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Cardiovascular dysfunction and disease are common and frequently fatal complications of
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Indeed, from
early on during the SARS-CoV-2 virus pandemic it was recognized that cardiac
complications may occur, even in patients with no underlying cardiac disorders, as part
of the acute infection, and that these were associated with more severe disease and
increased morbidity and mortality. The most common cardiac complication is acute
cardiac injury, defined by significant elevation of cardiac troponins. The potential
mechanisms of cardiovascular complications include direct viral myocardial injury,
systemic inflammation induced by the virus, sepsis, arrhythmia, myocardial oxygen
supply-demand mismatch, electrolyte abnormalities, and hypercoagulability. This review
is focused on the prevalence, risk factors and clinical course of COVID-19-related
myocardial injury, as well as on current data with regard to disease pathogenesis,
specifically the interaction of platelets with the vascular endothelium. The latter section
includes consideration of the role of SARS-CoV-2 proteins in triggering development of a
generalized endotheliitis that, in turn, drives intense activation of platelets. Most
prominently, SARS-CoV-2–induced endotheliitis involves interaction of the viral spike
protein with endothelial angiotensin-converting enzyme 2 (ACE2) together with alternative
mechanisms that involve the nucleocapsid and viroporin. In addition, the mechanisms by
which activated platelets intensify endothelial activation and dysfunction, seemingly driven
by release of the platelet-derived calcium-binding proteins, SA100A8 and SA100A9, are
described. These events create a SARS-CoV-2–driven cycle of intravascular inflammation
and coagulation, which contributes significantly to a poor clinical outcome in patients with
severe disease.

Keywords: ACE2 receptor, acute myocardial injury, cardiovascular disease, corona virus disease (COVID-19),
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INTRODUCTION
Coronavirus disease-19 (COVID-19), caused by the novel
coronavirus, severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), is a multi-system inflammatory disorder, which, in
its severe form, is characterized by endothelial damage and
hypercoagulability (1). Although the etiology of the arterial and
venous thromboembolic events observed in 10-25% of patients
admitted with SARS-CoV-2 infection (2) is still being debated, the
role of the complex interactions between platelets, the endothelium
and SARS-CoV-2 are increasingly recognized. COVID-19-associated
thrombosis has been reported in many sites, such as the skin (3),
respiratory tract (4, 5), brain (6), gastrointestinal tract (7) and
extremities (8), but is particularly catastrophic when the heart is
involved (9), especially in the context of a pro-atherosclerotic milieu.

From early on in our understanding of infection with this
coronavirus, it has been recognized that underlying cardiac
comorbid conditions are important risk factors for COVID-19
infection and that cardiac complications may occur, even in
patients with no underlying cardiac disorders, as part of the acute
infection. One of the early publications fromWuhan, describing 41
hospitalized cases with COVID-19 pneumonia, noted that 73% of
the patients were men, with 32% having underlying co-morbidities,
including hypertension in 15% and cardiovascular diseases in 15%
(10). A number of complications were noted in the patients,
including acute cardiac injury in 12%. Shortly thereafter, several
reports confirmed that underlying cardiovascular co-morbidities, as
well as cardiac complications due to acute COVID-19 infection,
were associated with more severe disease and increased morbidity
and mortality (11–16). From these collective publications, it was
noted that the most common cardiac complication was acute
cardiac injury, defined by significant elevation of cardiac
troponins. The acute cardiac injury was secondary to a number of
cardiac conditions, including acute myocardial infarction due to
acute coronary syndrome (ACS), myocarditis, arrhythmias, and
cardiomyopathy, while cardiogenic shock and cardiac arrest were
also reported. Thromboembolic disease, both venous and arterial,
was also described. The potential mechanisms of cardiovascular
complications included direct viral myocardial injury, systemic
inflammation induced by the virus, sepsis, arrhythmia, myocardial
oxygen supply-demand mismatch, electrolyte abnormalities, and
hypercoagulability (17–21). As was noted in 2020, despite many
publications there remain many uncertainties regarding the origins
of these cardiac complications (22).

The aim of the current manuscript is to review recent data on the
clinical manifestations and mechanisms of acute cardiac involvement
in patients with SARS-CoV-2 infection. We specifically address acute
myocardial injury and ACS, and the potential mechanisms of these
complications, especially with regard to the role of platelet-
endothelium interactions, concentrating on publications that
appeared mainly during 2020/2021.

