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Serratia marcescens is now an important opportunistic pathogen that can cause serious
infections in hospitalized or immunocompromised patients. Here, we used extensive
bioinformatic analyses based on reverse vaccinology and subtractive proteomics-based
approach to predict potential vaccine candidates against S. marcescens. We analyzed
the complete proteome sequence of 49 isolate of Serratia marcescens and identified 5
that were conserved proteins, non-homologous from human and gut flora, extracellular or
exported to the outer membrane, and antigenic. The identified proteins were used to
select 5 CTL, 12 HTL, and 12 BCL epitopes antigenic, non-allergenic, conserved,
hydrophilic, and non-toxic. In addition, HTL epitopes were able to induce interferon-
gamma immune response. The selected peptides were used to design 4 multi-epitope
vaccines constructs (SMV1, SMV2, SMV3 and SMV4) with immune-modulating
adjuvants, PADRE sequence, and linkers. Peptide cleavage analysis showed that
antigen vaccines are processed and presented via of MHC class molecule. Several
physiochemical and immunological analyses revealed that all multiepitope vaccines were
non-allergenic, stable, hydrophilic, and soluble and induced the immunity with high
antigenicity. The secondary structure analysis revealed the designed vaccines contain
mainly coil structure and alpha helix structures. 3D analyses showed high-quality
structure. Molecular docking analyses revealed SMV4 as the best vaccine construct
among the four constructed vaccines, demonstrating high affinity with the immune
receptor. Molecular dynamics simulation confirmed the low deformability and stability of
the vaccine candidate. Discontinuous epitope residues analyses of SMV4 revealed that
they are flexible and can interact with antibodies. In silico immune simulation indicated that
the designed SMV4 vaccine triggers an effective immune response. In silico codon
optimization and cloning in expression vector indicate that SMV4 vaccine can be
efficiently expressed in E. coli system. Overall, we showed that SMV4 multi-epitope
vaccine successfully elicited antigen-specific humoral and cellular immune responses and
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may be a potential vaccine candidate against S. marcescens. Further experimental
validations could confirm its exact efficacy, the safety and immunogenicity profile. Our
findings bring a valuable addition to the development of new strategies to prevent and
control the spread of multidrug-resistant Gram-negative bacteria with high
clinical relevance.
Keywords: Serratia marcescens, reverse vaccinology, multidrug resistance, computational approaches,
subtractive proteomics
INTRODUCTION

The spread of antimicrobial resistance (AMR) is urgent,
especially regarding bacteria (1). Once resistant strains emerge,
the options for effective antibiotic therapy become limited and
their alarming spread around the globe has not been followed by
the development of novel antibiotics (2, 3). AMR produces
significant impacts on human health around the world, causing
troublesome levels of morbidity and mortality leading to
dramatic economic consequences (4). It has been estimated
that 10 million lives a year will be lost to AMR by 2050, and
cumulative loss of world economies might be as high as $100
trillion (2, 5). AMR is a serious issue that demands an organized
global action plan (4, 6, 7). Developing novel and integrated
strategies are paramount to effectively fight AMR; these strategies
include the development of monoclonal antibodies, new
antibiotics, new diagnostics, new vaccines that target
antibiotic-resistant bacteria, and increasing coverage of existing
vaccines (3, 4, 8).

Serratia spp. is within the World Health Organization (9)
global priority list of multidrug-resistant (MDR) bacteria that
poses a major threat to human health around the world. Hence,
there is an urgent need to development new and effective
treatments and prevention strategies. Serratia marcescens is a
Gram-negative Enterobacteriaceae species that has emerged as a
neglected opportunistic human pathogen (10). This species can
cause a variety of infections, including respiratory, bloodstream,
skin, ocular, urinary, and catheter-related infections, as well as
meningitis and sepsis in immunocompromised or critically ill
patients, especially those in intensive care units (ICUs) and
neonatal intensive care units (NICU). Studies have reported an
increase in the number, and it of multidrug-resistant S.
marcescens strains worldwide (11) and this increase has been
related to severe outcomes (12) and a high mortality rate (13, 14).

Several studies and medical experiments have supported that
S. marcescens may be promising for vaccine development. For
instance, Field et al. (15) immunized adult mice with
lipopolysaccharide (LPS) somatic antigen, or a heat-killed
vaccine of Serratia marcescens and observed a rapid presence
of specific antibody-forming cells in the spleen, in the mesenteric
nodes, and in the thymus. Kreger et al. (16) showed that the
severity of experimentally induced corneal disease by S.
marcescens is considerably reduced by immunization against
either the lipopolysaccharide endotoxins or the proteases of the
bacteria. Kumagai et al. (17) showed that the protection against
an experimental Serratia marcescens infection in mice was
org 2
enhanced by prior injection of formalin-killed or viable
bacteria of the same strain. They suggested that the humoral
immunity and T-cell-mediated immunity were associated with
protection against systemic Serratia infection. Shi et al. (18)
reported that S. marcescens vaccine was effective for malignant
pleural effusion and presented tolerable toxic effects. In the late
19th century, William Coley developed a formulation containing
Streptococcus pyogenes and S. marcescens called by various
names, such as Coley’s fluid, Coley’s vaccine, mixed bacterial
vaccine (MBV), Coley’s toxins, and Vaccineurin. This
formulation was used to treat sarcoma in many countries until
1990 (19–21). In the 1970s, Coley’s mixture (MBV) was further
investigated, and it has been used in clinical trials against
different types of cancer presenting variable results (22–27).
The recent interest in MBV is motivated by humoral and
cellular immunity to cancer antigens, which has the ability to
spontaneous induce antibody responses. The stimulation of the
innate immune system produces a complex cascade of cytokines
that contribute to the immune recognition of cancer, possibly
inducing apoptosis (22).

Vaccination is one of the most effective means to efficiently,
rapidly and affordably improve public health; it is also the most
feasible way to eradicate a variety of infectious diseases (28). Current
vaccine research has mostly focused on peptide and subunit
vaccines instead of whole organism vaccines. This is because
subunit vaccines contain specific immunogenic components of
the pathogens responsible for the infection rather than the whole
pathogen. Traditional approaches for vaccine production have also
been considered less efficient than computational approaches for a
variety of reasons, including inaccuracy, safety, stability, high cost,
hypersensitivity, and specificity.

Reverse vaccinology (RV), subtractive proteomics (SP), and
genomics studies have emerged as powerful computational tools
that have revolutionized the identification of drug targets and
potential vaccine candidates (29). These methodologies are able to
identify in silico the complete repertoire of immunogenic antigens
and druggable targets that an organism is capable of expressing
without the need of culturing themicroorganism (30). In addition, it
reduces the dependence on conventional animal testing based
screening for getting a potentially suitable candidate, minimizing
the time consuming and cost of the vaccine and drug development
processes (31). Since the first application of reverse vaccinology that
was used to development of a vaccine against serogroup B Neisseria
meningitidis (MenB) (32), this tool has been used in the
identification of numerous promising vaccine candidates against
many bacterial pathogens, includingMycoplasma pneumoniae (33),
March 2022 | Volume 13 | Article 768569
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Pseudomonas aeruginosa (34), Mycobacterium tuberculosis (30),
Acinetobacter baumannii (35), and Neisseria meningitidis (36).

In this study, we have applied RV and SP based computational
strategies and selected a new multi epitope-based vaccine
candidate against Serratia marcescens, which can be used in
further experiments to validate its efficacy, safety, and
immunogenic profile.
MATERIAL AND METHODS

Subtractive proteomics and reverse vaccinology approaches were
used to identify potential vaccine candidates against the S.
marcescens strain. A flowchart summarizing the methodology
is shown in Figure 1.

Data Collection of Proteome and Selection
of Core Proteins
The proteome sequences of 49 S. marcescenswere downloaded from
the Genome Project database of the National Center for
Biotechnology Information (NCBI) (https://www.ncbi.nlm.nih.
gov/genbank/). Out of these proteomic sequences, one
corresponded to the representative proteome of Serratia
marcescens subsp. marcescens Db11 and 48 sequences were from
S. marcescens associated with human infections. Bacterial Pan
Genome Analysis (BPGA) tool (37) version 1.3 was used to
Frontiers in Immunology | www.frontiersin.org 3
identify core (conserved) protein families (Supplementary Data
Sheet 2). BPGA uses USEARCH as a default protein clustering tool
with an identity cut off = 50%. Strain names, source of isolation,
country, RefSeq assembly accession numbers, assembly levels, and
references are shown in Supplementary File Table S1.

Screening of Essential Proteins, Virulence
Factors and Resistance Proteins
The identified core protein families related to 49 bacteria species
were subjected to BLASTp searches against the Database of
Essential Genes (DEG 10) providing the essential information of
the proteins (35, 38–42). DEG is a database for essential genes that
is frequently updated (43, 44). The parameters of the analysis were
E-value ≤ 10-4 and bitscore ≥ 100 (Supplementary Data Sheet 3).
The core proteins of S. marcescens were also subjected to BLASTp
search against Virulence Factor database (VFdb) (http://www.
mgc.ac.cn/VFs/) (45) and Microbial virulence DataBase
(MvirDB) (http://mvirdb.llnl.gov/) Supplementary Data Sheet 4
(46). In both databases, the E-value cut-off was set to ≤ 10-4 and
bitscore ≥ 100. The resistance associated proteins were found
through a BLASTp against two databases, ARG-ANNOT
(Antibiotic Resistance Gene-ANNOTation), which provides
protein sequences associated with antibiotic (47), and CARD
(Comprehensive Antibiotic Resistance Database), a database of
peer-reviewed antibiotic resistance determinants (Supplementary
Data Sheet 5) (48). The E-value cut-off for both antibiotic
resistance analyses was ≤ 10-4.

Subtracting Gut-Human Homologous and
Human Non-Homology Proteins
The identified essential, virulent or resistance associated proteins
were filtered against the proteome of host Homo sapiens
(taxid:9606), using BLASTp with E-value of ≤ 10−4

(Supplementary Data Sheet 6). The host non-homologue
proteins were filtered against a custom protein database
containing 79 human gut floral species [see supplementary Text 1
from (44, 49)]. For subtraction of homologous sequence between
gut microbiota and S. marcescens, we carried out BLASTp analysis.
The obtained hits with an E-value of ≤ 10−4 and similarity ≥ 50%
were considered as gut-flora homologous proteins and excluded
from further analyses (Supplementary Data Sheet 7).

