volume 13 | Article 724436
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for 15 min at RT in the dark. Cells were washed and AKT or
pAKT was measured on the BD LSR-II flowcytometer. Analysis
was done with Kaluza Analysis software and statistics were
performed using Graphpad Prism software. A representative
example of a phospho-flow plot is shown in Figure 1B. FMO
(fluorescence minus one) controls were used to check for
background staining (Supplementary Figure 2).

Statistical Analysis
Descriptive analysis of clinical data was performed using SPSS
version 24. For Flowcytometric immunophenotyping,
exhaustion phenotyping, pAKT and AKT were compared
using two-tailed t-tests or Mann-Whitney U test depending on
whether the data was Gaussian distributed. Statistical analyses
were performed using GraphPad Prism software (GraphPad
Prism Software, San Diego, CA, USA). P-values smaller than
0.05 were considered statistically significant. The total number of
subjects was too small to perform a meaningful subgroup
analysis for different age groups.
RESULTS

Study Population
In total, 22 children with DS and 21 healthy age-matched
controls were enrolled. An overview baseline characteristics of
patients and healthy controls, including co-morbidity, is shown
in Supplementary Table 1. The median age was 5 years (range 1-
12 years). As expected, (previous) cardiac pathology was the
most common comorbidity in children with DS (64%). Due to
selective enrolment, healthy controls had minor comorbidities
Frontiers in Immunology | www.frontiersin.org 3
and none of them suffered from frequent infections or auto-
immune disease. Children with DS suffered more frequently
from respiratory infections than their healthy peers, as illustrated
by previous ENT surgery in 64% and hospitalization for a lower
respiratory tract infection in 36%. None of the children suffered
from bronchiectasis. Auto-immune disease was present in 14%.
Current or past haematological malignancies were not present in
our cohort. All immunological analyses were performed for every
participant except for one child with DS and one healthy control,
in whom it was not possible to collect sufficient blood to perform
all analyses.

Lymphocyte Subsets
Circulating levels of total T cells (CD3+ cells) andNK cells (CD16.56
+ cells) were similar for children with DS and controls. However, B
cell (CD19+) levels were reduced in childrenwithDS (p<0.005). 41%
of children with Down syndrome had absolute B cells counts below
the 5th percentile of the range for the corresponding age (16). True
counts of lymphocyte subsets are shown in Supplementary Table 2.
Flowcytometric immunophenotyping was done in 22 DS patients
and 20 healthy controls.

B Cell Differentiation
Whereas absolute values of transitional B cells and naive mature B
cells do not differ between children with Down and healthy
controls, natural effector cells and memory B cells are
significantly lower (Figure 2A). Children with Down syndrome
also showed less switching within memory B cells, resulting in
relatively more IgM memory B cells (Figure 2B). We did not find
a significant difference in the percentage of CD38-CD21- cells
between children with DS and healthy controls (data not shown).
A B

FIGURE 1 | Gating strategy of B cells and T cell subset for the determination of baseline AKT and pAKT expression in DS and healthy controls. (A) Gating strategy
of CD3+CD4+ T cells, CD3+CD8+ T cells and CD20+ B-cells. (B) Representative phospho-flow plots for AKT and pAKT in unstimulated CD3+ T cells in a DS
patient and age matched healthy control.
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T Cell Differentiation
Whereas the total CD4+ and CD8+ T cell counts did not differ
significantly between both groups, we did find differences in the
subset distributions. The percentage of naive CD4+ T cells was
33.0 ± 15.51 (mean ± SEM) in children with Down syndrome
compared to 60.93 ± 2.53 in healthy controls (p<0.0001;
Figure 3A). This difference was also apparent for naive CD8+
T cells: 21.1 ± 3.0 in DS versus 47.4 ± 4.0 in controls (p<0.0001;
Figure 3B). Within the CD4+ T cell compartment, children with
DS showed elevated levels of CD45RA-CCR7+ central memory
T cells (CM) (p=0.006) and CD45RA-CCR7- effector memory T
cells (EM) (p<0.0001), whereas CD45RA+CCR7- effector
memory cells re-expressing RA (EMRA) were similar in both
groups (Figure 3C). Another shift was seen for CD8+ T cells
(Figure 3D). Children with DS had similar CD8+CM levels, but
increased CD8+ EM (p=0.35) and CD8+ EMRA cells (p=0.0015).

