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Ferroptosis is one of the newly discovered forms of cell-regulated death characterized by
iron-dependent lipid peroxidation. Extensive research has focused on the roles of
ferroptosis in tumors, blood diseases, and neurological diseases. Some recent findings
have indicated that ferroptosis may also be related to the occurrence and development of
inflammatory arthritis. Ferroptosis may be a potential therapeutic target, and few studies in
vitro and animal models have shown implications in the pathogenesis of inflammatory
arthritis. This mini review discussed the common features between ferroptosis and the
pathogenesis of rheumatoid arthritis (RA), and evaluated therapeutic applications of
ferroptosis regulators in preclinical and clinical research. Some critical issues worth
paying attention to were also raised to guide future research efforts.
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INTRODUCTION

Rheumatoid arthritis (RA) is the most specific systemic immune system disease among
autoimmune diseases (1), invading many joints, such as knee and elbow joints. Its main clinical
manifestations are joint swelling and stiffness in the morning. RA has an incidence of 0.5% to 1%,
with an apparent reduction from north to south (in the northern hemisphere) and from urban to
rural areas (2). Some Native American populations have a very high prevalence. The incidence of
RA is high in 30-50 years of age, and the incidence in women is about three times that of men. RA
may be related to various cell types and cytokines (3), and the origin of its pathology is
autoantibodies (4, 5). RA is characterized by infiltration of macrophages and lymphocytes, the
proliferation of synovial fibroblasts, joint inflammation, progressive cartilage destruction, and bone
erosion, as well as degenerative manifestations (6).

Disease-modifying antirheumatic drugs (DMARDs) are conventional drugs in the treatment of
RA. Depending on the symptom severity, RA can be treated with a single drug or a combination of
2, 3, or 4 drugs (7, 8). When the disease is refractory, some biologic DMARDs are recommended.
The use rate of biological agents in the treatment of RA in North America has been as high as 50.7%
(9). However, the clinical efficacy rate is inconsistent, ranging from 50% to 70% (10). In clinical
practice, we should make changes in the therapeutic strategy when the arthritis is resistant to initial
therapy. Hence, there is an urgent need to develop drugs with new targets or new mechanisms of
action to meet the clinical needs of patients.

In RA, mature B cells and dendritic cells present antigens to T cells, leading to T cell activation.
Different immune cells secrete unique cytokines and jointly stimulate the expression of cytokine
org February 2022 | Volume 13 | Article 7795851
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TRANCE/receptor activator of nuclear factor-kappa B ligand
(RANKL), which is necessary for osteoclast differentiation. B-T
cell interaction leads to the activation of plasma cells responsible
for producing and secreting autoantibodies. Autoantibodies,
cytokines, and RANKL stimulate osteoclasts to cause bone
resorption and induce cart i lage damage driven by
chondrocytes. In addition, compared with activated B cells,
transitional B cells can inhibit the formation of osteoclasts in
an immunomodulatory manner by providing IL-10. It is
reported that ferroptosis plays a vital role in the occurrence
and development of many diseases such as Parkinson’s disease,
ischemia-reperfusion injury, and tumors (11, 12). Recent studies
have shown that ferroptosis plays a critical regulatory role in
autoimmune and inflammatory diseases (13, 14). New strategies
for targeting ferroptosis are to regulate the immune response
homeostasis, and in some cases, the reactions can influence each
other. Studies have found that ZIP14, a ferroptosis-related metal
transporter, may play a regulatory role in the immune system
(15). Early studies have confirmed that glutathione peroxidase
(GPX) activity in polymorphonuclear leucocytes of RA patients
with high persistent disease activity is reduced (16). Luo et al.
(17) found that RSL3, a ferroptosis activator, can induce
ferroptosis in synovial cells and aggravate synovitis.
Transferrin receptor 1 (TFR1) and nuclear receptor coactivator
4 (NCOA4) were upregulated, but system Xc- (an amino acid
transporter mediating the exchange of extracellular cystine and
intracellular glutamate) and GSH-glutathione peroxidase 4
(GPX4), as well as nuclear factor erythroid 2-related factor 2
(Nrf2, a transcriptional factor that induces antioxidative and
cytoprotective responses), were downregulated by RSL3
treatment. Herein, ferroptosis may be a potential therapeutic
target for inflammatory arthritis in the future.