Prediction of Subcellular Localization
Prediction of selected proteins subcellular localization was done
by using two different web servers: PSORTb v3.0.2 (50)
algorithm (https://www.psort.org/psortb/) that determines
different subcellular localization like cytoplasmic membrane,
outer membrane, periplasm, extracellular, cytoplasmic, and
unknown; and CELLO v2.5 (http://cello.life.nctu.edu.tw) (51), a
web-based system which is also used for predicting protein
subcellular localization.

Physicochemical Property and Antigenicity
Analysis of Proteins
Physicochemical properties such as number of amino acids and
molecular weight were examined on the online servers Expasy
FIGURE 1 | A schematic flowchart diagram showing the procedure used in
the current study. Orange: subtractive proteome analysis. Green: identification,
characterization, and selection of peptide epitopes. Blue: construction and
analysis of the multiepitope vaccine.
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ProtParam (52) (https://web.expasy.org/protparam/) and
UniProt (https://www.uniprot.org/). Antigenicity of proteins
was predicted using two online servers: VaxiJen v2.0 (53),
(http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html)
which predicts whether a protein could be a protective antigen
based on physicochemical properties of amino acid sequence and
has a threshold value ≥ 0.5; and AntigenPRO (http://scratch.
proteomics.ics.uci.edu/), an alignment-free, sequence-based and
pathogen-independent predictor of protein antigenicity with
79% accuracy and an area under curve (AUC) of 0.89 (54).

Identification of Trans-Membrane Alpha-
Helices and Secretory Pathway Analysis
To assess the proteins getting embedded in the plasma
membrane and to subtract those being exported, we submitted
the amino acid sequences from the outer membrane, periplasm
and extracellular proteins of S. marcescens to the TMHMM v.2.0
(https://services.healthtech.dtu.dk/service.php?TMHMM-2.0)
server, which predicted the topology of these proteins by the
Markov method (55). Secretory pathway was analyzed using
SignalP 5.0 (https://services.healthtech.dtu.dk/service.php?
SignalP-5.0), a server based on deep neural network method
that predicts signal peptide (SP) sequences and discriminates
among three main types of SPs (56).

Pathogen-Specific Pathways and
Functionality Analysis of Selected Proteins
The comparison between metabolic pathways of S. marcescens
and human pathways was done manually, using KEGG (Kyoto
encyclopedia of gene and genome) pathway database. Proteins
that play a role in unique and shared pathways in both pathogen
and host were enlisted (Table S2) (35). Protein function
prediction was made by three different servers: UniProt, KEGG
Genes Database, and InterPro (https://www.ebi.ac.uk/interpro/),
a server that provides family classification, biological process and
molecular function of the protein (57).

Prediction of T Cell and B Cell Epitope
The prediction of MHC-I epitopes was performed by three
servers: IEDB Tepitool prediction (http://tools.iedb.org/
tepitool/) server (58), NetMHCpan 4.1 BA (https://services.
healthtech.dtu.dk/service.php?NetMHCpan-4.1), and
NetCTLpan 1.1 (https://services.healthtech.dtu.dk/service.php?
NetCTLpan-1.1). In the IEDB server, 27 different alleles that
cover more than 97% of the global population were selected for
MHC class I predictions (59). Identified T-cell epitopes having
alleles with IC50 value ≤ 50 nM were considered of high binding
affinity. The default prediction method was set as the IEDB
recommended that uses the Consensus method consisting of
ANN (Artificial neural network, also called as NetMHC, version
3.4), SMM (Stabilized matrix method), CombLib (Scoring
Matrices derived from Combinatorial Peptide Libraries), and
NetMHCpan (version 2.8). NetMHCpan 4.1 server predicts
binding of peptides to any MHC molecule of a known
sequence using artificial neural networks (ANNs). We used a
threshold value IC50 ≤ 50 nM and a percentile rank ≤ 0.20 (34).
Frontiers in Immunology | www.frontiersin.org 4
NetCTLpan 1.1 server performs integrate prediction of peptide
MHC class I binding, proteasomal C terminal cleavage, and TAP
transport efficiency. In this analysis, the threshold value was set
as 0.75 (35).

Predictions of MHC class II epitopes or HTL epitopes were
made by Tepitool, using the IEDB recommended method. A set
of the 26 most frequent human class II alleles from DP, DQ, and
DR loci was used. Selection criteria was peptides with binding
affinity ≤ 50nM for IC50. Prediction of linear B-cell epitopes or
BCL epitopes for proteins was achieved by using IEDB server,
ABCpred, and Bcepred. IEDB server predicted epitopes based on
antigenicity (60), accessibility (61), linear epitope (Bepipred-1.0)
(62) and sequential/conformational epitope (BepiPred-2.0) (63).
ABCpred (https://webs.iiitd.edu.in/raghava/abcpred/) uses
Artificial Neural Network (ANN) machine-learning to predict
B-cell epitopes and has an accuracy of 65.93%. In this server,
parameters were set to default. Bcepred (https://webs.iiitd.edu.in/
raghava/bcepred/bcepred_instructions.html) predicted B-cell
epitopes based on four amino acid properties (hydrophilicity,
flexibility, polarity and exposed surface). We used a threshold of
2.38 that predicts epitopes with 58.7% accuracy

MHC Class I Immunogenicity
Determination
The MHC I immunogenicity prediction were assessed by the IEDB
server (64) (http://tools.immuneepitope.org/immunogenicity/). A
high score suggests a higher probability of stimulating an immune
response. The epitopes with positive immunogenicity value were
selected for further studies.

Antigenicity, Toxicity, Allergenicity of
Selected Epitopes
The epitopes of MHC Class I, MHC Class II and LB were
screened for their antigenic properties by VaxiJen2.0. The
threshold for MHC class I and MHC class II epitopes was set
to ≥ 0.5, and to ≥ 0.70 for the B-cell epitopes (53). The antigenic
B-Cell epitopes obtained, with 9 or more amino acids in length
and those that overlapped with the amino acids sequences found
in IEDB, ABCpred and Bcepred tools were selected for toxicity
and allergenicity analyses. The toxicity prediction was carried out
using ToxinPred (http://www.imtech.res.in/raghava/toxinpred/
index.html), keeping all the parameters to default. This tool
predicts the antigenic behavior of epitopes through their
physicochemical properties and confirms that the specific
immune responses in the host cell will only target the bacteria
rather and not host tissue (65). Allergenicity analysis was
conducted with AllerTOP v2.0 server (https://www.ddg-
pharmfac.net/AllerTOP/feedback.py). This is a server based on
the main physicochemical properties of proteins (66), presenting
an accuracy of 88.7% (67).

Conservancy, Hydrophobicity and IFN-
Inducing Validation of Selected Epitopes
The conservancy of MHC Class I and MHC Class II selected
epitopes within protein sequences were predicted using IEDB
web server (68). For calculating the conservancy score, the
March 2022 | Volume 13 | Article 768569
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sequence identity threshold was kept at 100%. Grand average of
hydropathicity of MHC Class I. MHC Class II and LB epitopes
were done using ProtParam (52) server. The GRAVY value is
described by the sum of hydropathy values of all amino acids
divided by the protein’s length (34). A negative value implies that
protein contains hydrophilic properties whereas a positive
GRAVY value indicates that the protein is hydrophobic (35).
For further refinements, we investigated whether Helper T cell
(HTL) epitope can induce IFN gamma immune response using
the IFN epitope server (69) (http://crdd.osdd.net/raghava/
ifnepitope/), an online tool with 82.10% accuracy. The server
constructs overlapping sequences from which the IFN-g epitopes
are predicted. The default prediction method was set as “Motif
and Support Vector Machine (SVM) hybrid” and “IFN-gamma
vs. Non-IFN-gamma” model to predict IFN-g-inducing peptides
based on score. The higher the score, the higher the chance of
inducing IFN-g (70). Although the IFN epitope server has
limitations regarding the number of residues that can be used
for prediction (71), it is a common online prediction server used
for vaccine design (70, 72–74). Therefore, the epitopes with
positive results for the IFN-g response were selected for
further prediction.

Predicting Three Dimensional (3D) Epitope
Structure and Molecular Docking of the
Selected Epitopes
The best-selected MHC class I and MHC class II epitopes were
submitted to PEP-FOLD3 server (http://bioserv.rpbs.univ-paris-
diderot.fr/services/PEP-FOLD3/), an online tool for generating
de novo peptide 3D structure (75). The docking experiments
were made using PatchDock (https://bioinfo3d.cs.tau.ac.il/
PatchDock/php.php) tool. The obtained models were refined
and re-scored by FireDock server (http://bioinfo3d.cs.tau.ac.il/
FireDock/), that ranks the docked models by their global energy,
and the lowest global energy represented the best prediction (76).
The MHC class I epitopes were docked with HLA-A*0101 (PDB:
6AT9), HLA-A*0201 (PDB: 3UTQ), HLA-B*1501 (PDB: 1XR8),
HLA-B*3501 (PDB: 1ZSD), HLA-B*3901 (PDB: 4O2E), HLA-
B*5301 (PDB: 1A1M), HLA-B*5801 (PDB: 5IM7), HLA-B*4403
(PDB: 1SYS) alleles. The alleles used to MHC Class II epitopes
were: HLA-DRB1*0101 (PDB: 2FSE), HLA-DRB1*0301 (PDB:
1A6A), HLA-DRB1*0401 (PDB: 2SEB), HLA-DRB1*1501 (PDB:
1BX2), HLA-DRB3*0101 (PDB: 2Q6W), HLA-DRB3*0202
(PDB: 3C5J) and HLA-DRB5*0101 (PDB: 1H15). The docked
structures were visualized using PyMol tool (https://pymol.org/
pymol.html?) (67). The epitopes that showed the best binding
affinity were selected for vaccine construction.

