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Piscine orthoreovirus (PRV) is a virus in the genus Orthoreovirus of the Reoviridae family,
first described in 2010 associated with Heart and Skeletal Muscle Inflammation (HSMI) in
Atlantic salmon (Salmo salar). Three phases of PRV infection have been described, the
early entry and dissemination, the acute dissemination phase, and the persistence phase.
Depending on the PRV genotype and the host, infection can last for life. Mechanisms of
immune response to PRV infection have been just beginning to be studied and the
knowledge in this matter is here revised. PRV induces a classical antiviral immune
response in experimental infection of salmonid erythrocytes, including transcriptional
upregulation of ifn-a, rig-i, mx, and pkr. In addition, transcript upregulation of tcra, tcrb,
cdz, il-2, cd4-1, i-v, il-12, and il-18 has been observed in Atlantic salmon infected with
PRV, indicating that PRV elicited a Th1 type response probably as a host defense
strategy. The high expression levels of cd8a, cd8b, and granzyme-A in PRV-infected fish
suggest a positive modulatory effect on the CTL-mediated immune response. This is
consistent with PRV-dependent upregulation of the genes involved in antigen
presentation, including MHC class |, transporters, and proteasome components. We
also review the potential immune mechanisms associated with the persistence phenotype
of PRV-infected fish and its consequence for the development of a secondary infection. In
this scenario, the application of a vaccination strategy is an urgent and challenging task
due to the emergence of this viral infection that threatens salmon farming.

Keywords: piscine orthoreovirus, double strand RNA (dsRNA) virus, heart and skeletal muscle inflammation (HSMI),
antiviral immune response, pro-inflammatory cytokines, fish vaccines, aquaculture, emerging diseases
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INTRODUCTION

Piscine orthoreovirus (PRV) is a virus that belongs to the
Reoviridae family, Spinareovirinae subfamily, and genus
Orthoreovirus. PRV was firstly described in 2010 (1), as it was
associated with Heart and Skeletal Muscle Inflammation (HSMI)
in Atlantic salmon (Salmo salar) (2). The disease was described
in 1999 in fish farms in Norway (3). In Chile, the first report of
PRV was published in 2016. Authors found PRV strains in HSMI
lesions of farmed Atlantic salmon, and Coho salmon
(Oncorhynchus kisutch) (4). HSMI has been diagnosed all the
years over the last decade in more than 100 farm centers in
Norway (excepting 2017 and 2019) (5), resulting in economic
losses estimated at €9 million annually (6). In Chile, 3.7% of the
infectious disease mortality of Atlantic salmon, and 14.9% of the
infectious disease mortality of Coho salmon were associated with
HSMI during 2020 (7). Because of the epidemiological evolution
observed in the sanitary surveillance, HSMI was categorized as
an emerging disease in Chilean salmon farming (7). The
economic impact of PRV infection is associated with mortality
and melanized spots in salmon filets (8) that correlate with a pro-
inflammatory environment (9). Another concern is that its
etiological agent, the PRV, is reportedly spreading from farmed
to wild Atlantic salmon with yet undetermined impacts (10). In
seawater Atlantic salmon farms, the infection prevalence can
reach up to 97% (11), and the etiological agent, PRV, is also
present in freshwater Atlantic salmon presmolts with high
frequency, found in parr between 30 and 60 grams (4).

PRV AND HEART AND SKELETAL
MUSCLE INFLAMMATION

PRV is a dsRNA virus that has a genome composed of 10 RNA
segments that can be classified into three different groups
according to sizes: small segments (S1, S2, S3, S4) between
1040 and 1329 bp, medium (M1, M2, M3) between 2179 and
2403 bp, and large (L1, L2, L3) between 3911 and 3935 bp (1, 12,
13). The genome has at least 13 ORFs that encode for at least 11
proteins (14, 15). Eight of these proteins are structural
components of the virus particle: segments L1, L3, M1, and S2
encode the inner capsid proteins A1, A3, 2, and 62, respectively;
segments L2, M2, S1, and S4 encode for the outer capsid proteins
A2, ul, 63, and o1, respectively; and segments S3, M3 and S1
encode for the three non-structural proteins 6NS, uNS, and p13,
respectively (Figure 1) (16, 17). PRV is a non-enveloped virus
with an icosahedral structure (13).