Increased AKT Phosphorylation
In order to determine the levels of total AKT and activated AKT
by phosphorylation (pAKT), we performed a phospho-flow
assay in T cell subsets (CD3+, CD4+ and CD8+) and B cells
(CD20+). Children with DS (n=21) showed elevated levels of
AKT in all cells, especially in the T cell compartment compared
to 21 healthy controls (Figure 4). Except for CD8+ cells, pAKT
levels were increased in all subsets.
Frontiers in Immunology | www.frontiersin.org 4
T Cell Exhaustion
To study the level of T cell exhaustion, we examined the
percentage of CD4+ and CD8+ T cells with the expression of
PD-1, CD244 and CD160 and co-expression of these three
markers in 21 children with DS and 21 controls. We found a
significant higher percentage of CD8+ T cells with expression of
all single markers in children with Down syndrome (Figure 5B).
The biggest increase was seen in CD8+ T cells expressing PD-1
(mean 28.0 ± 1.9 in DS versus 15.2 ± 1.6 in controls) and CD244
(mean 73.2 ± 3.6 versus 42.4 ± 4.2). Interestingly, CD8+ T cells
with co-expression of all three markers (CD8+PD-1+CD160
+CD244+) were 30% higher in children with DS compared to
healthy age-matched controls (mean 32.8 ± 2.1 and 24.7 ± 2.2,
respectively). For CD4+ T cells, the percentages of PD-1+ and
CD244+ expression were elevated in children with Down
syndrome (mean 25.9 ± 2.0 and 7.6 ± 1.0, respectively),
compared to controls (mean 12.9 ± 1.9 and 4.6 ± 0.9). The
levels of expression of the single receptor CD160+ and co-
expression of all three inhibitory receptors, CD4+PD-1+CD160
+CD244+ T cells, were similar for children with Down syndrome
and healthy controls (Figure 5A). We found higher levels of
CD57 expression on both CD4+ and CD8+ T cells in DS,
suggesting an increase in senescent T cells compared to healthy
children (Figure S1). This increase was most evident in CD8+ T
cells (p<0.0005).
A

B

FIGURE 2 | Immunophenotyping of B cells in 22 children with Down syndrome and 20 healthy age-matched controls. (A) Absolute values of transitional B cells
(CD38high/CD24high) and naive mature B cells (CD38dim/CD24dim/IgD+/CD27-) did not differ between children with Down syndrome and healthy controls, whereas
natural effector B cells (CD38dim/IgD+/CD27+) and memory B cells (CD28dim/IgD-/CD27+) were significantly decreased in children with Down syndrome (resp.
p=0.0002 and p=0.0004). Median and interquartile ranges are indicated (red lines represent the median). (B) In the subsets of memory B cells, children with Down
syndrome have increased IgM memory B cells (p<0.0001) and decreased IgA (p=0.0003) and IgG (p<0.0001) memory B cells. ***p < 0.001; ns p > 0.05.
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DISCUSSION

In order to identify possible immunological alterations that could
contribute to the clinical phenotype of childrenwithDown syndrome,
we explored the extent of hyperphosphorylation of the PI3K/AKT
signalling pathway and T cell exhaustion and compared this with
healthy age-matched individuals.We found that pAKTwas increased
for CD4+ T cells and B cells in children with DS. Interestingly, total
AKT was increased even more than pAKT and was significantly
elevated in all different subsets. In addition, increased expression of
inhibitory markers PD-1, CD244 and CD160 on CD8+ T cells and
increased PD-1 and CD244+ expression on CD4+ T cells suggest the
presence of T cell exhaustion.We hypothesize that the combination of
increased pAKT and T cell exhaustion could offer an explanation for
several common clinical conditions associated with trisomy 21,
including auto-immunity, increased susceptibility for infections, and
haematological malignancies.