Vaccine Construction
Best binding peptides were selected for potential vaccine
candidate. To construct the vaccine, CTL, HTL and BCL
epitopes were linked together by GGGS, GPGPG and KK
linkers. GGGS linkers were used to conjugate the Universal
Pan HLA DR sequence (PADRE) sequence with CTL epitopes
and the CTL epitopes among themselves. GPGPG linkers were
used to conjugate the CTL epitopes with HTL epitopes and also
Frontiers in Immunology | www.frontiersin.org 5
the HTL epitopes with the other HTL. KK linkers were used to
attach the HTL and BCL epitopes as well as the BCL epitopes
among themselves (67). Adjuvants sequences were linked with
the help of EAAAK linkers at both N- and C-terminus, and
EAAAK linkers were also used to conjugate the PADRE
sequence (AKFVAAWTLKAAA) (35). Five different adjuvant
sequences were used to attach the PADRE sequence: 50s
ribosomal L7/L12 protein (77), beta-defensin (78), HBHA
protein (M. tuberculosis, accession number: AGV15514.1), and
HBHA conserved sequence (79).

Antigenicity and Allergenicity of
Vaccine Constructs
VaxiJen 2.0 and ANTIGENpro server were used to determine the
antigenicity of the vaccine constructs. AllerTOP and AlgPred
(http://crdd.osdd.net/raghava/algpred/) servers were used to
evaluate the allergen potential of the multi-epitope vaccine
construct. Allergen prediction is based on similarity of known
epitope of any of the known region of the protein. It uses MAST
to searchMEME/MAST allergenmotifs and predict the allergen if it
has a motif. AlgPred is an SVM module based program which uses
amino acid or dipeptide composition for the prediction of allergen.
The parameters (IgE epitope +MAST + SVM+ARPs BLAST) were
combined to predict the allergenicity of vaccine constructs (35, 80).

Solubility Prediction and Physiochemical
Behavior Analysis of Vaccine Constructs
SOLpro of Scratch Protein predictor was used for vaccine
solubility estimation. SOLpro performs a two-stage SVM
architecture method based on multiple representations of the
primary sequence (81). The overall accuracy of SOLpro is
estimated in over 74% using multiple runs of ten-fold cross-
validation (81). Vaccine constructs physiochemical properties
were analyzed using Expasy ProtParam server, which determined
the number of amino acids, molecular weight, theoretical
isoelectric point (PI), instability and aliphatic index, and
hydropathicity GRAVY values.

Peptide Cleavage Analysis
Proteasomal cleavage is important for T Cell epitope presentation.
This was analyzed by NetChop 3.1 (http://www.cbs.dtu.dk/services/
NetChop/), a neural network-based method trained onMHC class I
ligands produced by the human proteasomes (Supplementary Data
Sheet 8) (82). Since cathepsins cleavage sites may play a vital role in
the immune antigen presentation, cathepsin specific peptidase
activity was analyzed with the SitePrediction (http://www.dmbr.
ugent.be/prx/bioit2-public/SitePrediction/index.php) server for
MHC class II epitopes (83).

Secondary and Tertiary Structure
Prediction of the Vaccine Constructs
The secondary structures of the multi-epitope vaccine constructs
were generated using online tool PSIPRED 4.0 (http://bioinf.cs.
ucl.ac.uk/psipred/), a web-based freely accessible online server
that also predicts the transmembrane topology, transmembrane
helix, fold and domain recognition (74). PSIPRED 4.0 has a Q3
March 2022 | Volume 13 | Article 768569
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secondary structure prediction precision of 84.2% (84). The 3D
structures of multi-epitope vaccine constructs were predicted
using the I-TASSER (Iterative Threading ASSEmbly Refinement)
server (https://zhanglab.ccmb.med.umich.edu/I-TASSER/). I-
TASSER is an integrated platform for automated protein
structure and function prediction based on the sequence-to-
structure-to-function paradigm. I-TASSER initial creates three-
dimensional (3D) atomic models from several threading
alignments and iterative structural assembly simulations
starting from an amino acid sequence. In five community wide
CASP (Critical Assessment of techniques for Structure
Prediction) experiments, I-TASSER has been ranked best
server for protein 3D structure prediction (70). Pymol program
was used to visualize the modeled 3D structures.

Refinement and Validation of
Vaccines Constructs
The 3D structures of the constructed vaccines were refined using
3Drefine server (http://sysbio.rnet.missouri.edu/3Drefine/).
3Drefine server is based in optimization of the hydrogen
bonding network and composite physics and knowledge-based
force fields to give atomic-level energy minimization using the
MESHI molecular modeling framework (85, 86). The validation
process was performed using the PROCHECK’s Ramachandran
plot analysis (https://servicesn.mbi.ucla.edu/PROCHECK/) (87)
that analyzes the geometry of the refined vaccine construct and
predict the best stereochemical quality of the construct (88);
ProSA (https://prosa.services.came.sbg.ac.at/prosa.php) (89) that
computes the overall quality score (Z score) for a specific 3D
structure (90); and ERRAT server (http://services.mbi.ucla.edu/
ERRAT/) (91) that analyzes the statistics of non-bonded
interactions between different atom types (92).

Protein-Protein Docking
Each vaccine construct was docked against TLR4-MD2 complex
(PDB:3FXI). The docking experiments were made using ClusPro
2.0 (https://cluspro.bu.edu/login.php) and PatchDock (https://
bioinfo3d.cs.tau.ac.il/PatchDock/php.php). ClusPro 2.0 ranks
the cluster of docked complexes based on their center and
lowest energy scores (93). PatchDock algorithm divides the
Connolly dot surface representation of the molecules into
concave, convex, and flat patches (94). ClusPro 2.0 and
PatchDock were further analyzed by the PRODIGY tool of
HADDOCK server (https://haddock.science.uu.nl/) and
FireDock server (http://bioinfo3d.cs.tau.ac.il/FireDock/php.
php), respectively. The PRODIGY server produces binding
affinity score (95) and the FireDock server accesses the global
energy of the docked complexes.

Molecular Dynamic Simulation
After performing the protein-protein molecular docking, the best-
scored vaccine construction (SMV4) complexed with TLR4-MD2
was subjected to molecular dynamic simulation by the online server
iMODS (http://imods.chaconlab.org/) (96), using the parameters as
default. This server predicts the dynamics simulation of the protein
complex in terms of atomic B-factors, eigenvalue variance,
deformability, elastic network, and covariance map. The
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deformability of a given protein mostly relies on the capability of
each of its residues to deform. The eigenvalue is related with the
energy that is required to deform the given structure; the lower the
eigenvalue value, the easier the deformability of the complex
(67, 97). Moreover, the eigenvalue of the given protein complex
provides its motion stiffness (79).

Discontinuous B Cell Epitopes
SMV4 vaccine construction selected was submitted to ElliPro
server (http://tools.iedb.org/ellipro/) that predicts epitopes based
upon solvent-accessibility and flexibility (98). The algorithms
implemented in this analysis were approximation of the protein
shape as an ellipsoid (99), protrusion index (PI) of residue (100),
and neighboring residues clustering based on their PI values. The
conformational B-cell epitopes with minimum score value set at
0.70 while the maximum distance was set as default.

Immune Simulation of the Vaccine
Construct
C-ImmSim server (http://150.146.2.1/C-IMMSIM/index.php?
page=1) was used for the immune simulation study. It uses
position-specific scoring matrix for immune epitope forecast and
machine learning techniques to estimate immune interactions
(101). The three mammalian anatomical regions to get simulated
by the server were thymus (T cell), bone marrow (lymphoid and
myeloid cell), and a lympathic organ to exhibit immune response
(102). All parameters were kept as default at the time of vaccine
introduction, and three injections were administered with the
recommended intervals of 30 days. The time steps followed for
three injections were 1, 90 and 180. The volume of simulation and
the steps of the simulation were set at 10 and 600, respectively (103).

Codon Adaptation and In Silico Cloning
Reverse translation and codon optimization were performed
using Java Codon Adaptation Tool (JCat) server (http://www.
prodoric.de/JCat) (104). The JCat output includes the codon
adaptation index (CAI) and percentage GC content, which can
be used to assess protein expression levels. CAI provides
information on codon usage biases; CAI score >0.8 is
considered a good score (105). The ideal GC content of a
sequence should range between 30–70% (80). The E. coli strain
K12 was chosen as host for cloning our vaccine construct. We
avoided rho-independent transcription termination, prokaryote
ribosome binding site, and restriction enzymes cleavage sites.
Vaccine construct was cloned in pET28a (+) plasmid vector by
adding XhoI and NdeI restriction sites at C and N terminus,
respectively. The optimized sequence of the vaccine was inserted
into the expression vector [pET-28a (+)] using Benchling
webserver (https://www.benchling.com/).
RESULTS

Pre-Screening of Primary Data
Primarily, we selected representative proteomes of 48 S. marcescens
associated with human infections, and a Serratia marcescens subsp.
marcescens Db11 as a reference strain for our vaccine prediction.
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The proteomes of all S. marcescens strains were retrieved from
Genome Project database of the National Center for Biotechnology
Information (NCBI). With the help of Bacterial Pan Genome
Analysis (BPGA) tool the number of core proteins found from
analyzing of the 49 proteomes was 2832 proteins.

Screening of Essential, Virulence,
Resistance and Non-Homology Against
Human and Gut Flora Proteins
All the 2832 proteins were subsequently analyzed for essential,
virulent and resistance functions. The analyses of the non-
redundant proteins resulted in 1815 proteins. Of these
proteins, we have found 879 essential proteins, 155 proteins
contained virulence property, 98 were resistant proteins, 370
proteins were found to be virulence and essential, 70 were
resistant and essential, 42 resistant and virulence, and 201
proteins were related with essential, virulence and resistance
functions, 1106 were non-homologous with human proteins. Of
these 1106 proteins, 20 were gut flora non-homologous proteins,
and were used for subsequent analysis

Subcellular Localization, Identification of
Essential Proteins, Virulence Factors and
Resistant Determinants
Next, the subcellular localization of 20 gut flora non-homologous
proteins revealed that 2 proteins were outer membrane proteins, 6
periplasmic, and 2 extracellular (Table 1). Of these 10 proteins, 4
protein were essential (D-alanyl-D-alanine carboxypeptidase, 51.35
kDa; patatin-like phospholipase, 35.68 kDa; lipoprotein 11.82 kDa;
helix-turn-helix domain-containing protein, 10.66 kDa), 4 virulence
(phospholipase C, 79.68 kDa; spore coat U domain-containing
protein, 33.28 kDa; protein of avirulence locus ImpE, 29.48 kDa;
NADPH-dependent FMN reductase, 19.24 kDa; 1 was related to
resistance (TonB-dependent receptor, 76.90 kDa), and 1 protein
presented essential and virulent functions (MoaF domain-
containing protein, 16.27 kDa) (Table 1).