Three different subtypes of PRV have been described using
the coding sequence of PRV segments, denominated as PRV-1,
PRV-2 and PRV-3 (18, 19). Phylogenetic analysis focused on the
PRV genomic segments S1, differentiates this virus into two
major genotypes, I and II, and each of them into two
subgenotypes designated as Ia and Ib, and Ila and IIb,
respectively. Subgenotypes Ia and Ib make up the PRV-1
subtype and subgenotypes IIb and Ila correspond to the PRV-
2 and PRV-3 subtypes, respectively (20).

Recently, with all Gen Bank available PRV sequences (May
2020) and using new PRV S1 and M2 segment sequences was
determined that a significant number of the publicly available
sequences belong to the PRV-1 subtype (subgenotypes Ia and Ib),
less belong to the PRV-3 subtype (subgenotype Ila) and there are
few sequences of PRV-2 subtype (subgenotype IIb) (15). PRV is
the etiological agent of HSMI in Norway, Canada, Germany,
Scotland, Iceland, and Chile. Recently, it was suggested that
PRV-1 subgenotype Ib can be responsible for HSMI in Atlantic
salmon (15) while the subgenotype Ia was associated with low
virulence (12, 15). PRV-2 is a virus found only in Coho salmon in
Japan (not associated with HSMI symptoms); while PRV-3
induces a disease similar to HSMI in rainbow trout and
salmon coho in Norway, Germany and Chile (12, 15, 21, 22).

Although it is necessary to complement the study using
methodologies based on complete genome sequencing, besides
segments S1 and M2 of PRV a lower resolution and
representativeness of the remaining eight genomic segments
for classifications of subgenotypes or subtypes have been
observed. Phylogenetic trees support the original classification
using the PRV genomic segment S1 (15).

Three phases have been described for PRV infection: i) the
early entry and dissemination, ii) the acute phase and iii)
persistence (14). Two to three weeks after the host entry, the
replication and dissemination of the virus occurs into blood cells
(23, 24). In this phase no infection via cohabitation has been
described so far (24). To this date, there is no clarity about the
mechanism of entry of the virus (14). The acute phase appears
after 4 to 6 weeks of exposure to the virus and is characterized by
the development of acute inflammation of the heart muscle and
skeletal muscle, and substantial PRV replication in the
erythrocyte occurs (14, 17, 24, 25). The duration of this phase
depends on several factors related to the host immunity and on
the PRV genotype causing the infection (26, 27). Cohabitation
challenges show a successful infection at this point. This phase
lasts between 1 to 2 weeks and then, the load of viral proteins
drops dramatically in the erythrocytes, the clinical signs of the
disease disappear, and the virus becomes persistent (17, 25). In
the persistence phase, the viral RNA is found in erythroid
progenitor cells, erythrocytes, macrophages, melano-
macrophages, and other uncharacterized cells in the kidney
(28). At this phase, poor viral infection is produced by
cohabitation, but i.p. injected PRV inoculum prepared from
clarified lysed blood cells from persistence phase Atlantic
salmon accomplishes successful infection into naive fish (24).
The extent of this phase depends on the PRV genotype and the
host, but experimental trials have shown that this phase probably
can last for life. The early entry and dissemination and acute
phases have only been described under laboratory conditions.

Heart and skeletal muscle inflammation was first described in
farmed Atlantic salmon in 1999 (3). The disease appears mainly
between 5 to 9 months after salmon are transferred to marine
water (2) but has also been described even earlier at 14 days of
the seawater transfer (3). The clinical signs of the disease may
emerge during the peak of the acute phase, but the clinical signs
are found usually in the early stages of the persistent phase
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FIGURE 1 | Schematic representation of Piscine orthoreovirus: Structural proteins, dsRNA segments and non-structural proteins are represented.