THE CLINICAL ASPECTS OF COVID-19
AND CARDIOVASCULAR DISEASE

While underlying cardiovascular comorbidities are a risk factor for
COVID-19 infection and severity, the infection itself has the
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potential to cause a significant impact on the cardiovascular
health of millions of people worldwide. The virus can infect the
heart, as well as vascular tissue, circulating cells, and various organs,
through its interaction with the ACE2 receptor, which it uses as a
host cell receptor through its spike protein. It is, therefore, not
surprising that cardiovascular events are a common extra-
pulmonary manifestation of COVID-19 infection (extensively
reviewed in 17 and 18). The potential cardiac manifestations of
COVID-19 infection are shown in Table 1, with the putative
mechanisms depicted in Table 2 (17–21).

The cardiac manifestations that may occur during COVID-19
infection include acute cardiac injury, myocarditis, acute myocardial
infarction (AMI), heart failure, arrhythmia, cardiomyopathy,
hypotension, shock, and cardiac arrest (18, 23, 24). An
echocardiographic study of patients with COVID-19 documented
pre-existing abnormalities, which prompted the authors to suggest
caution with regard to attributing such abnormalities to acute
COVID-19 infection (25). Among the vascular complications
documented are venous and arterial thrombotic events, which are
associated with greater need for respiratory support, vasopressors,
and hemodialysis, and a longer hospital stay (24, 26). Autopsy
studies from patients who died from COVID-19 infection have
demonstrated a range of cardiac abnormalities including cardiac
hypertrophy and/or enlargement, ventricular dilatation, infarction,
and fibrosis (24).

A number of investigators have shown the potential value of a
range of cardiac biomarkers, including high sensitivity troponins
(Tn; TnT and TnI), creatinine kinase isoenzyme-MB (CK-MB) and
N-terminal pro-brain-type natriuretic peptide (BNP; NT-proBNP),
either as early indicators of cardiac involvement in COVID-19
infections and/or as markers of disease prognosis (27–34), while
measurement of D-dimers is thought to be potentially important in
preventing, diagnosing and managing vascular complications (24).

The troponins TnT and TnI are known as the cardiac
troponins, and act on cardiac muscle contraction by regulating
the calcium-dependent interactions of actin and myosin (35).
The CK component of CK-MB is an enzyme that catalyzes the
reversible transformation of creatinine and ATP to creatinine
phosphate and ADP (35). Lastly, BNP is a hormone produced by
TABLE 1 | Potential cardiac complications in COVID-19 infections*.

• Acute myocardial injury – elevated troponin levels
• Acute coronary syndrome
○ Non-ST-elevation acute coronary syndrome – NSTEMI or unstable angina
○ ST elevation myocardial infarction (STEMI)
○ Acute myocardial infarction

▪ Type 1 – acute atherothrombotic coronary artery disease, mostly plaque
rupture or thrombosis

▪ Type 2 – oxygen supply-demand mismatch
• Cardiomyopathy
○ Include stress cardiomyopathy – Takotsubo cardiomyopathy

• Myocarditis
• Arrhythmia
• Drug-induced cardiac effects
• Cardiac failure
• Hypotension and/or cardiogenic shock
• Cardiac arrest
*See References (17–21).
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the heart, with both BNP and NT-proBNP being released in
response to pressure changes within the heart (36). The former
two biomarkers indicate myocardial injury, whereas the latter is a
marker of hemodynamic stress (37).

In one systematic review and meta-analysis the pooled incidence
of elevated levels of TnI, CK-MB and CK in COVID-19 cases were
15.16%, 10.92%, and 12.99%, respectively (38). Another detailed
review indicated that troponin levels were elevated in 12% to 28%
of cases with SARS-CoV-2 infection (18). While studies have
indicated significant differences in biomarker levels in patients
with differing COVID-19 infection severity, these levels also
depended on whether the biomarkers were measured early on, or
later, in the course of the infection (32, 38). Importantly, in COVID-
19 cases, particularly those with underlying pre-existing cardiac
disease, the prognostic cut-off values of these biomarkers may be
lower than the reference standards (39). Furthermore, studies have
shown that TnI, CKMB, and Pro-BNP are higher in non-survivors
compared with survivors among critically ill patients with COVID-
19 infection (28).

Lastly, it is important to be aware that cardiovascular sequelae
can occur even in patients with mild COVID-19 infections, as
well as in asymptomatic carriers of SARS-CoV-2 who may not
even have been tested for this virus, and who may be at risk of
developing cardiovascular disorders as bystander effects of the
virus (40, 41). It remains essential to recognize and manage
cardiovascular events during COVID-19 infection as soon as
possible, as they are associated with worse outcomes (26, 42).