Peptide Signal, Trans-Membrane, and
Antigenicity Prediction
Of these 10 proteins selected, analyses of presence of signal
peptide/anchor resulted into 3 proteins with secretory signal
peptides that are transported by the Sec translocon and cleaved
by Signal Peptidase I (Sec/SPI), 2 proteins having lipoprotein
signal peptides transported by the Sec translocon and cleaved by
Signal Peptidase II (Sec/SPII), and 1 protein with Tat signal
peptides transported by the Tat translocon and cleaved by Signal
Peptidase I (Tat/SPI). Only 1 protein (MoaF domain-containing
protein) contained 1 transmembrane helix (Table 1). VaxiJen
v2.0 and AntigenPRO tools reveled 7 and 8 proteins with a good
antigenic nature (>0.50) (Table 1), respectively. Of these, 2
essential proteins (D-alanyl-D-alanine carboxypeptidase,
patatin-like phospholipase family protein), 2 virulent proteins
(Phospholipase C, phosphocholine specific; spore coat U
domain-containing protein), and 1 resistant protein (TonB-
dependent receptor) presented antigenicity profile, had
extracellular domain or were proteins located in the outer
Frontiers in Immunology | www.frontiersin.org 7
membrane. Therefore, these 5 protein were considered for
further prediction of vaccine targets (Table 1).

MHC Class-I Epitopes Prediction and
Immunogenicity, Antigenicity, Toxicity,
Hydropathicity and Conservancy Analysis
of Selected Epitopes
The prediction of T-cell epitopes of MHC class-I of the 5
proteins (D-alanyl-D-alanine carboxypeptidase, patatin-like
phospholipase family protein, Phospholipase C phosphocholine
specific, spore coat U domain-containing protein, TonB-
dependent receptor) had the sequence length 9 residues.
Among the 284 predicted epitopes, the 123 common epitopes
found in three servers were selected for immunogenicity analysis
and resulted in 59 epitopes. From these, 31 epitopes were found
to be antigenic and we found no epitopes with toxicity. Out of 31,
17 epitopes were non-allergenic. Epitope conservancy analysis
found 14 peptides with a score of more than 50%. GRAVY
analysis resulted in 7 peptides with negative value score, which
suggests hydrophilic nature of peptides. For further analysis, we
selected 7 MHC class-I epitopes (TPFGAGWSW, LEDRLVETL,
SSNVNFPLY, FTIPLPGDR, QTYGAKIAR, SEYVWNYEL,
YQFLKGWEL) that were found to be immunogenic, antigenic,
non-allergenic, non-toxic, conserved, and with negative
hydropathicity (Table 2). We excluded the patatin-like
phospholipase family protein because its prediction analysis
did not reach all the recommended parameters (Table 2).

MHC-II Epitopes and Antigenicity,
Toxicity, Conservancy, Hydropathicity,
IFN-g Analysis
The MHC-II binding prediction of the 5 proteins (D-alanyl-D-
alanine carboxypeptidase, patatin-like phospholipase family
protein, Phospholipase C phosphocholine specific, spore coat
U domain-containing protein, TonB-dependent receptor)
resulted in 415 MHC-II epitopes with higher affinity. From
these, 196 were antigenic, and all were subjected to toxicity
and allergenicity prediction. According with results, all selected
epitopes were non-toxic and 114 had non-allergic nature.
Conservancy analysis showed that 93 epitopes had score more
than 50%, and GRAVY analysis revealed that 70 epitopes had a
hydrophilic nature. Additionally, the 31 the best resultant
epitopes of all analyses conducted were analyzed for their
IFN-g inducing. A total of 16 epitopes (4 from D-alanyl-D-
alanine, 1 from patatin-like phospholipase family protein, 2 from
Phospholipase C phosphocholine specific, 2 from spore coat U
domain-containing protein and 7 from TonB-dependent
receptor) had a IFN-g inducing profile and were selected for
molecular docking analysis (Table 3).

B-Cell Epitope Prediction and
Antigenicity, Toxicity, Allergenicity
and Hydropathicity Analysis
The prediction of linear B-cell epitopes for D-alanyl-D-alanine
carboxypeptidase, patatin-like phospholipase family protein,
Phospholipase C, TonB-dependent receptor and spore coat U
March 2022 | Volume 13 | Article 768569
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domain-containing protein is showed in Figure S1. Antigenicity
scale, and the most potent regions in epitopes found is showed in
yellow (Figure S1). A total of 503 B cell epitopes were predicted by
three servers, of which 236 epitopes were found to be antigenic. From
these antigenic epitopes, we manually selected 23 epitopes that had
regions overlapping with the amino acids sequences found in IEDB,
ABCpred and Bcepred tools. These epitopes were subsequently tested
to toxicity, allergenicity, conservancy and hydropathicity. This
analysis resulted in 12 epitopes (TGEQRGDTL, SGDPTLHPDDL,
GRKTQGKGD, QREVYSHRTTPRM, SSQRINTRTLGLRLDS,
MAVANTDGSGD, TTVWDSTNKQSGAGT, QPEVRLRPTG,
FAAQRHESVGN, AETKSNETYQD, DRQRRRSEADL,
RLEREHRRRDG) non-allergen, non-toxic, conserved and having
hydrophilic nature. All 12 epitopes were selected for further analysis
and vaccine construction (Table 4).

Peptide Modeling and Molecular
Docking Analysis
All the 7 MHC class I and 16 MHC class II T-cell epitopes were
subjected to 3D structure generation by the PEP-FOLD3 server, and
the predicted 3D structures found were docked with 8 MHC class I
alleles and 7 MHC class II alleles, respectively. Among the epitopes,
Frontiers in Immunology | www.frontiersin.org 8
5 MHC class I and 12 class II epitopes showed the best result with
the lowest global energy of -34.89 and -70.54, respectively (Table 5)
and were used in multi-peptide vaccine construction.

Construction of Multi-Epitope Peptide
Vaccine, Physiochemical Properties and
Antigenicity, Allergenicity, Solubility
Analysis of Different Vaccine Constructs
We combined an adjuvant, PADRE sequence, CTL epitopes (MHC-
I epitopes), HTL epitopes (MHC-II epitopes) and BCL epitopes (B-
cell epitopes) in a sequential manner, and constructed four vaccines
candidates, named SMV1, SMV2, SMV3 and SMV4. All designed
vaccine proteins contained 5 CTL epitopes, 12 HTL, and 12 BCL
epitopes. The vaccines differed each other only by adjuvant
sequence, and the adjuvants used were 50s ribosomal L7/L12
protein, beta defensin, HBHA conserved sequence and HBHA
protein (M. tuberculosis, accession number: AGV15514.1)
(Table 6). For vaccine construction, the adjuvant sequence was
linked with PADRE sequence by EAAAK linker, GGGS linkers
were used to join the PADRE sequence with the CTL epitopes and
the CTL epitopes with the other CTL epitopes, GPGPG were used
to linked the CTL epitopes with the HTL epitopes and also the HTL
TABLE 1 | Predicted subcellular localization, physicochemical, antigenicity, trans-membrane alpha-helices and peptide signal analysis.

Ref. Sequence (1) Protein name (2) Length
(amino
acid) (3)

Mol.
Wt
kDa
(4)

Signal peptide (5) Localization
(6)

Functional Discription
(7,8,9)

TMHMM
(10)

Antigenicity
(11,12)

Essential proteins
WP_041033700.1 * D-alanyl-D-alanine

carboxypeptidase/D-alanyl-D-
alanine-endopeptidase

489 51.35 Sec/SPIICleavage
site (17 and 18,
LAG-CS)

Outer
membrane/
Periplasm

Penicilin-binding protein/
Serine endopeptidase
activity

0 0.5856,
0.5066

WP_084827239.1 * Patatin-like phospholipase
Family protein

323 35.68 Not identified Outer
membrane

Hydrolase activity/lipid
catabolic process

0 0.6024,
0.8235

WP_004939944.1 Lipoprotein 108 11.82 Sec/SPIICleavage
site (16 and 17,
LSA-CA)

Periplasm Lipoprotein with MoaF
domain

0 0.5595,
0.4857

WP_047571040.1 Helix-turn-helix domain-
containing protein

92 10.66 No identified Periplasm Uncharacterized conserved
protein with HTH_43
domain

0 0.2089,
0.2900

Virulent proteins
WP_141960268.1 * Phospholipase C,

phosphocholine-specific
715 79.68 Tat/SPICleavage

site (31 and 32,
(ALA-IP)

Extracellular Membrane damaging toxin,
phosphoric-diester
hydrolase

0 0.4097,
0.6277

WP_048321499.1 * Spore coat U domain-
containing protein

311 33.28 Sec/SPICleavage
site (23 and 24,
AFA-DC)

Extracellular Involved in motility and
biofilm formation

0 0.6887,
0.8719

WP_148123533.1 Protein of avirulance locus
ImpE

273 29.48 Not identified Periplasm Signaling, type VI secretion
system component

0 0.5895,
0.7594

WP_004940045.1 NADPH-dependent FMN
reductase

183 19.24 Not identified Periplasm Electron transfer activity/
FMN binding

0 0.4056,
0.7386

Resistance protein
WP_033636744.1 * TonB-dependent receptor 697 76.90 Sec/SPICleavage

site (44 and 45,
VNA-AE)

Outer
membrane

Iron complex receptor
protein, channel transporter
of siderophores

0 0.6847,
0.7910

Essential and virulent protein
WP_099783007.1 MoaF domain-containing

protein
150 16.27 Sec/SPICleavage

site (26 and 27,
ATA-AQ)

Periplasm Exported protein with MoaF
domain

1 0.5896,
0.9631
March 2022 | Vo
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All data were analyzed using various server: 1, 2, 3 = NCBI/UniProt; 4 = Expasy; 5 = SignalP5.0; 6 = PSORTb/CELLO; 7, 8, 9 = Uniprot/KEGG/InterPro; 10 = TMHMM; 11 = Vaxijen, 12 =
AntigenPRO. * proteins considered for further analysis.
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epitopes among themselves, and KK linkers were used to conjugate
HTL with the BCL epitopes, the BCL with the other BCL epitopes,
and BCL with the PADRE sequence. Each vaccine construct was
finished by an additional GGGS linker.