(24, 29, 30). In the field, the mortality of infected fish is usually
low but can also go up to 20% of the infected cages (3).
Macroscopic signs are pale heart, pericardial bleeding, ascites,
and a pale or stained liver, but hematocrit levels are usually
normal. Lesions can occasionally be found in the liver, spleen,
gills, and kidney. The main histopathological lesions are in the
heart and skeletal muscle. In the heart, necrosis of myocytes,
infiltration with mononuclear cells (mainly lymphocytes and
macrophages), and a massive inflammatory response are
observed associated with myocardial degeneration (26).
Pericarditis is usually found in association with myocarditis
(2), also, perivasculitis is found in myocardial blood vessels,
coronary veins, and grooves. In severe cases, an infiltrative
pattern is also found (26). Red muscle inflammation follows
the same pattern as seen in the heart but is not a consistent
finding (2) and it has been proposed to be attributed to seasonal
variation being most prevalent in autumn and winter (26). In
experimental conditions, the production of cardiac lesions
consistent with HSMI is related to the virulence of the isolate
(24, 26, 31). At the same time, the highest virulent isolates
correlated with higher plasma viremia, while the low virulent
isolates showed a lower amount of virus detected by qPCR (31).
There was no correlation between any specific viral gene, protein,
or amino acid differences with the virulence of the distinct PRV-
1 isolates analyzed although the virus strain and host specific
factors are necessary to initiate HSMI (31). For example, in
Canada, Pacific-adapted Mowi-McConnell Atlantic salmon

infected with PRV shows only mild or non-heart
inflammation, even though these fish show high blood viremia
(24). A review of the biology, geographic distribution, and host
range of PRV has been recently published and is recommended
for deeper details of the knowledge on this virus and HSMI (14).

IMMUNE RESPONSE AGAINST PRV
INFECTION

PRV generates in ex vivo infected erythrocytes of Atlantic salmon
upregulation of Interferon-a (ifn-a), Retinoic acid-inducible gene
I (rig-i), Protein kinase R (pkr), and Myxovirus resistance gene
(mx), all genes of the innate antiviral immune response (32, 33).
In Atlantic salmon, intraperitoneal injected with PRV, ifn-a and
mx-o were up-regulated in blood at 4 and 25 days post-challenge
(dpc) and in heart, four dpc (34). The peak was in both tissues at
four dpc, corresponding to the early infection stage, then the
expression decreased to the control level (34). Similar results
were reported in seawater adapted post-smolt salmon challenged
with PRV by cohabitation. In these fish an increased expression
of ifn-a, rig-i, pkr, mx-o, viperin, and Interferon-stimulated gene
15 (isg15) was observed in blood, heart, and in the spleen (35). In
addition, a significant upregulation of both [-defensin and
hepcidin genes in blood cells was reported at 4 weeks post
challenge compared to day 0 (35). These studies show that
PRV induces a strong innate immune response in Atlantic
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salmon, which may induce protection because the induced genes
encode a dsRNA receptor like rig-i (35), interferon and
interferon induced antiviral proteins such as pkr, mx-c, and
viperin, and antiviral peptides like B-defensin and hepcidin (35).
However, at this stage, it is unknown whether this response
indeed results in protection because viruses have numerous
evasion mechanisms against the IFN type I response (36). In
fact, immune evasion mechanisms for IFN type I response have
been reported for fish viruses such as IPNV, where preVP2, VP3,
VP4, and VPS5 viral proteins inhibit IFNal activation (37).
Similarly, s7ORF1 of ISAV inhibits IFN and Mx transcription,
while s8ORF2, acting as RNA silencing suppressor, inhibits IFN
production (38-40). Therefore, further studies are required to
understand whether PRV displays mechanisms to antagonize the
IEN type I responses and antiviral peptides observed in
infected fish.