This mini review discussed the common features between
ferroptosis and the pathogenesis of RA, and evaluated
therapeutic applications of ferroptosis regulators in preclinical
and clinical research. Some critical issues worth paying attention
to were also raised to guide future research efforts.
FERROPTOSIS IN CELL DEATH

Cell death is a sophisticated process, and its mechanisms have
traditionally been divided into two types, programmed cell death
(PCD) mechanisms that require energy, and necrotic cell death
mechanisms that do not (18). In addition, necrotic cell death typically
causes a strong immune response, whereas PCD does not (19, 20). In
2012, Dixon et al. (21) discovered a unique iron-dependent form
of nonapoptotic cell death when studying the mechanism of the
small molecule compound (named erastin) against RAS mutant
tumors, which was called ferroptosis. It is significantly different
from other death patterns in morphology, biochemistry, and
genetics (22). It is characterized by the accumulation of lethal
reactive oxygen species (ROS) arised from the reaction between
iron and lipid peroxides, which are themselves generated by the
oxidation of polyunsaturated fatty acids (PUFAs)-containing
phospholipids (PUFA-PLs) (23). PUFAs are essential for
Frontiers in Immunology | www.frontiersin.org 2
ferroptosis due to their sensitivity to lipid peroxidation (24).
Free PUFAs are involved in ferroptosis after they are esterified
into PUFA-PL and PUFA-PLOOH. Ferroptosis does not have
morphological characteristics of apoptosis, such as cell
shrinkage, chromatin agglutination, formation of apoptotic
bodies, disintegration of cytoskeleton, and other phenomena.
However, it can be observed that the volume of mitochondria
decreases and the membrane’s density increases (25), which are
not observed in apoptosis. At the same time, along with
mitochondrial morphology alterations accompanying
ferroptosis, a common morphological feature is cell
ballooning/blistering followed by plasma membrane rupture
(26). In terms of biochemical characteristics, ferroptosis is
mainly triggered by glutathione (GSH) depletion and
glutathione peroxidase 4 (GPX4) inactivation. It is mainly
related to lipid peroxidation metabolism and intracellular iron
balance, and several genes are involved in the regulation of
ferroptosis. Ferroptosis inducers mainly include erastin,
FINO2, and RSL3. Ferroptosis inhibitors mainly include
liproxstatin-1, iron chelator, and ferrostatin-1. Liproxstatin-1
free radicals, which were formed by removing lipid peroxides
from liproxstatin-1, can be reduced by other antioxidants (such
as ubiquinone). Zika et al. found that liproxstatin-1 may reduce
the accumulation of intracellular toxic lipid ROS, thereby inhibit
the occurrence of cell ferroptosis (27). At present, the
understanding of ferroptosis is not comprehensive enough, and
its mechanism is still in the exploratory stage.
THE POTENTIAL ROLE OF FERROPTOSIS
IN RA

Ferroptosis might play a role in the onset of RA and may be used
as a treatment option in the future. Recently, it has been found
that RA and ferroptosis have similar characteristics, mainly in
the following aspects.
IRON HANDLING