Each designed vaccine construct contained 668 (SMV1), 659
(SMV2), 554 (SMV3) and 639 (SMV4) residues long, while the
molecular weight of each construction was found to be 70.335,
69.217, 57.867 and 66.147 kDa respectively. The theoretical pI of
each construct ranged from 9.85 to 10.36, suggesting that the
constructions have a negative charge if the pH is above the
isoelectric point and vice versa. The computed instability index of
constructions varied from 28.01 to 35.66 representing the stable
nature of the vaccine proteins. The high aliphatic index range (66.68
to 74.19) of all vaccine constructs suggest the protein stability in
several temperatures. The negative GRAVY value of the vaccine
constructs revealed that all of them has a hydrophilic in nature. All
four vaccine constructs showed good solubility (>0.873) during its
heterologous expression in the E. coli. Therefore, all of the vaccine
constructs showed be antigenic, non-allergenic, hydrophilic, stable
and soluble. The sequence of vaccine constructs and their
physiochemical properties are showed in Table 6.

Peptide Cleavage Analysis
We investigated both proteasomal and cathepsin specific
peptidase activity on the vaccine constructs. NetChop 3.1
server detected 17 proteasomal sites, which majority of them
were close to the linkers. SitePrediction server provided 1
peptidase and 14 peptidase links with 99.9% and 99%
specificity for cathepsin B, respectively; 1 peptidase and 2
peptidase links with 99.9% and 99% specificity for cathepsin D,
respectively; 8 and 3 peptidase links with 99% specificity for
cathepsins E and G, respectively; 2 peptidase links with 99.9%
and 4 peptidase links with 99% specificity for cathepsin K, and 1
peptidase link with 99% specificity for cathepsin L. Our results
indicates that these multi-epitope vaccine constructs might be
processed and presented in context of MHC class molecule.

Secondary Structure Prediction of the
Constructed Vaccines
The analyze of the secondary structure of vaccine constructs
showed that SMV1 had 48.35% of amino acids in coil structure,
40.12% of amino acids in alpha helix, and the lowest percentage
of the amino acids in beta sheet formation (11.23%). SMV2 had
49.75% of amino acids in coil structure, 38.56% in alpha helix
region, and 11.69% of the amino acids in the beta sheet
formation. SMV3 had the highest percentage of coil structure
(55.05%), 27.62% of the amino acids in alpha helix region, and
the highest percentage of the amino acids in the beta sheet
formation (17.33%). SMV4 presented coil structure in 54.23%,
30.05% of alpha helix region, and 15.72% of the amino acids in
the in beta sheet formation (Figure 2).

3D Structure Prediction of the
Constructed S. marcescens
The 3D structure was obtained by threading using I-TASSER
web server. For each vaccine sequence was predicted five 3D
models, and the first model of each construction was selected. All
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TABLE 3 | Identification of MHC-II epitopes and antigenicity, toxicity, conservancy, hydropathicity and IFN-g inducing profile prediction.

Antigenicity

(4)

Toxicity

(5)

Allergenicity

(6)

Conservancy

(7)

Hydropathicity

(8)

IFN-g
inducing

(9)

10.376 Non-
toxin

Non-allergen 83.67% -0.93 0.476

0.6842 Non-
toxin

Non-allergen 75.51% -0.89 0.228

10.191 Non-
toxin

Non-allergen 61.22% -0.1 0.329

0.5584 Non-
toxin

Non-allergen 100% -0.92 0.089

0.8684 Non-
toxin

Non-allergen 100% -0.71 0.416

0.5796 Non-
toxin

Non-allergen 97.96% -0.93 0.131

0.8644 Non-
toxin

Non-allergen 100% -1.34 0.673

0.6343 Non-
toxin

Non-allergen 97.96% -0.82 0.041

0.5934 Non-
toxin

Non-allergen 63.27% -1.05 0.41

0.7968 Non-
toxin

Non-allergen 87.76% -0.11 0.314

- 0.8159 Non-
toxin

Non-allergen 87.76% -0.03 0.136

0.6574 Non-
toxin

Non-allergen 87.76% -0.93 0.154

0.5227 Non-
toxin

Non-allergen 100% -0.27 0.494

0.5005 Non-
toxin

Non-allergen 87.76% -0.03 0.108

0.9467 Non-
toxin

Non-allergen 87.76% -0.65 0.04

0.7445 Non-
toxin

Non-allergen 87.76 -0.41 0.63

v2.0; 7 = IEDB; 8 = GRAVY ProtParam; 9 = IFN epitope.
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No. Protein ID (1); name (2) Start

(3)

End

(3)

Epitope (3) Alleles (3)

1 WP_041033700.1; D-alanyl-D-
alanine carboxypeptidase/
endopeptidase

7 21 WLLPAILALAGCSSS HLA-DRB1*01:01

170 184 AFAAPISALNYAFTP HLA-DRB1*01:01

197 211 PGARAGAPGRVSFYP HLA-DQA1*05:01/DQB1*03:01

451 465 PLAFAIISNNYLVPG HLA-DRB1*04:05/HLA-DRB1*04:01/HLA
DRB1*15:01HLA-DRB1*07:01/HLA-
DRB1*01:01/HLA-DRB1*13:02

2 WP_084827239.1; patatin-like
phospholipase family protein

40 54 SGASAGAIAALLVGL HLA-DQA1*05:01/DQB1*03:01

3 WP_141960268.1;
Phospholipase C,
phosphocholine-specific

243 257 RQYRAASIQVGNPAR HLA-DRB1*01:01

452 466 EKRFQVHEPNISAWR HLA-DRB1*01:01

4 WP_048321499.1; spore coat
U domain-containing protein

117 131 SLNLLSLILISSNVN HLA-DRB1*01:01

121 135 LSLILISSNVNFPLY HLA-DRB1*13:02/HLA-DRB1*01:01

5 WP_033636744.1; TonB-
dependent receptor

125 139 NVGANAFLSGTRPRL HLA-DRB5*01:01

129 143 NAFLSGTRPRLNLSL HLA-DRB5*01:01, HLA-DRB1*01:01, HLA
DRB1*11:01

339 353 TDFNINRPTAYNIQY HLA-DRB3*02:02, HLA-DRB1*13:02

372 386 ADSRLHGLAGLRYFH HLA-DRB1*01:01

565 579 RWDFELFGNLGLLKT HLA-DRB1*01:01

595 609 ARAPAYTANMGAKYQ HLA-DRB3*02:02

606 620 AKYQFLKGWELSSNV HLA-DRB1*01:01

All data were analyzed using various server: 1, 2 = NCBI/UniProt; 3 = IEDB Tepitool; 4 = VaxiJen 2.0; 5 = ToxinPred; 6 = AllerTop
-
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the model was ranked on their C-scores values, which measure
similarity between the query and template based on the
significance of threading template alignment and the query
coverage parameters. C-score values ranges between -5 and 2,
and a higher value represents a model with a higher confidence
and correct topology. SMV1 presented a Z-Score ranging from
0.64 to 2.42 and a C-Score of -2.41. SMV2 showed a Z-Score
ranging from 0.65 to 2.39 and a C-Score of -2.41. SMV3 had a C-
Score of -1.92 and a Z-Score ranging from 1.08 to 3.43. SMV4
exhibited a Z-Score of 1.06 to 5.61 and the highest C-Score, -1.34
(Figure 3A). In addition to C and Z score, I-TASSER predicted
the TM-score, a metric for measuring the similarity of two
protein structures, and the root mean square deviation
(RMSD) of atomic positions. TM-score obtained in vaccines
constructs ranged from 0.43 ± 0.14 to 0.55 ± 0.15. SMV4 had a
TM-score more than 0.5, indicating a higher accuracy in
topology. For all vaccines tested the RMSD ranged from 11.1 ±
4.6Å to 14.0 ± 3.9 Å (Figures 3A, B).

3D Structure Refinement and Validation
The 4 vaccine constructs 3D model were refined using the
3Drefine server. 3Drefine server provided five refined models
with different parameters, including the 3D refined score, GDT-
TS, GDTHA, RMSD, MolProbity, and RWPlus. Higher GDT-TS,
GDT-HA, and RMSD values, and lower 3D refine Score,
RWplus, and MolProbity values indicate a higher quality for
the models. The models number 1 in all 4 vaccine constructs
presented lowest MolProbity score, which ranged from 3.454 to
3.565 (Figure 4A). Therefore, these were validated by
PROCHECK’s Ramachandran plot, ERRAT and ProSA
Frontiers in Immunology | www.frontiersin.org 11
webserver. ERRAT score for 3D models of four vaccines were
calculated as 88.601, 85.162, 79.607, and 84.751, respectively
(Figure 4A). The ProSA Z-Score for SMV1, SMV2, SMV3 and
SMV4 were -4.60, -4.42, -2.02 and -5.16 respectively, indicating
models were within the range of scores typically found for the
native proteins of similar size (Figures 4A, B). Ramachandran
plot analysis showed 97.1%, 97.4%, and 97.6% residues in
allowed region for vaccine SMV1, SMV3 and SMV4,
respectively. The SMV2 vaccine had 98.1% of residues in the
allowed regions (Figure 4C). These analyses authenticated the
reliability and stability of the predicted structures.