Regarding adaptive immunity, transcript upregulation of T
lymphocyte related genes such as T cell receptor-a (tcra), tcrb,
cluster of differentiation 2 (cd2), and interleukin-2 (il-2) was
reported in the head kidney of parr salmon challenged with PRV
(41). In addition, cd4-1, the gene encoding the T cell co-receptor,
was also upregulated in infected salmon (34), all indicating that
PRYV elicited the adaptive immune response in Atlantic salmon,
which probably involves T cell proliferation. CD4" CD3" T cells
(T helper) have been in fact identified, isolated and characterized
in some fish species, including Japanese Pufferfish (Takifugu
rubripes), ginbuna crucian carp (Carassius auratus langsdorfii),
zebrafish (Danio rerio), rainbow trout (Oncorhynchus mykiss)
(42-47); and rohu (Labeo rohita) (48). Although in Atlantic
salmon, T cell isolation and characterization awaits further
studies, transcriptional data and the studies in rainbow trout
(44, 49-52) support the presence of T lymphocytes in this fish
species and its role in response to the pathogens or model
antigens. Furthermore, ifn-y (41) and il-12 were also
upregulated in PRV infected salmon (34), indicating that a T
helper type-1 response can take place as a host defense strategy.
In teleost fish, the differentiation of naive CD4" T cells into Th1
cells appears to be possible because these cells express both the T-
bet master transcription factor and ifn-y during differentiation
(44, 45, 47). Other studies suggest that the differentiation of the
CD4" T cell into Th1, Th2, Th17, Treg lymphocytes can occur in
fish, mostly based on the fact that many Th-type cytokine genes
have been identified in fish (53) and are upregulated in lymphoid
tissues and isolated T cells after antigen stimulation (53). A Thl
response could induce PRV clearance, as in the presence of IFN-y
and IL-12, cellular-mediated immune response can eradicate
intracellular pathogens like viruses (54). Furthermore, in HSMI-
sick Atlantic salmon hearts, a strong signal of MHC-II in the
lesion areas and a moderate signal of CD3+ (55) by
immunohistochemistry was detected, suggesting the activation
of CD4+ T cells in response to PRV infection.

Following interaction with various bacterial and viral
pathogens, macrophages become activated and secrete a wide
range of antiviral, pro-inflammatory, and immunomodulatory
cytokines (56). Mirroring the Th type differentiation, the

macrophages are classified as M1-like or M2-like cells (57, 58)
and they reflect the bidirectional macrophage-lymphocyte
interaction. Using in situ hybridization to identify double
MCSFR and PRV positive cells, it has been found that
macrophage-like cells of spleen and kidney, and in melano-
macrophages of kidney contain PRV-1, indicating that
macrophages might be targets of infections (28). In PRV-
infected salmon of a commercial farm, lesions of the white
muscle, known as red spots, show abundant iNOS (inducible
nitric oxide synthase) in positive M1-polarized macrophages
infected with PRV-1. Transformation of red spots into black
spots was associated with the presence of arginase-2 expressing
M2 melano-macrophages and the reduction of the relative
number of PRV-1 in the white skeletal muscle (9).
Interestingly, in experimental PRV infection, M1 macrophages
does not appear related to the infection damage of the heart in
HSMLI, although M2 macrophages in heart tissue suggested a role
in HSMI recovery (59). Since PRV upregulates IFN-y and IL-12
during viral infection of Atlantic salmon, it seems plausible that
an efficient well-regulated response induces M1 macrophage
differentiation for virus clearance in the heart. Furthermore, as
IFN-y can also increase CD80/86, CD83, and MHC-II levels in
salmon immune cells, an efficient clearance can also be due to
antigen presentation and recognition improvement leading to a
rapid immune response (60).