Acute Myocardial Injury
In studies of COVID-19 infection, myocardial injury has been
defined as elevation of cardiac troponin I (TnI), or troponin T
(TnT) to >99th percentile of the upper reference limit, or the
presence of new electrocardiographic or echocardiographic
abnormalities (18). Myocardial injury can occur via ischemic and
non-ischemic mechanisms and the overall rate of acute cardiac
injury in older studies has been reported to be between 7.2 and 36%,
with rates as high as 59% in those who died (18, 43, 44). The rate of
acute cardiac injury has been found to be higher in the case of
infection with viruses, such as SARS-CoV-2, that bind the ACE2
receptor, than in those with viruses that do not (45). Cardiac injury
Frontiers in Immunology | www.frontiersin.org 3
can occur early or later in the course of COVID-19 infection and
recurrent episodes of cardiac injurymay occur, with the latter events
being associated with worse outcome (46). Importantly, more severe
cardiac injury is associated with higher levels of TnI, greater need for
ICU admission, and higher mortality (18).

The potential etiologies of COVID-related acute myocardial
injury include i) ACS due to plaque rupture or thrombosis (Type
I myocardial infarction), or supply-demand mismatch (Type II
myocardial infarction), or ii) injury due to disseminated
intravascular coagulation or non-ischemic injury, associated with
myocarditis, stress-induced cardiomyopathy, cytokine release or
acute pulmonary embolism (47). Cardiac injury is associated with
more severe disease and a worse prognosis (43).

Interestingly, one hypothesis-generating study from the US,
which mirrored similar studies from other countries, such as
European countries, as well as Australia and New Zealand,
indicated that most metropolitan cities noted a marked increase
in out-of-hospital cardiac arrest, early in 2020, which generally
paralleled the local prevalence of COVID-19 infections (48). It was
suggested that this was likely due to the SARS-CoV-2 virus, but that
these deaths could not be reported as being due to COVID-19 as
testing was not done on most patients before they died. The study
also did not attempt to address clinical details, such as data on
cardiac events.

Acute Myocardial Infarction/Acute
Coronary Syndrome
The topic of COVID-19 and acute myocardial injury/ACS has been
extensively reviewed (47). Among the common findings are firstly,
that there is an increased risk of myocardial injury and infarction in
patients with COVID-19 infection, especially in those patients with
underlying cardiovascular comorbidities and/or risk factors. Secondly,
there is a range of differential diagnoses with regard to the cause of
myocardial injury, as noted above. Thirdly, lower rates of
hospitalization have been noted worldwide for acute coronary
syndrome during the COVID-19 pandemic, most likely because of
patients’ hesitancy to present to hospital, as well as misdiagnosis.
Lastly, lack of preparation and standardized protocols for early
management of ACS, in the setting of protection of healthcare
professionals and the environment, have potentially led to delayed
treatment of ACS.

A recent study from Sweden, indicated that when day one of the
infection was excluded, the odds ratio for an AMI in the two weeks
following COVID-19 infection was 3.41 [95%CI 1.58-7.36] and
when day 0 was included it was 6.61 [95% CI 3.56-12.20]. The
authors suggested that AMI (and ischemic stroke) represented a
part of the clinical picture of COVID-19 infection, highlighting the
need for prevention by vaccination (49).

In one registry-based retrospective analysis of hospitalized
patients with COVID-19 who suffered an AMI, the overall
mortality was 22.8% (50). The deceased were older than survivors,
andpatientswithhypertension,worsening renal functionandhigher
cardiac troponin T and C-reactive protein levels were more likely to
die. Importantly, one observational study documented that occult
infections with SARS-CoV-2 (and influenza) occurred in patients
presenting with AMI, but without COVID-19 symptoms (13% of
cases) and while there was no difference in mortality in those with
TABLE 2 | Possible causes of cardiac events in COVID-19 infection*.

• Direct cardiac injury
○ Viral-induced myocardial injury
○ Tropism of the virus for the ACE-2 receptor

• Systemic inflammation—cytokine release syndrome and multisystem
inflammatory syndrome
• Sepsis
• Plaque rupture or thrombosis
• Hematological changes—arterial thrombosis, hypercoagulability/coagulopathy
and disseminated intravascular coagulation
• Hypoxia
•Myocardial oxygen supply-demand mismatch
• Dysfunctional endothelial response
• Arrhythmia
• Electrolyte disorders
• Direct drug toxicity and/or drug-drug interactions
*See References (17–21).
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and without COVID-19 infection, the former group had a shorter
time to a recurrent cardiovascular event (51).

Two studies investigated the clinical course and outcome of
patients with AMI, with and without COVID-19 infection. The
one study analyzed patients in a prospective COVID-ACS
international registry, using a pre-COVID-19 cohort as the control
group (52), while the other compared COVID-19-negative and
-positive cases admitted to hospital with AMI early in the
pandemic (53). The former study documented that patients with
COVID-19 and ACS presented later and had an increased in-hospital
mortality compared to the pre-COVID-19 cohort, and that there was
a greater rate of cardiogenic shock, which was a major contributor to
the poorer outcome. The latter study documented that patients with
COVID-19 and AMI were older, had more comorbidities, and had a
higher hospital mortality, compared to those without COVID-19.