Protein-Protein Docking
Docking analysis was performed between SMV1, SMV2, SMV3
and SMV4 vaccine constructs and TLR4-MD2 complex
(PDB:3FXI), in order to find out the best constructed S.
marcescens vaccine. SMV4 showed binding affinity -28.3 kcal/
mol, a Kd of 1.1E-20 at 37°C, a global energy of -55.38, and an HB
energy of -12.81 (Figure 5A). Since SMV4 showed superior
results in the protein-protein docking study, it was considered as
the best vaccine construct among the four constructed
vaccines (Figure 5B).

Molecular Dynamics Simulation
The molecular dynamics simulation and normal mode analysis
(NMA) of SMV-4-TLR4 docked complex is showed in
Figure 6A. Deformability graphs of the complex illustrates the
peaks in the graphs, having regions of the proteins with high
deformability (Figure 6B). The B-Factor graphs of the complexes
provide easy understanding and visualization of the comparison
TABLE 4 | Identification of B-cell epitopes and antigenicity, toxicity, allergenicity and hydropathicity prediction of selected epitopes.

No. Protein ID (1); name (2) Start End Lenght Epitopes (3,4,5) Antigenicity

(6)

Toxicity

(7)

Allergenicity

(8)

Hydropathicity

(9)

Conservancy

(10)

1 WP_041033700.1; D-alanyl-D-
alanine carboxypeptidase/
endopeptidase

100 108 9 TGEQRGDTL 1.4316 Non-
toxin

Non-allergen 1.49 51.02%

117 127 11 SGDPTLHPDDL 0.7116 Non-
toxin

Non-allergen -1.02 100%

331 339 9 GRKTQGKGD 2.7203 Non-
toxin

Non-allergen 2.36 89,80%

2 WP_084827239.1; patatin-like
phospholipase family protein

147 159 13 QREVYSHRTTPRM 0.7944 Non-
toxin

Non-allergen -2.05 100%

214 229 16 SSQRINTRTLGLRLDS 17.872 Non-
toxin

Non-allergen -0.77 71.43%

3 WP_141960268.1; Phospholipase
C, phosphocholine-specific

620 629 10 QPEVRLRPTG 1.3449 Non-
toxin

Non-allergen -1.23 93.88%

4 WP_048321499.1; spore coat U
domain-containing protein

81 91 11 MAVANTDGSGD 1.8801 Non-
toxin

Non-allergen -0.28 63.27%

263 277 15 TTVWDSTNKQSGAGT 1.023 Non-
toxin

Non-allergen -0.97 61.22%

5 WP_033636744.1; TonB-
dependent receptor

5 15 11 FAAQRHESVGN 0.8087 Non-
toxin

Non-allergen -0.80 97.96%

45 55 11 AETKSNETYQD 1.6267 Non-
toxin

Non-allergen -2.10 100%

233 243 11 DRQRRRSEADL 1.2989 Non-
toxin

Non-allergen -2.47 87.86%

429 439 11 RLEREHRRRDG 1.6679 Non-
toxin

Non-allergen -2.98 87.86%
March 20
22 | Volume 13 |
All datawere analyzed using various on line server: 1, 2 = NCBI/UniProt; 3, 4, 5 = ABCPred, Bcepred, IEDB; 6 = VaxiJen 2.0; 7 = ToxinPred; 8 = AllerTOP v2.0; 9 = GRAVY ProtParam; 10 = IEDB.
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TABLE 5 | Molecular docking of epitopes with HLA.

nergy

-B*3901
B: 4O2E)

HLA-B*4403
(PDB: 1SYS)

HLA-B*5301
(PDB: 1A1M)

HLA-
B*5801

(PDB: 5IM7)

Average

13.15 -43.74 -38.83 -33.18 -34.89
35.34 -16.97 -38.40 -23.62 -30.79

-6.21 -15.41 -33.75 -23.74 -23.73

19.00 -36.62 -37.51 -30.24 -30.68

15.90 -25.60 -18.49 -26.75 -22.13
-8.14 -15.25 -42.89 -39.22 -27.89
-15.5 -25.71 -47.98 -35.74 -27.06

nergy
HLA-
B3*0101
B: 2Q6W)

HLA-
DRB3*0202
(PDB: 3C5J)

HLA-
DRB5*0101
(PDB: 1H15)

Average

65.01 -43.20 -72.52 -70.54

41.19 -30.71 -64.83 -57.01
36.28 -30.34 -61.55 -53.40
-58.5 -47.77 -89.92 -63.42
59.65 -41.55 -64.48 -62.30

13.96 -30.96 -69.12 -46.50

16.93 -24.41 -27.34 -28.43
29.65 -50.10 -89.29 -62.08

16.16 -46.28 -45.35 -57.20
20.96 -31.18 -58.32 -49.38

35.10 -31.70 -35.66 -46.03
13.94 -34.32 -43.83 -37.37
24.56 -25.95 -58.13 -47.60
16.14 -32.27 -63.07 -45.76
22.36 -29.58 -34.58 -38.98
18.93 -25.68 -38.05 -42.53
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MHC Class I

No. Protein ID, name Epitope Global E

HLA-A*0101
(PDB: 6AT9)

HLA-A*0201
(PDB: 3UTQ)

HLA-B*1501
(PDB: 1XR8)

HLA-B*3501
(PDB: 1ZSD)

HLA
(PD

1 WP_041033700.1 D-alanyl-D-
alanine carboxypeptidase/
endopeptidase

TPFGAGWSW -54.89 -18.06 -34.65 -42.60
LEDRLVETL -41.35 -22.48 -43.79 -24.36

2 WP_141960268.1 Phospholipase
C, phosphocholine-specific

FTIPLPGDR -46.08 -24.55 -15.99 -24.14

3 WP_048321499.1 spore coat U
domain-containing protein

SSNVNFPLY -56.28 -23.22 -32.65 -9.88

4 WP_033636744.1 TonB-
dependent receptor

QTYGAKIAR -43.86 -4.69 -22.38 -19.36
SEYVWNYEL -40.96 -17.05 -33.96 -25.68
YQFLKGWEL -49.03 -18.24 -15.98 -8.29

MHC Class II
Global E

No. Protein ID, name Epitope HLA-
DRB1*0101
(PDB: 2FSE)

HLA-
DRB1*0301
(PDB: 1A6A)

HLA-
DRB1*0401
(PDB: 2SEB)

HLA-
DRB1*1501
(PDB: 1BX2)

DR
(PD

1 WP_041033700.1 D-alanyl-D-
alanine carboxypeptidase/
endopeptidase

WLLPAILALAGCSSS -89.74 -79.65 -74.83 -68.81

PGARAGAPGRVSFYP -74.58 -62.83 -62.02 -62.94
LAVTFLKVSNNGYGE -66.12 -73.03 -51.81 -54.69
PLAFAIISNNYLVPG -72.3 -57.61 -55.05 -62.76

2 WP_084827239.1 patatin-like
phospholipase family protein

SGASAGAIAALLVGL -58.55 -72.12 -64.58 -75.20

3 WP_141960268.1 Phospholipase
C. phosphocholine-specific

RQYRAASIQVGNPAR -61.17 -55.80 -47.44 -47.05

EKRFQVHEPNISAWR -38.13 -38.77 -45.12 -8.34
4 WP_048321499.1 spore coat U

domain-containing protein
SLNLLSLILISSNVN -88.21 -56.66 -52.15 -68.53

LSLILISSNVNFPLY -93.62 -65.33 -50.97 -82.72
5 WP_033636744.1 TonB-

dependent receptor
NVGANAFLSGTRPRL -65.95 -52.33 -55.04 -61.88

NAFLSGTRPRLNLSL -74.06 -48.43 -59.42 -37.86
TDFNINRPTAYNIQY -42.87 -44.67 -49.32 -32.67
ADSRLHGLAGLRYFH -62.54 -47.66 -53.30 -61.08
RWDFELFGNLGLLKT -45.56 -55.26 -56.56 -51.49
ARAPAYTANMGAKYQ -45.59 -44.37 -51.96 -44.44
AKYQFLKGWELSSNV -54.33 -61.70 -39.90 -59.14

3D structures were generated by the PEP-FOLD3 server. The docking was performed using PatchDock online tool and the results were refined by FireDock
-
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TABLE 6 | Characteristics of the constructed vaccines against S. marcescens strains.

I (5) Instability
index (5)

Aliphatic
index (5)

GRAVY

(5)

SOLpro

(6)

.91 33.33 72.46 -0.525 0.967

.86 35.66 73.87 -0.510 0.974

0.36 31.21 66.68 -0.547 0.873

.85 28.01 74.19 -0.389 0.957

(Continued)
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Vaccine
name/adjuvant

Sequence Antigenicity

(1, 2)

Allergenicity

(3,4)

Amino acids
length (5)

Mol. weight
kDa (5)

SMV1/(HBHA) EAAAKMAENPNIDDLPAPLLAALGAADLALATVNDLIANLRERAEE
TRAETRTRVEERRARLTKFQEDLPEQFIELRDKFTTEELRKAAEGY
LEAATNRYNELVERGEAALQRLRSQTAFEDASARAEGYVDQAVELT
QEALGTVASQTRAVGERAAKLVGIELEAAAKAKFVAAWTLKAAAG
GGSTPFGAGWSWGGGSLEDRLVETLGGGSSSNVNFPLYGGGSS
EYVWNYELGGGSYQFLKGWELGPGPGWLLPAILALAGCSSSGPG
PGAFAAPISALNYAFTPGPGPGPGARAGAPGRVSFYPGPGPGPLA
FAIISNNYLVPGGPGPGSGASAGAIAALLVGLGPGPGRQYRAASIQ
VGNPARGPGPGSLNLLSLILISSNVNGPGPGLSLILISSNVNFPLYG
PGPGNVGANAFLSGTRPRLGPGPGNAFLSGTRPRLNLSLGPGP
GADSRLHGLAGLRYFHGPGPGRWDFELFGNLGLLKTKKTGEQR
GDTLKKSGDPTLHPDDLKKGRKTQGKGDKKQREVYSHRTTPRM
KKSSQRINTRTLGLRLDSKKMAVANTDGSGDKKTTVWDSTNKQ
SGAGTKKQPEVRLRPTGKKFAAQRHESVGNKKAETKSNETYQD
KKDRQRRRSEADLKKRLEREHRRRDGKKAKFVAAWTLKAA
AGGGS