Regarding cellular immunity, recent studies shed light on the
potential role of the cytotoxic T lymphocytes (CTL) during PRV
infection. First, the high expression levels of c¢d8a, cd8b, and
granzyme-A in the head kidney of PRV-infected fish suggest a
positive modulatory effect on the CTL-mediated immune
response (34) because fish CTLs express CD8 co-receptor and
enzymes able to induce apoptosis of the target cells (61). Recently,
a study has shown that Atlantic salmon CD8+ cells appear
abundant in areas of the heart that contain PRV-1 infected cells
after experimental challenge. Moreover, upregulation of CD8c
correlated in time with a moderate decline in PRV-1 RNA levels
(59). Interestingly, these results suggest a role of CD8+ cells in
virus clearance but direct evidence for the role of functional CTLs
(CD8+ T cells) during PRV infection is not available yet. The
evaluation of PRV-specific CTL function will require haplotype-
matched between the effector and target cells, which can be
achieved using clonal teleost fish (62, 63) or infected autologous
cells (64, 65). The potential role of CTL in PRV infection of fish is
consistent with the Th1 type response observed in salmon because
IFN-y can stimulate the development of CD8+ T cells during viral
infection (66). It is also consistent with the fact that PRV infection
of salmon erythrocytes induced upregulation of the genes
involved in antigen presentation via MHC class I, including
transporters like tapasin (tapbp) and proteasome components
like proteasome subunit beta type 9 (psmb9a) and proteasome
subunit beta type 6 (psmb11) (33), which will positively impact the
activation of CD8+ T cells. Activating the antigen-presenting
machinery may also be a consequence of IFN-y upregulation
during PRV infection because, in turn, this cytokine upregulates
many genes involved in antigen presentation (67).
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Finally, regarding humoral immune response against PRV,
production of IgM against the PRV ul and uUNS proteins has
been detected in plasma of PRV-1-infected Atlantic Salmon (68).
Using a bead based multiplex immunoassays, anti-s1 IgM was
also detected in salmon seven weeks after the exposure of PRV
shedders. A reduction in HSMI lesions was observed when the
specific IgM production reached a maximum level, suggesting a
protective effect, even though this humoral immune response has
been insufficient to eradicate PRV as viral RNA persisted in the
blood of fish with PRV-specific IgM in challenge trials (68).
Similarly, in PRV-3-infected rainbow trout a significant increase
in -specific IgM in plasma is reported 8 weeks after the exposure
(29). Notably, no studies are measuring neutralizing antibodies.

The current knowledge of the innate and adaptive immune
response elicited by PRV infection is summarized in Figure 2.

WHEN THE FISH DECIDES TO LIVE WITH
THE ENEMY: THE PHENOTYPE OF
PERSISTENT VIRAL INFECTION IN
ATLANTIC SALMON

The persistence is a complex meta-stability exercise involving the
overall outcome that favors the coexistence of the viral infection
on the host, being considered one of the most successful
surveillance strategies in the host-pathogen repertoire (69). In
mammals, the phenotype of viral persistence is directly associated
with the activity of inhibitory/immunosuppressive cytokines (70).
In this process, the modulation of anti-inflammatory cytokines
helps establish chronic viral infection (71-73). One of these anti-
inflammatory cytokines of the viral persistence phenotype is IL-10,
which impairs different immune mechanisms, including antigen
recognition, cytokine production, antibody production, and cell
proliferation processes, all vital processes for the success of
immune response activation and resolution of infection (74).
Consistently, viral persistence phenotype in Atlantic salmon
infected with the infectious pancreatic necrosis virus (IPNV) is
characterized by the upregulation of il-10, the low expression levels
of il-1b and il-8 and low levels of total IgM (75). In PRV -infected
Atlantic salmon, the persistence phenotype has been recently
reported (28). The description of this persistence phenotype is
associated with a high level of viral RNA (28) and low levels of
viral proteins in the erythrocytes (17), in which an antiviral innate
immune response is observed at the transcriptional level (33). Not
the cellular or molecular immune mechanisms responsible for or
associated with the persistence phenotype of PRV-infected fish
are known.