Some authors have restricted their analyses to those cases with
ST elevationmyocardial infarction (STEMI) (54–56). The first study
compared patients with confirmed COVID-19 and STEMI with an
age- and sex-matched STEMI group prior to COVID-19 (54).
Patients with COVID-19 infection were more likely to present
with cardiogenic shock (18%), but less likely to have angiography
(78%) compared to the control group. The primary outcome was a
composite of in-hospital death, stroke, recurrent AMI and repeat
unplanned revascularization, which occurred more commonly in
the COVID-19-positive group compared to controls. The second
study showed a significant increase in in-hospital mortality, stent
thrombosis and cardiogenic shock after percutaneous
revascularization in those patients with STEMI and COVID-19
infection compared with a contemporaneous group of non-COVID
STEMI patients (55). The third study indicated that STEMI patients
admitted during the first wave of COVID-19 infections in Israel,
had a longer ischemic time, which translated into more severe
disease on hospital admission and a higher in-hospital adverse event
rate than observed in STEMI cases admitted in a corresponding
period in 2018 (57).

Interestingly a literature review of COVID-19 patients who had
STEMI, in the early part of the pandemic, documented that 17% of
cases were due to non-obstructive coronary artery disease, which
was associated with a mortality of 30% (similar to those with
obstructive coronary artery disease); however, such data were
based on case reports and case series only (57). The role of
thrombosis, including extensive and multi-vessel thrombosis,
irrespective of the presence or absence of atherosclerotic plaques
has been described, and is reviewed elsewhere (58, 59).

Other studies have analyzed predominantly Type II myocardial
infarction in patients with COVID-19 (60). These studies indicate
that such cases may be caused by an imbalance between oxygen
supply and demand, possibly due to hypoxia, increased heart rate,
systemic inflammation and/or decompensated cardiac failure, and
are associated with high in-hospital mortality rates.

Clearly, a number of studies, some described above, suggest that
there has been a delay in health-seeking behavior, primarily due to
fear of contracting SARS-CoV-2 infection. This may account for the
apparent decrease in prevalence of AMI during COVID-19 and be
associated with a delay in medical intervention, resulting in an
alarming rate of rare complications from AMI (48, 52, 61).
Frontiers in Immunology | www.frontiersin.org 4
THE ROLE OF PLATELETS IN ISCHEMIC
CARDIAC DISEASE
Platelets play an important role in the development of thrombo-
inflammatory conditions and complications and are thus
recognized as critical participants in the development of AMI
(62). Platelet activation is a complex and multistep process (which
is beyond the scope of the current review), principally mediated by
specific platelet receptors that control adhesion and activation (62).
Notable amongst these are the platelet collagen receptor: Fc
receptor: g-chain (FcR g) co-expressed with glycoprotein (GP) VI.
Patients with ACS have been reported to express higher numbers of
GPVI receptors (63), have altered GPVI signaling (64) and an
increased aggregation response (64).

Various platelet surface activation markers, such as CD62P (P-
selectin), CD40L, platelet factor 4 and GP IIb/IIIa, as well as
biological markers, primarily platelet micro-particles, have been
associated with inflammation, atherosclerosis, and thrombosis (65).
Platelet-monocyte aggregates, which persist in peripheral blood for
longer than the surface markers and are therefore viewed as more
sensitive markers of in vivo platelet activation (65), are an early
marker of acute MI and have also been linked to myocardial no-
reflow in STEMI patients (66, 67). Indirect markers of platelet
activation, such as increased mean platelet volume (68), as well as
higher levels of vonWillebrand factor (69), and serotonin (70), have
also been observed during acute MI.

PLATELET INTERACTIONS WITH
SARS-CoV-2
In addition to expression of the low-affinity receptor for the Fc
fragment of immunoglobulin G, which may promote viral entry,
platelets also express TLR7, as mentioned above, which enables
these cells to interact with viral single-stranded RNA (71, 72). Both
of these mechanisms, as well as others (73), may contribute to viral
persistence and hyperreactivity of platelets. In the case of ACE2, the
major SARS-Cov-2 cell entry receptor and its associated
transmembrane serine protease 2 (TMPRSS2), expression of this
viral receptor and enzyme by platelets has been reported by some
(74), but challenged by others (75). Because a direct role, if any, for
the spike (S) protein of SARS-Cov-2 in mediating platelet
hyperreactivity and thrombocytopenia in severe disease remains
to be established, this section of the review is largely focused on
severe COVID-19 that is associated with endothelial infection,
activation and dysfunction as significant contributors to platelet
overdrive and development of vascular disease.