Vaxijen:
1.0377
ANTIGENpro:
0.835

Non-allergen 668 70.335

SMV2/(HBHA
Conserved Sequence)

EAAAKMAENSNIDDIKAPLLAALGAADLALATVNELITNLRERAEE
TRRSRVEESRARLTKLQEDLPEQLTELREKFTAEELRKAAEGYLEA
ATSELVERGEAALERLRSQQSFEEVSARAEGYVDQAVELTQEALG
TVASQVEGRAAKLVGIELEAAAKAKFVAAWTLKAAAGGGSTPFG
AGWSWGGGSLEDRLVETLGGGSSSNVNFPLYGGGSSEYVWNY
ELGGGSYQFLKGWELGPGPGWLLPAILALAGCSSSGPGPGAFA
APISALNYAFTPGPGPGPGARAGAPGRVSFYPGPGPGPLAFAIISN
NYLVPGGPGPGSGASAGAIAALLVGLGPGPGRQYRAASIQVGNP
ARGPGPGSLNLLSLILISSNVNGPGPGLSLILISSNVNFPLYGPGP
GNVGANAFLSGTRPRLGPGPGNAFLSGTRPRLNLSLGPGPGADS
RLHGLAGLRYFHGPGPGRWDFELFGNLGLLKTKKTGEQRGDTL
KKSGDPTLHPDDLKKGRKTQGKGDKKQREVYSHRTTPRMKKS
SQRINTRTLGLRLDSKKMAVANTDGSGDKKTTVWDSTNKQSGA
GTKKQPEVRLRPTGKKFAAQRHESVGNKKAETKSNETYQDKKD
RQRRRSEADLKKRLEREHRRRDGKKAKFVAAWTLKAAAGGGS

Vaxijen:
1.0449
ANTIGENpro:
0.851

Non-allergen 659 69.217

SMV3/(b-Defensin) EAAAKGIINTLQKYYCRVRGGRCAVLSCLPKEEQIGKCSTRGRKC
CRRKKEAAAKAKFVAAWTLKAAAGGGSTPFGAGWSWGGGSLE
DRLVETLGGGSSSNVNFPLYGGGSSEYVWNYELGGGSYQFLKGW
ELGPGPGWLLPAILALAGCSSSGPGPGAFAAPISALNYAFTPGPG
PGPGARAGAPGRVSFYPGPGPGPLAFAIISNNYLVPGGPGPGSG
ASAGAIAALLVGLGPGPGRQYRAASIQVGNPARGPGPGSLNLLSL
ILISSNVNGPGPGLSLILISSNVNFPLYGPGPGNVGANAFLSGTRPR
LGPGPGNAFLSGTRPRLNLSLGPGPGADSRLHGLAGLRYFHGPG
PGRWDFELFGNLGLLKTKKTGEQRGDTLKKSGDPTLHPDDLKK
GRKTQGKGDKKQREVYSHRTTPRMKKSSQRINTRTLGLRLDSK
KMAVANTDGSGDKKTTVWDSTNKQSGAGTKKQPEVRLRPTGK
KFAAQRHESVGNKKAETKSNETYQDKKDRQRRRSEADLKKRLE
REHRRRDGKKAKFVAAWTLKAAAGGGS

Vaxijen:
1.1417
ANTIGENpro:
0.827

Non-allergen 554 57.867 1

SMV4/(50s ribosomal
L7/L12 protein)

EAAAKMAKLSTDELLDAFKEMTLLELSDFVKKFEETFEVTAAAPVA
VAAAGAAPAGAAVEAAEEQSEFDVILEAAGDKKIGVIKVVREIVSGLG
LKEAKDLVDGAPKPLLEKVAKEAADEAKAKLEAAGATVTVKEAAAK

Vaxijen:
1.0210

Non-allergen 639 66.147
p

9

9

9
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between NMA and the PDB field of the docked complex
(Figure 6C). The SMV4-TLR4 docked complex suggested that
docked complex should be quite stable and should have relatively
less chance of deformability (Figures 6B, D). In the variance
graph (Figure 6E), red colored bars shows the individual
variance and green colored bars represent the cumulative
variance. Co-variance map of the complex showed a good
amount of amino acid pairs in the correlated motion
(Figure 6F). The elastic map (Figure 6G) of the complex
describes the connection between atoms and darker gray
regions shows stiffer regions.

Discontinuous B Cell Epitopes
Eight discontinuous B-cell epitopes with scores ranging from
0.713 to 0.872 were predicted by Ellipro online tool at IEDB.
Shortest and longest discontinuous B cell epitope ranged from 3
to 63 residues long respectively (Figure 7A). The amino acid
residues present in conformational epitopes, the number of
residues, their scores, and the 3D representation of
conformational B-cell epitopes are shown in Figure 7A, B.

Immune Simulation for Vaccine Efficacy
The vaccine primary response was characterized by high levels of
IgM, while the secondary and tertiary responses were higher than
the primary reaction and distinguished by greater IgM + IgG,
IgG1 + IgG2, IgG1 antibodies level, and a rapid clearance in
antigen concentration (Figure 8A). B cell activation were found
high, particularly B isotype IgM and IgG1, with prominent
memory cell development (Figure 8B). The cell population of
TH (helper) and TC (cytotoxic) cells were also found high along
with memory development (Figures 8C, D). A significant levels
of T regulatory (Treg cells) cells was found in the exposure to the
SMV4, and a Treg cell reduction few days after antigen exposure
(Figure 8E). The vaccine can induce both IFN-g and IL-2 with a
suitable Simpson Index (D) (Figure 8F), which is a measure
of diversity.

Codon Adaptation of the Final
Vaccine Construct
Codons of SMV4 construct were adapted as per codon utilization
of E. coli expression system, and JCAT server was used to
optimize the SMV4 codons according to E. coli K12. The
optimized SMV4 construct had a length of 1917 pb; an ideal
range of GC content 54.17% (30–70%), showing good probable
expression of the vaccine candidate in the E. coli K12; and CAI
value 0.958 (0.8–1.0), indicating a high gene expression potential.
In the next step, the SMV4 sequence was cloned between XhoI
and NdeI restriction sites at the multiple cloning-site of the
pET28a(+) vector. The clone had a total length of 7212
bp (Figure 9).
DISCUSSION

Vaccine development is one of greatest advances to prevent
global morbidity and mortality; not only does it halt the onset of
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different diseases, but it also labels a gateway for its elimination
while reducing toxicity (74). Vaccines that prevent infections
caused by MDR bacterial species have a number of potential
benefits. They can be used prophylactically reducing antibiotic
use, emergence and spread of AMR, incidence of sensitive and
resistant infections, severity life-threatening diseases, sequelae
remaining after infection resolution, and health care costs
(3, 4, 8).

The main strategy in the present study was to design and construct
a multiepitope-based vaccine against S. marcescens, a gram-negative
Frontiers in Immunology | www.frontiersin.org 15
rod frequently involved in diverse nosocomial infections and with
systemic mortality rate in immunocompromised and intensive care
patients (11, 13).

Using computational subtractive analysis, we enrolled non-
redundant proteome of S. marcescens to find proteins which had
essential, virulent, and resistance profile and, at the same time,
were non-homologous from human and gut flora, antigenic, had
extracellular domain and/or were secreted. The antigens used in
vaccines do not need to be virulence factors, although virulence
gene products are often immunogenic and responsible for
A B DC

FIGURE 2 | Secondary structure prediction of the constructed S. marcescens vaccines using PESIPRED 4.0 server. (A) SMV1, (B) SMV2, (C) SMV3, (D) SMV4.
A

B

FIGURE 3 | (A) Characteristics and (B) 3D structure prediction of the constructed S. marcescens vaccines using I-TASSER server. a SMV1, b SMV2, c SMV3, d SMV4.
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acquired immunity that protects against the disease (106, 107).
The exclusion of human and gut flora homologs is necessary to
prevent autoimmunity in the host and to protect the symbiotic
environment of the gut flora (44). Antigenicity of a protein
means the potential to generate immune response against the
organism to which the protein belongs, an essential factor to use
the protein as a vaccine (82). Bacterial cell surface and secreted
proteins are of interest for their potential as vaccine candidates
Frontiers in Immunology | www.frontiersin.org 16
because they are easily accessible and can significantly improve
therapeutic target identification (39, 108).

After shortlisting, we identified five novel antigenic proteins
of S. marcescens that were taken as suitable vaccine candidates.
The first filtered antigenic protein was D-alanyl-D-alanine
carboxypeptidase/endopeptidase, an essential membrane-
associated protein and member of the penicillin binding
proteins (PBPs), a family of proteins inhibited by ß-lactam
A

B

C

FIGURE 4 | Refinement and validations characteristics of S. marcescens vaccine constructs (A) ProSA Z-score (highlighted as a black dot) (B) is displayed in a plot
that contains the Z-scores of all experimentally determined protein chains currently available in the Protein Data Bank; Ramachandran plotanalysis (C), indicating
residues in the favored regions (red), allowed regions (yellow), generously allowed regions (light yellow) and disallowed regions (white). a: SMV1, b: SMV2, c: SMV3,
d: SMV4.
FIGURE 5 | (A) Docking analysis of vaccine constructs. (B) 3D representation of SMV4 vaccine construct and TLR4-MD2 complex. The SMV4 vaccine construct is
represented by orange color, and TLR4-MD2 complex is in blue. The docking was carried out by ClusPro 2.0 and PatchDock servers, and refined and re-scored by
the PRODIGY tool of HADDOCK server, and FireDock server, respectively.
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A

B

D E

F G

C

FIGURE 6 | Molecular dynamic simulation of SMV4 and TLR4 docked complex. (A) NMA mobility. (B) deformability. (C) B-Factor. (D) eigenvalue. (E) variance (red:
individual variance, green: cumulative variance). (F) co-variance map (correlated in red, uncorrelated in white, and anti-correlated in blue). (G) elastic network.
A

B

FIGURE 7 | Conformational B-cell epitopes prediction. (A) Amino acid residues present in conformational epitopes, the number of residues and their scores. ID:
Identification of Epitopes. (B) a-h: 3D representation of conformational B-cell epitopes of protein. The predicted epitope residues are represented by green color,
and the bulk of the polyprotein is represented in red color.
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antibiotics involved in peptidoglycan synthesis and remodeling
(109). The second identified protein was patatin-like
phospholipase family protein, an essential protein that has
been associated with infection in host cells and phagosome
escape of various pathogenic bacteria (110, 111). The third
Frontiers in Immunology | www.frontiersin.org 18
selected protein was phospholipase C, phosphocholine-specific
(PLC-PC). PLCs are considered an important virulence factor
that can be exported out of the cytoplasm to their functional
locality through Tat or Sec pathway (112). In bacteria, PLCs have
been related in a wide variety of cellular function during
infection, including membrane lysis, intracellular signaling,
lipid metabolism and/or pathogenicity-associated activity (113,
114). The fourth protein was also antigenic and identified like
spore coat U domain-containing protein, a domain found in a
bacterial family of the secreted pili proteins involved in motility
and biofilm formation (115, 116). The fifth and last selected
protein was TonB-dependent receptor, a family of beta barrel
proteins located in the outer membrane that is associated to
progressive antibiotic resistance, transport ferric–siderophore
complexes, vitamins, nickel complexes, and carbohydrates
(117–121).