Previous studies show that childrenwithDShave normal levels of
NK-cells, but reduced total B and T cells (6). Within the memory B
cells compartment, children with DS have lower natural effector and
memory B cells and a different shift in the memory B subsets with
increased IgManddecreased IgAand IgGmemoryB cells (17). ForT
cells, both CD4+ helper and CD8+ cytotoxic T cells are decreased in
Frontiers in Immunology | www.frontiersin.org 5
DS (18). These lymphocyte subset distributions are in line with the
findingsinourcohort.Theimmunophenotypicalterationsinchildren
withDS can be caused by disturbances in various processes, such as a
change inthedevelopmentofperipheral (switched)memoryBcellsor
by an increased apoptotic state of T cells.

The combination of T cell exhaustion, immunodeficiency, auto-
immunity and the predisposition to develop haematological
malignancies has previously been described in APDS (8–11). APDS
is characterized by a gain-of-function mutation in PI3Kd enzyme,
leading to the activation of the PI3K/AKT cascade. To further
examine the role of the AKT signalling pathway in Down
syndrome, we performed a phospho-flow assay in T cell subsets
(CD3+, CD4+ and CD8+) and B cells (CD20+). The levels of pAKT
were significantly increased in CD4+ T cells and CD20+ B cells of
children with DS. To our best knowledge the PI3K/AKT/mTOR
pathway dysregulation has never been examined in immune cells of
individuals with DS. However, the hyperactivation of this pathway
has been described in neurological cells in the frontal cortex, the
hippocampus and fibroblasts of individuals with Down syndrome,
and in the hippocampus of mouse models of Down syndrome (19–
24). The reason for the increased levels of AKT and pAKT in Down
syndrome is not clear. For APDS, the pAKT increase is caused by a
gain-of-function mutation in the PI3K3CD gene, which increases
BA

DC

FIGURE 3 | Immunophenotyping of the T cell compartment of 21 children with Down syndrome and 21 healthy age-matched controls. Children with Down
syndrome have significantly lower naive CD4+ T cells (CD4+CD45RA+CCR7+) (A) and lower naive CD8+ T cells (CD8+CD45RA+CCR7+) (B) compared to healthy
controls. (C) Within the CD4+ T cells, the proportion of CM and EM cells is increased in children with Down syndrome. (D) For CD8+ T cell distribution, there is no
significant difference in the percentage CM cells, however, children with Down syndrome have increased EM and EMRA. Median and interquartile ranges are
indicated. *p <0.05; **p < 0.01; ****p < 0.0001; ns p > 0.05.
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p110d activity. The d isoform is mainly found in leukocytes. We did
not examine the different isoforms, but as previous studies also found
increased AKT in neural tissues (19–22), it is possible that other
isoforms and therefore other tissues are also affected inDS. TheAKT
gene is not located on chromosome 21. However, trisomy 21 causes
alterations in multiple genetic mechanisms which could also include
various mediators of the PI3K/AKT/mTOR pathway. One of these
Frontiers in Immunology | www.frontiersin.org 6
regulators is PTEN, which is an inhibitor of the PI3K pathway. A
study by Volk et al. showed an inhibition of the OTUD5 gene in
individuals with trisomy 21, could lead to the downregulation of p53
(25). Because p53 cooperates with PTEN, its downregulation can
cause lower PTEN activity and therefore lessen the inhibition of the
PI3K/AKT/mTOR pathway. The role of increased PI3K/AKT
activity has previously been described in patients with PTEN
B

A

FIGURE 4 | Phospho-flow analysis in 21 children with Down syndrome and 21 healthy age-matched controls. (A) The total AKT levels were elevated in all different
cells for children with Down syndrome. (B) In children with Down syndrome, pAKT levels were increased in CD3+, CD4+ and CD20+ cells, but not in CD8+ T cells.
Median and interquartile ranges are indicated. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns p > 0.05.
B