PLATELET INTERACTION WITH
INFLAMED/DAMAGED ENDOTHELIUM
Although platelets do not normally interact with intact vascular
endothelium, they nevertheless play a critical role in maintaining
vascular homeostasis via continuous monitoring of endothelial
integrity. This is accomplished by preventing and repairing
vascular leaks such as those associated with leukocyte
extravasation (76). However, in the setting of the excessive
February 2022 | Volume 13 | Article 776861
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endothelial activation and dysfunction that occur during serious
SARS-CoV-2 infection, platelets acquire a more aggressive
phenotype. Notwithstanding platelet activation mediated by
thrombin and collagen, as well as autocrine activation by
adenosine 5’-monophosphate and thromboxane A2, this is
augmented by interaction of platelet Toll-like receptor 7 (TLR7)
with viral single stranded RNA. Platelet activation is characterized
by increased expression of CD62P and tissue factor, as well as
platelet/leukocyte aggregate formation, which contribute
significantly to the pathogenesis of thrombotic disease (77–79).

In this setting, the interaction of platelets with stressed vascular
endothelium involves most of the adhesive mechanisms that
also maintain vascular homeostasis. However, the transition
from homeostatic regulation to vascular disease is determined by
the extent of endothelial dysfunction and the associated increase
in the intensity and duration of platelet adhesion and activation
that drives the recruitment of highly reactive neutrophils
and monocytes.

Mechanisms that promote the adhesion of platelets to inflamed
vascular endothelium are numerous and these have been extensively
reviewed elsewhere (80, 81). Prominent among these are initial
adhesive events that promote “rolling” of platelets along
endothelium, particularly the interaction of the major platelet
membrane receptor, GP1b (CD42)-1X-V with von Willebrand
factor released from endothelial cells (ECs). This type of rolling
action is reinforced by interactions that involve upregulated
expression of CD62P, present on both cell types, with its counter
receptor, P-selectin glycoprotein ligand-1 (PSGL-1), also expressed
on both cell types, albeit weakly in the case of platelets (81).

Stabilization of platelet/EC interactions requires the
cooperation of two key integrins and three endothelial-
associated, pro-adhesive molecules. These are the integrins,
aIIbb3 and avb3, expressed on platelets and ECs, respectively,
and the proteins, fibrinogen and fibronectin, as well as the
glycoprotein, von Willebrand factor, which act as bridges
linking the platelet and EC integrins to achieve firm binding.
This is intensified via the fibrinogen-dependent interactions of
aIIbb3 with intercellular adhesion molecule-1 (ICAM-1; CD54)
expressed on ECs, as well as by the association of EC-bound
GP1b-IX-V/von Willebrand factor with platelet aIIbb3 (81).

In addition to these platelet-endothelium interactions, other
prominent mechanisms by which prolonged platelet activation
poses risks to cardiovascular health include the following:

•microvascular occlusion due to formation of large intravascular
homotypic aggregates of platelets, as well as heterotypic
aggregates of platelets with neutrophils and monocytes
(78, 82);

• platelet-driven systemic inflammatory responses associated
with activation of neutrophils and monocytes/macrophages,
resulting in excessive production of proinflammatory
cytokines, especially interleukin (IL)-6, as well as induction
of intense intracellular oxidative stress (83, 84);

• excessive platelet-driven intravascular formation of neutrophil
extracellular traps (NETs) that contribute to organ damage
and dysfunction (85, 86);
Frontiers in Immunology | www.frontiersin.org 5
• release of prothrombotic/procoagulant factors (factor V,
prothrombin, fibrinogen, von Willebrand factor) from
platelet a-granules (87);

• platelet-driven active and passive expression of tissue factor by
monocytes and neutrophils, respectively (78, 88).

These platelet-driven inflammatory mechanisms are
summarized in Table 3.

PLATELET-MEDIATED ENDOTHELIAL
DAMAGE AND DYSFUNCTION
In addition to the direct proinflammatory/prothrombotic and
cytotoxic effects of the SARS-Cov-2 S protein on vascular
endothelium, as well as impairment of the renin-angiotensin-
aldosterone system (83), prolonged platelet activation in severe
COVID-19 infection also amplifies endotheliopathy (89) In this
context, a very recent study by Barrett et al. described potential
mechanisms by which activated platelets exacerbate endothelial
activation and damage (90). Using a strategy based on integration
of endothelial cells and platelets isolated from patients hospitalized
with COVID-19, transcriptomic analysis of mRNA expression
extracted from endothelial cells exposed to platelet releasate
revealed alterations in processes involved in maintenance of tight
junction barrier integrity, coagulation and inflammation,
characteristic of an “inflammatory, hypercoaguable phenotype” (90).