Thus, it seems reasonable that several regulatory mechanisms
associated with the recognition and activation of the immune
response are activated in the PRV persistence phenotype. They
can contribute to establishing a weakened immune status,
helping to develop secondary infections with highly prevalent
pathogens in salmon farming. Only one study has evaluated the
potential effect of PRV on the development of secondary
infections, thus centering on the co-occurrence of PRV and

salmonid alphavirus (SAV) (35). In co-infected Atlantic
salmon (PRV- and then SAV-infected), lower SAV neutralizing
titers were observed compared with the controls infected with
SAV only (35) suggesting a detrimental effect for immunity.
Moreover, a positive correlation between PRV and SAV was
observed in moribund or dead salmon (35). These data suggest
that PRV infection may affect the infection and susceptibility to
other pathogens present in farmed fish. For instance, as far as we
know, no articles are reporting the consequences of PRV on the
development of secondary bacterial infections of high prevalence
in salmon farming. Taking together, it is urgent from the sanitary
point of view to elucidating the consequence of the high PRV
prevalence upon the risk for the development of a secondary
infection that the infection by PRV might produce by itself.

PRV VACCINES

At present, there are no commercially available vaccines against
HSMI in the market, and research and evaluation of PRV
vaccines are still incipient. Only four studies performed on
Atlantic salmon and Coho salmon have been reported (76-79).
Wessel et al. (76) evaluated the protective effect of an inactivated
vaccine using PRV purified from infected erythrocytes in a
vaccination trial against HSMI.

Those immunized fish challenged with PRV by
intraperitoneal injection showed a lower PRV load in blood
cells and plasma compared both to PBS control group and
vaccine control group (vaccinated with ALPHA JECT micro-6;
PHARMAQ AS). Differences were observed for all the time-
points assessed, i.e., 2-, 4-, 7-, and 10-weeks post-challenge
(wpc). However, the PRV load was estimated based on the
quantification cycle (Cq) value instead of absolute
quantification. Beyond this methodological concern, only
differences at 4wpc were registered between the PRV-
inactivated vaccine group and the PBS-vaccinated group (76).
Furthermore, the same trend was observed from the
histopathological evidence on the heart. Thus, data indicate
that PRV vaccination substantially reduced the severity of
HSMI specific lesions, mainly in the experimental group
following an unnatural way of infection (i.e., following an
intraperitoneal injection), but did not prevent PRV infection
and virus replication. Notably, a different study reported that the
inactivated PRV-1 vaccine does not prevent PRV-1 infection and
only partially protects against HSMI (78). Regrettably, the
applicability of these vaccines is minimal because there are
currently no reports of a cell line capable of producing PRV-1
viral progeny (80).

One common and ancient strategy for successful
immunization is the cross-protection induced by related low
virulent virus variants to cause low-grade disease (78).
Particularly for HSMI, the cross-protection has been assessed
using PRV-2 and PRV-3 genotypes not associated with disease
development in Atlantic salmon. The cross-protection assay
showed that the primary infection with intraperitoneally
injected PRV-3 genotype completely blocked the infection
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against PRV-1 and the development of HSMI in Atlantic salmon
ten weeks later the immunization with PRV-3 (78), which is in
agreement with the fact that PRV-3 induces a disease similar to
HSMI in rainbow trout and salmon coho (12, 15, 18, 21, 22, 78).
The mechanisms of protection induced by PRV-3 are not known.
In fact, the gene expression analysis of cellular immunity
indicators (cd8¢, ifn-7, and granzyme-a) indicated that PRV-3
did not trigger spleen upregulation of these genes beyond ten
weeks (78). The authors also state that antiviral immune genes
viperin, myxovirus resistance gene (Mx), and interferon-
stimulated gene (ISG-15) did not change their expression
pattern (78).