A

FIGURE 5 | T cell exhaustion of CD4+ and CD8+ cells in 21 children with Down syndrome and 21 healthy age-matched controls. (A) Increased expression of PD-1+
and CD244+ and similar levels of CD160+ and PD-1+CD160+CD244+ co-expression in CD4+ T cells. (B) Elevated levels of all exhaustion markers (PD-1, CD160
and CD244) in CD8+ T cells. Median and interquartile ranges are indicated. *p <0.05; **p < 0.01; ****p < 0.0001; ns p > 0.05.
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deficiency (26).A reductionofPTENlevels has alsobeen found in the
fetal DS brain (27). In contrast to these possible explanations for
increased pAKT inDS, some in vitro studies show factors that might
downregulate the AKT pathway. For example, increased expression
of tetratricopeptide repeat domain 3 (TTC3) which facilitates the
ubiquitination of pAKT (28, 29). However, our findings show a clear
increase in AKT and pAKT, which indicates that the factors which
positively regulate this pathway are likelymore prominent inDS.We
hypothesize that decreased PTENexpressionmight play a bigger role
in the increased pAKT levels in Down syndrome. This should be
examined in futures studies.

Some reports describe an increase of apoptosis for both T and B
cells in DS (30, 31). Apoptosis of T cells may have been preceded by
(severe) T cell exhaustion. PD-1 is an important regulator that is
involved in T cell exhaustion. An elevated expression of PD-1 and
other markers as CD244 and CD160 can indicate increased T cell
exhaustion. Schochet al (7) showedan increaseofPD-1expressionon
CD4+ and regulatory T cells in children and adolescents with Down
syndrome.Another study showed increasedPD-1 expressiononTfh-
cells (32). In order to examine T cell exhaustion in more detail, we
analysed the expression of inhibitory markers PD-1, CD244 and
CD160 on CD4+ and CD8+ T cells. Similar to APDS, we found an
increased expression of PD-1 and CD244 in CD4+ T cells and an
increase of every single inhibitory marker and their co-expression on
CD8+ cells. These findings suggest an increase in T cell exhaustion in
children with DS, especially for CD8+ T cells. T-cell exhaustion and
senescence appear to be related phenomena as shown by increased
CD57 expression of T-cells in DS. Recently it has been shown that
premature senescence in DS thymocytes plays a key role in the
pathogenesis of immune defect in DS in the context of increased
oxidativestressandepigeneticregulation(33).AcceleratedaginginDS
thymocytes has likely contributed to the T-cell exhaustion and
senescence we observed in our cohort. We do not have a good
explanation for our finding that AKT hyperphosphorylation was
present in CD4+ T cells, rather than the exhausted CD8+ subset.
This discrepancy has to be explored in future studies. Blood samples
were taken at themoment that children did not experience infections,
so it is unlikely that T cell exhaustion reflected a status of (recurrent)
infections in DS.

Children with APDS benefit from treatment with mTOR
inhibitor Sirolimus or selective PI3Kd inhibitors (34–36). As
their immunophenotype resembles those of patients with Down
syndrome, we hypothesize that these therapies might also be
beneficial in reducing the complications of children with DS and
significant immunodeficiency or auto-immunity. However,
because the pathophysiological mechanism of increased AKT
seems to be different in both diseases, it is debatable to what
extent these treatments could be effective. Treatment with mTOR
inhibitors or PI3Kd inhibitors for patients with Down syndrome
should be explored in future research, but only if justified by the
clinical severity of the associated complications.

A limitation of our study is that we examined a relatively small
cohort of patients and therefore could not perform a meaningful
subgroup analysis in different age groups. Because of limitations of
the available blood volumes, we could not confirm AKT
hyperphosphorylation by Western blot. In addition, we were not
able to directly compare DS and APDS patients. However, the
Frontiers in Immunology | www.frontiersin.org 7
previous reports of AKT hyperphosphorylations in neural tissues
and fibroblasts in DS and the clinical and immunological similarities
with APDS are in line with our results.

In conclusion, we showed that children with Down syndrome
havehyperphosphorylationofAKTandincreasedtotalAKTinBcells
and CD4+ T cells. In addition, an increased expression of inhibitory
receptorsofCD4+andCD8+Tcells, suggestsTcellexhaustion.These
alterations might contribute to the increased susceptibility to
infections, auto immunity and haematological malignancies.
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