Systematic genetic analysis enabled the authors to identify the
genes encoding the calcium-binding proteins, SA100A8 and
SA100A9, also known as myeloid-related proteins (MRP) 8
and 14, respectively, as being the most prominent platelet-
derived mediators of endothelial activation. These proteins are
stored in platelet granules and dimerize to form the potent,
proinflammatory protein, calprotectin (MRP8/14). Interacting
with CD36 on vascular endothelium, calprotectin weakens cell-
cell interactions and initiates release of the proinflammatory
cytokines, IL-6, and IL-8 (90–92).

Importantly, the systemic levels of MRP8/14 were found to be
significantly higher in the cohort of patients hospitalized with
COVID-19 relative to those of control subjects and were
associated with development of thrombosis and other adverse
events (90).

Very recently, Bye et al. described another mechanism operative
in patients with severe COVID-19 by which platelets may augment
endothelial activation and dysfunction (93). In this setting, platelets
that have adhered to SARS-CoV-2-infected endothelial cells via von
Willebrand factor make contact with surface-bound immune
complexes formed between the S protein and heavily Fc region-
galactosylated immunoglobulin G antibodies, which effectively bind
to and activate the platelet FcgRIIA receptor (93).
ENDOTHELIITIS DUE TO SERIOUS
SARS-CoV-2 INFECTION
Notwithstanding the involvement of cells of the innate and
adaptive immune systems, there is increasing recognition of
February 2022 | Volume 13 | Article 776861
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the key role played by the vascular endothelium in the
development of the prothrombotic state and hypercoagulability
that precede the occurrence of arterial and venous complications
in patients with severe SARS-CoV-2 infection, particularly those
with preexisting, procoagulant tendencies (94–97). Of the 29
SARS-CoV-2 proteins, it is the S protein in particular and, to a
lesser extent, the nucleocapsid protein (NP) that drive virus-
mediated endothelial damage. Of these two viral proteins, the
former is cytotoxic, causing loss of endothelial structural
integrity, while the latter induces a proinflammatory
endothelial phenotype. Importantly, ECs do not express TLR7,
excluding putative proinflammatory interactions with viral
single-stranded RNA (98).

Spike Protein-Mediated Endothelial
Dysfunction
This viral protein consists of two subunits, S1 and S2. These spike
proteins bind initially to endothelial surface glycosaminoglycans,
enabling recognition of, and interaction with, their natural
cellular counter receptor, ACE2, which is expressed on several
types of host cells, including vascular endothelium (99). Physical
binding of ACE2 to the S protein necessitates proteolytic
cleavage at the S1/S2 sites by the cellular enzyme, TMPRSS2.
These events precede, and are a prerequisite, for membrane
fusion and viral entry. Thereafter S protein-mediated endothelial
dysfunction results from at least two distinct mechanisms, both
of which are dependent on viral infection of ECs, which results
from binding of the S1 region to ACE2.

Firstly, and very recently, Lei et al. engineered an RNA-free
pseudovirus variant of SARS-CoV-2 that was comprised of an
inert outer shell impregnated with the S protein that enabled
efficient attachment to ACE2 (99). Intratracheal administration
of this variant of SARS-CoV-2 to Syrian hamsters mimicked
many of the features of the pulmonary damage associated with
natural SARS-CoV-2 infection. These changes included
downregulation of endothelial expression of ACE2 that was
due to decreased stability of the virus receptor that resulted
from impaired phosphorylation of the ACE2 Ser-680 amino acid
residue by the endothelial enzyme, AMP-activated protein kinase
(AMPK) (99). This event, in turn, targeted the dephosphorylated
variant of ACE2 for proteolytic degradation by a pathway driven
by the oncoprotein, MDM2 (murine double minute 2) that
mediates ubiquitination of unstable ACE2 (99, 100). In
addition, dysregulation of endothelial protein phosphorylative
activity also resulted in interference with the activity of
endothelial nitric oxide synthase (eNOS) (99).

The authors replicated these findings in a series of in vitro
experiments in which isolated pulmonary arterial ECs were infected
Frontiers in Immunology | www.frontiersin.org 6
with the SARS-CoV-2 pseudovirus (99). In addition, they also
observed that exposure of the ECs to recombinant S1 protein
caused mitochondrial dysfunction and EC fragmentation,
seemingly because of intense intracellular oxidative stress
associated with loss of ACE2. Based on their findings, the authors
concluded that SARS-CoV-2 S1 protein-mediated loss of
endothelial ACE2 “may exacerbate endothelial dysfunction,
leading to endotheliitis” (99).