By contrast, PRV-2 infection did not prevent PRV-1
infection, reducing only the severity of HSMI pathology
punctually in some few individuals (78). Since PRV-2 is the
etiological agent of a different disease in coho salmon
(Oncorhynchus kisutch), named erythrocytic inclusion body
syndrome (EIBS) (18), this results may have been expected.
Perhaps the protection is associated with the higher amino
acid identity of PRV-1 with PRV-3 (90%) than PRV-2 (80%)
(81). Importantly, the high identity between PRV-3 and PRV-1 is
present in proteins probably involved in the pathogenic effects
(82, 83), such as the outer clamp protein 63 (79.1%) and the non-
structural protein p13 (78.2%) (81). Beyond these unknowns,
one critical concern on the use of PRV-3 in immunizing Atlantic
salmon is the possibility that the RNA segmented of PRV-3 and
PRV-1 could reassort if they infect the same cell (84), in which
case the consequences are unpredictable. Therefore, the side-
effects and potential consequences of this type of immunizing
strategy must be carefully analyzed.

In aquaculture, there are DNA vaccines licensed for
commercial use for protecting Atlantic salmon against viruses
including Infectious Hematopoietic Necrosis Virus (IHNV)
(APEX-IHN; Novartis/Elanco) (85), and Salmon Pancreas
Disease Virus (SPDV) (86). In this scenario, the vaccine efficacy
against HSMI following intramuscular-injected immunization was
assessed using pSAV-based replicon vaccines and pcDNA3.1-
based expression vaccines. The Atlantic salmon vaccinated with
pcDNA3.1 vector expressing uNS, oNS, and 61 controlled by a
CMV promoter showed a substantial reduction in the viral RNA
load and the HSMI histopathological changes in epicardium and
ventricle (77). By contrast, the pSAV cocktail replicons containing
UNS + pl + oNS + 61 + 63 + A2, slightly reduced the cardiac
histopathological score, but did not reduce the PRV RNA levels in
the blood after infection compared to the control, suggesting that
the type and number of different expression vectors may influence
on such differences (77). The secretion of specific antibodies as an
inducer of protection through DNA vaccines (87) was not
evaluated. Based on the study of Haatveit et al. (77) it seems
that uNS and ©1 are the most promising PRV antigens for a DNA
vaccine against HSMI in Atlantic salmon. However, the
mechanism of action of these proteins activating the immune
response remains to be elucidated. Consequently, the application
of DNA vaccine as prophylactic treatment against aquaculture-
related viruses, including PRV, must be further assessed.

CONCLUSIONS AND PERSPECTIVE

This article revised the current knowledge regarding the immune
mechanisms activated in response to PVR infection. There is
evidence that PRV activates the antiviral immunity in salmonid
erythrocytes, one of its cellular infection targets. Currently, it is
unclear whether activating an antiviral environment is enough to
induce host protection. Because viruses, including aquatic
viruses, show numerous immune evasion mechanisms against
the IFN type I host response, understanding PRV-host
interaction, which may antagonize the IFN type I response,
needs to be addressed. The scope of other immune
mechanisms against the PRV and its actual contribution to the
resolution of infection, including the role of neutralizing
antibodies, still need to be elucidated. Nonetheless, the
eradication of virus does not always occur during infection in
nature. In fact, for PRV, there are reports of persistent infection
promoting host-pathogen coexistence. PRV persistence is
characterized by immune modulators” upregulation mainly
associated with anti-inflammatory molecules. Consequently,
this lower immune capacity to respond against a threat
aggregates complexity to the mechanisms developed by the
host for ensuring survival. Importantly, as far as we know,
there is a gap in the knowledge concerning the cellular and
molecular mechanisms responsible for the promotion of the
persistence phenotype on PRV-infected fish.

The generation of further knowledge to understand the
immune mechanisms in response to and for protection against
PRV will make possible the development of strategies capable of
effectively and efficiently facing this viral infection and the
negative impact produced in the fish farming industry and the
environment. Within the sustainable aquaculture industry
framework, all the above is committed to the environment.
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