Prado et al. (122) introduced seven proteins that can be
considered as vaccine candidates against S. marcescens using
reverse vaccinology and subtractive genomic approaches.
Prediction of these proteins was based on non-host homologous
proteins, subcellular localization (putative surface exposed,
secreted; membrane), transmembrane helix, Signal IP, MHC-I
and MHC-II adhesion probability, and essentiality. Some features
are required to select a potential vaccine candidate, such as sub-
cellular localization; presence of a signal peptide; transmembrane
domain; and antigenic epitopes. In addition to recognizing
antigenic and virulence factors, one of the main strategies
behind identifying potential vaccine candidates is predicting
epitopes that are likely to bind to major histocompatibility
complex molecules on the antigen presenting cells within the
host (123). Therefore, mapping of T-cell derived B-cell epitopes
for antigenic proteins is a critical step for designing vaccines (39).
A B

D E F

C

FIGURE 8 | Immune Simulation with the SMV4 vaccine candidate using C-ImmSim server. (A) Immunoglobulin production in response to antigen injections; specific
subclasses are showed as colored peaks. (B) B-cell populations after the three injections. (C) Generations of T-helper cells. (D) Generation of T-cytotoxic cell
populations. The resting state characterizes cells not presented to the antigen, the anergic state indicates tolerance of the T-cells to the antigen. (E) Levels of T
regulatory cells. (F) The main plot shows cytokine levels after the injections. The insert plot shows IL-2 level with the Simpson index, (D) shown by the dotted line.
(D) is a measure of diversity. Increase in (D) over time indicates emergence of different epitope-specific dominant clones of T-cells. The smaller the (D) value, the
lower the diversity.
FIGURE 9 | In silico restriction cloning of the multi-epitope vaccine sequence
(SMV4) into the pET28a (+) expression vector. Green arrow represents the
vaccine’s gene coding. The His-tag is located at the N-terminal end.
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In addition to selecting five novel proteins as potential vaccine
candidates against S. marcescens, we used the sequence these
proteins to predict MHC-class-I, MHC class-II allele and B cell
epitopes that would be capable of inducing effective cellular and
humoral immunity. All selected antigenic epitopes were antigenic,
so they could induce antigenic response; non-allergenic in nature,
thus not be able to induce any allergenic reaction; conserved
epitopes, which is an important feature for designing a broad
spectrum vaccine; hydrophilic in nature, hence able to interact
with water molecules; and non-toxic. We selected the IFN-g
inducing Helper T cell (HTL) epitopes since this cytokine plays
a significant role in innate and adaptive immune responses,
stimulates macrophages and natural killer cells, and provides an
enhanced response to MHC antigens (124).

In addition to S. marcescens having extracellular proliferation,
this bacterium is able to invade nonphagocytic cells, such as
epithelial cells (125–127). After internalization, S. marcescens can
control the autophagic traffic, generating an appropriate niche
for survival and replication inside the host cell (126, 128).
Efficient protection against intracellular pathogens is
dependent on the induction of cellular immunity, including
pathogen-specific cytotoxic T cell responses (129, 130). CTL
epitopes are essential for coherent vaccine design (131, 132).
Thus, we analyzed the immunogenicity of CD8+ T cell epitopes
to ensure that the epitope vaccine could effectively activate CD8
T cell-mediated immune response. In humans, MHC molecules
are known as human leukocyte antigens (HLAs), as they are
highly polymorphic; the frequency of expression of diverse HLA
alleles varies in ethnically different populations (28). Thus, the
HLA specificity of T-cell epitopes must be an important criterion
for epitopes selection (133). We used the molecular docking
simulation to delineate the interactions between the targeted T
cell epitopes and their respective HLA alleles. In the docking
results, five MHC class-I and twelve MHC class-II epitopes
produced global energies. This means they had the capacity to
bind specifically with their targets.

A total of 4 multi-epitope vaccines (SMV1, SMV2, SMV3,
SMV4) were constructed using five MHC class-I, twelve MHC
class-II and twelve B cell epitopes; four different adjuvants
HBHA protein (M. tuberculosis), HBHA conserved sequence,
beta-defensin, L7/L12 ribosomal protein (13) along with
PADRE; and four different linkers EAAAK, GGGS, GPGPG
and KK, which were used to bind the adjuvant, CTL, HTL and
B-cell epitopes, respectively. Adjuvant HBHA and L7/L12
ribosomal protein are agonists to the TLR4/MD2 complex
while beta-defensin adjuvant can act as an agonist to TLR1,
TLR2, and TLR4 (134). The PADRE peptide induces CD4+ T-
cells that increase efficacy and potency of peptide vaccine (135).
It also overcomes the problems caused by highly polymorphic
HLA alleles (88). Linkers ensure effective separation of individual
epitopes in vivo (136). After that, several predicted
physiochemical and immunological properties showed that all
the vaccine constructions were safe with no possible allergenicity,
had the capability to induce immunity with high antigenicity,
were hydrophilic and soluble during its heterologous expression
in E. coli, which is important to many biochemical and functional
Frontiers in Immunology | www.frontiersin.org 19
studies (137), and had negative charge. Neutral or negatively
charged molecules are preferred and a balance between its
hydrophobicity and hydrophilicity is important in designing
vaccine candidates (138). The molecular weight range (57.867
to 70.335) and the high pI value range (9.85 to 10.36) indicated
the efficacy and stability of the vaccine constructs (138). In
addition to evaluating the vaccine efficacy, the epitopes
separated by linker were sensitive to both degradation
proteasomal and cathepsin specific peptidase activity. Hence,
our data showed that the chosen linkers and their distribution
were suitable, and the epitope produced could be presented in the
host immune system, processed, and induced in the host
humoral and cellular immune pathway (139).

Secondary and tertiary structures are necessary for designing a
vaccine candidate (140). Analyses of the secondary structure of all
vaccine constructs showed that all the proteins mainly contained
amino acids in coil, and in alpha helix structure. Natively unfolded
protein regions and a-helical coiled-coils peptides have been
identified as important “structural antigen” forms (70). After 3D
modeling, the structure of the vaccine was refined, displaying
suitable characteristics and high-quality structure.

Molecular docking is a widely used computer simulation
approach to explore the binding affinity with a protein, a strategic
tool in vaccine design (141). Our findings showed stable interaction
and high affinity between the vaccine construct SMV4 and the TLR-
4/MD2 complex. The interaction between the TLR4 and adjuvant
enhance the immune response, while TLR3, TLR4 and TLR9
agonists have been used to improve vaccines against HBV,
influenza, malaria and anthrax (142). Furthermore, the physical
movement and stabilization of the docked complex were assessed by
molecular dynamics simulation, which confirmed that SMV4-TLR-
4/MD2 complex has low deformability and remains stable in a
biological environment.

Various discontinuous epitope residues were predicted from
SMV4 vaccine sequence and revealed that they can interact with
antibodies. The most B-cell epitopes are discontinuous epitopes
composed of amino acid residues located on separate regions of
the protein, joined together by the folding of the chain (143).
Thus, analysis of discontinuous epitope in the final vaccine
construct is essential (88).

Immune simulation through repeated exposure to the antigen
showed a consistent increase in the generated immune responses.
There was a notable generation of T- cells as well as memory B
cells, which is required for immunity, supporting a humoral
response (124). The levels of IFN-g and IL-2 increased after the
first injection and got induced following repeated exposures to
the antigen, which also contribute to the subsequent immune
response after vaccination (144). Interleukin induction is needed
for any kind of cellular immunity and the vaccine satisfies this
criterion having good induction potentiality (82). Considering
the designed vaccine is constituted of sufficient B- and T-cell
epitopes, the Simpson index (D) value suggests that the vaccine
can stimulate a large and diverse immune response.

When designing a multi-epitope vaccine candidate, the
efficacious cloning and expression in a suitable vector is a
critical stage (145). Codon optimization is essential because the
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genetic code’s degeneracy allows most of the amino acids to be
encoded by multiple codons (70). In this context, codon
optimization and in silico cloning were performed, and our
data showed expression and translation efficiency of the SMV4
vaccine using pET-28a (+).

In conclusion, our study identified a potential SMV4 vaccine
candidate against S. marcescens with the ability to stimulate both
cellular and humoral immunity. The epitopes used in the vaccine
construct are antigenic, non-toxic, and non-allergic. The SMV4
vaccine candidate were highly immunogenic, safe, non-toxic,
stable, and had high affinity and stability of binding to TLR4
innate immune receptor, which is vital in recognition and
processing by the host immune system. Altogether, our
findings have the potential to provide a novel strategy for the
protection against multidrug resistant Gram negative infection.
Future experimental validation of the proposed vaccine
candidate is required to establish its potency as well efficacy
and safety.
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