The aforementioned findings are largely in keeping with those of
another very recent study reported by Raghavan et al. (101). Using
an in vitro cell culture-based approach, these authors investigated
the effects of exposure to recombinant S1 protein on the structural
integrity of primary cultures of mouse brain ECs isolated from non-
diabetic and diabetic mice (101). The authors measured the pro-
adhesive activities of several types of EC junctional adhesion
molecules [vascular endothelial (VE) cadherin; junctional
adhesion molecule-A (JAM-A) that regulates tight junctions; the
gap junction protein, connexin-43; PECAM-1 (CD31) also highly
expressed at EC intercellular junctions]. Following exposure to the
S1 protein, the cellular levels of all four junctional adhesion
molecules decreased significantly, resulting in disruption of the
endothelial barrier, an effect that was most evident with ECs from
diabetic mice (101). Mechanistically, S1 protein-mediated
endothelial disruption appeared to result from an increased
association of the junctional adhesion molecules with the
membrane-associated protein, Rab5a, which is a GTPase regulator
of intracellular vesicular transport that regulates the movement of
membrane proteins between the plasma membrane and early
endosomes (101, 102). In the clinical setting of COVID-19, loss of
barrier function results not only in detachment of ECs that are
detected as circulating cells floating in blood (103), but also
exposure of the arterial sub-endothelium with the attendant risk
of myocardial infarction and stroke.

Notwithstanding involvement in infection and death of ECs
by SARS-CoV-2, the role of ACE2, if any, in S1 protein-mediated
junctional adhesion molecule dysfunction does, however, remain
to be established.

Spike Protein and Complement-Mediated
Dysfunction of Endothelial Cells
Recently, Yu et al., albeit also using an in vitro-based approach,
demonstrated that treatment of eukaryotic cells with either the S1 or
S2 recombinant proteins, but not NP, initiated endothelial
cytotoxicity via activation of the alternative complement pathway
(104). The authors used an engineered PIGAnull TF1 cell line that
does not express ACE2 for their studies. This is an erythroleukemic
cell line genetically depleted of phosphatidylinositol glycan class A
(PIGA), which is the precursor of glycosylphosphatidylinositol
TABLE 3 | Mechanisms by which activated platelets contribute to vascular and organ damage during severe COVID-19 infection.

Mechanism Refs

• Formation of large intravascular homotypic (platelets) and heterotypic (platelets/neutrophils/monocytes) aggregates that result in microvascular occlusion (78, 82)
• Initiation and perpetuation of systemic inflammatory responses that drive excessive production of proinflammatory cytokines and severe oxidative stress (83, 84)
• Drive the intravascular formation of obstructive neutrophil extracellular traps (85, 86)
• Release prothrombotic/procoagulant factors contained in a-granules (87)
• Initiate synthesis and release of tissue factor by platelet-activated monocytes (78, 88)
February 2022 | Volume 13 | Article
 776861

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Rossouw et al. Platelet-Endothelium Interactions in COVID-19
(GPI). This glycophospholipid anchors the complement regulatory
proteins, CD55 (inactivates the C3 convertases of the alternative and
classical pathways) and CD59 (attenuates the lytic activity of the
membrane attack complex). Cytotoxicity of both the S1 and S2
proteins occurred in the presence of normal human serum
measured using a colorimetric assay based on cellular metabolic
activity (104). The involvement of the alternative, as opposed to the
classical pathway of complement activation, was demonstrated
according to the presence of increased levels of fragment Bb
(derived from activation of Factor B), as well as by the protective
effects of inhibition of Factor D and by the addition of Factor H
(104). Although remaining to be conclusively established, the
authors speculate that the S1 and S2 proteins initiate activation of
the alternative complement pathway by interfering with the activity
of regulatory Factor H (104).

Although of potential pathophysiological significance, studies
of this type need to be repeated using endothelial cell lines with
intact complement regulatory surface proteins, as well as
expression of ACE2.

Activation of the NLRP3 Inflammasome by
the S and Viroporin SARS-CoV-2 Proteins
The S protein of SARS-CoV-2 has also been shown to activate
the proinflammatory/pro-pyroptosis NLR family pyrin domain-
containing protein 3 (NLRP3) inflammasome, seemingly by a
pro-oxidative mechanism in various types of eukaryotic cells,
including small human hematopoietic and EC precursor cells, as
well as macrophages (105, 106). In addition, the SARS-CoV-2
small membrane permeability-inducing protein, viroporin, may
also potentiate activation of the NLRP3 inflammasome via a
mechanism involving efflux of K+ (107). Importantly, the NLRP3
inflammasome is present in vascular endothelium, activation of
which triggers endothelial dysfunction and death (108).
Although seemingly unexplored, putative activation of the EC
NLRP3 inflammasome may also contribute to the development
of SARS-CoV-2-mediated endotheliitis.

Nucleocapsid Protein
The NP of SARS-CoV-2 is a 45.6 kDa (theoretical) multivalent
RNA-binding protein that initiates activation of ECs by
mechanisms that are non-cytotoxic and do not involve ACE2
(109). In this context, Qian et al. recently investigated the effects
of exposure of five different types of human primary EC cultures
(pulmonary vascular, umbilical vein, aortic, coronary artery and
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dermal microvascular) to recombinant NP (0.05–1 micrograms/
milliliter) for 4–24 hours in vitro (109). This resulted in dose- and
time-related increased expression of the endothelial adhesion
molecules, intercellular adhesion molecule-1 (ICAM-1) and
vascular adhesion molecule-1 (VCAM-1), that promoted
adherence of human primary monocytes (109). Mechanistically,
NP-mediated endothelial activation involved interaction of the viral
protein with TLR2 expressed on ECs. This event, in turn, triggered
activation of intracellular signaling mechanisms driven by nuclear
factor kappa B (NF-kB) and mitogen-activated protein kinase
(MAPK), resulting in transcription of the genes encoding ICAM-
1 and VCAM-1 (109).

Although indicative of a proinflammatory activity of the
SARS-CoV-2 NP that may contribute to the endotheliitis of
advanced COVID-19 infection, independent confirmation
of these findings, as well as extrapolation to the pathogenesis
of thrombosis in small vessels, is necessary.

These various mechanisms by which the SARS-Cov-2 spike
protein, viroporin and NP promote endothelial damage and
dysfunction are summarized in Table 4.

Given the very recent interest in the involvement of the
vascular endothelium in the pathogenesis of COVID-19, only a
few reports have described relationships between disease severity
and outcome with elevations in systemic biomarkers of
endothelial activation and dysfunction such as von Willebrand
factor and thrombomodulin (110–112). The paucity of reports
focused on this important topic underscores the necessity for
more intensive investigation. Novel platelet-directed therapies
currently under investigation include the P-selectin-targeted
monoclonal antibody, crizanlizumab (113).
ADVERSE CONSEQUENCES OF A
DAMAGED ENDOTHELIUM

Endothelial damage precedes the adhesion and activation of
platelets, neutrophils, and monocytes. This event, in turn, results
in the development of a procoagulant state due to the loss of EC-
derived anti-coagulant proteins such as thrombomodulin and
anti-thrombin III, as well as the prostanoid, prostacyclin. These
procoagulant mechanisms are intensified, in turn, by potentiation
of platelet activation via endothelial leakage of von Willebrand
factor and by increased synthesis and expression of tissue factor by
TABLE 4 | SARS-Cov-2 proteins that mediate endothelial cell dysfunction.

Protein Mechanisms Refs

Spike protein • Degradation of ACE2
• Decreased activity of eNOS
• Mitochondrial dysfunction and cellular oxidative stress

(99)

• Displacement of endothelial junctional adhesion molecules (101)
• Cytotoxicity due to activation of the alternative complement pathway (104)
• Possible activation of the endothelial NLRP3 inflammasome potentiated by viroporin (105–108)

Nucleocapsid protein • Upregulation of expression of the endothelial adhesion molecules, ICAM-1 and VCAM-1, resulting in recruitment of inflammatory cells (109)
February 2022 | Volume 13 | Artic
ACE, acetylcholine esterase; eNOS, endothelial nitric oxide synthase; NLRP3, NLR family pyrin domain-containing protein 3; ICAM-1, intercellular adhesion molecule-1; VCAM-1, vascular
cell adhesion molecule-1.
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ECs. Inflammatory events that occur on an essentially intact
endothelium in the setting of a low shear stress predispose for
the development of venous thrombosis (114). In the case of arterial
thrombosis, disruption of the endothelial barrier in the setting of
high shear stress, exposure of the sub-endothelial extracellular
matrix, platelet accumulation, and, in particular, the existence of a
pre-atherosclerotic milieu, are likely to predispose for
development of MI and stroke. These processes are depicted
in Figure 1.
CONCLUSION

COVID-19 is a systemic disease affecting various systems,
including the cardiovascular system, where it leads to
significant mortality. While our understanding of the
pathogenesis of COVID-19 and associated complications is
evolving, evidence is emerging about the very important role of
Frontiers in Immunology | www.frontiersin.org 8
platelets per se together with endotheliitis and its attendant role
in platelet recruitment and activation. These events create a
SARS-CoV-2-driven cycle of intravascular inflammation and
coagulation, which contributes significantly to a poor clinical
outcome in patients with severe disease. Clearly, the role of
platelet-endothelium interactions in the pathogenesis of
COVID-19 needs further intense exploration to enable
optimization of the treatment of the infection and its
complications with the ultimate goal of improving outcomes.
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