Abnormal iron metabolism is an important cause of ferroptosis.
Regulatory pathways of intracellular iron homeostasis mainly
include ferroportin and TFR1 to regulate iron export and
absorption (23). Iron ions induce the body to produce a large
amount of lipid ROS through fenton reaction, promote lipid
peroxidation, and lead to ferroptosis. Under oxidative stress
conditions, superoxide will be produced in a short time,
reducing Fe3+ stored in ferritin to Fe2+, resulting in the release
of iron ions. Fe3+ enters the cell under the transport of TFR1, and
then is converted into Fe2+. The excess iron ions are stored in
ferritin to control the storage of iron ions. In addition, both iron
response element binding protein 2 (IREB2) and Nrf2 are
involved in regulating Fe2 + in cells. NCOA4 recognizes and
relies on the autophagy pathway to degrade intracellular ferritin,
releasing free iron ions (28) (Figure 1).
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The proliferation and activation of osteoclasts lead to RA
bone damage and bone metabolism disorders. In vitro and in
vivo studies have shown that iron overload can induce osteoclast
differentiation and inhibit osteoblast proliferation by increasing
ROS generation (29). Low concentrations of iron ions can
promote the growth of osteoblast precursor cells (MC3T3-E1),
while high concentrations of iron ions inhibit their growth and
increase ROS levels (30). Iron overload can inhibit the activity of
osteoblasts to a certain extent, thereby affect their differentiation
process. Simultaneously, it can also activate the differentiation of
osteoclasts and cause bone destruction (31). Studies have shown
that excessive iron ions can activate p38-MAPK and block PI3K/
AKT and JAK/STAT3 signaling pathways to induce MC3T3-E1
cell death (30). In addition, iron ions initiate the growth of
synovial pannus by regulating the expression of critical genes
such as c-myc and mdm2. These genes are responsible for the
proliferation of synovial cells and promote the occurrence and
development of vascular synovitis (32).

Studies have demonstrated that iron deposits are found in
osteoarthritis and RA (33, 34). Both osteoarthritis and
rheumatoid synovia contained iron, but in the latter greater
quantities were present. However, none of the controls with
normal synovia had iron deposition. Another study found that
Frontiers in Immunology | www.frontiersin.org 3
the iron metabolism is different in RA than in general health
(35). It is worth noting that iron deficiency is common (64%) in
RA patients with high disease activity. RA patients had lower
hepcidin, lower transferrin, and lower ferritin. Icariin has
antibacterial, anti-inflammatory and antioxidant effects (36). It
has been suggested that icariin counteracts the effects of RSL3 on
iron content, lipid peroxidation, and relative protein (SLC7A11,
SLC3A2L, GPX4, TRF, NCOA4, and Nrf2) in synoviocytes given
the observation that icariin might play a role in protecting
synovial cells from ferroptosis (17). Herein, it can be exploited
as a new therapeutic strategy for RA.
MEMBRANE LIPID ANTIOXIDANT
SYSTEM

GSH is a tripeptide containing sulfhydryl groups combined with
glutamic acid, cysteine, and glycine, which has an antioxidant
effect. Under normal circumstances, the cystine entering the cell is
reduced to cysteine to participate in the synthesis of GSH, which
helps reduce the accumulation of lipid peroxides. However, when
system Xc- is inhibited, GSH synthesis disorder will promote the
FIGURE 1 | After the transferrin binds to the transferrin receptor on the plasma membrane, the plasma membrane forms a vesicle that takes Fe3+ carrying transferrin into
the cell. Then, the low pH in the vesicle promotes the separation of Fe3+ from the transferrin and the shedding of Fe3+. It is reduced to Fe2+ and free in the cytoplasm, or is
combined with ferritin to form an iron pool. The ferritin in the iron pool can be encapsulated by autophagy lysosomes under the mediation of NCOA4, and then degraded and
release a large amount of Fe2+. Fe2+ and H2O2 generate PLOOH through the fenton reaction, which promotes ferroptosis by promoting further lipid peroxidation and self-
peroxidation. In the GSH/GPX4 pathway, with the help of GSH, GPX4 down-regulates ROS and inhibits ferroptosis. This can be suppressed by RSL3. System Xc- (cystine/
glutamate antiporter) promotes synthesis of glutathione, which can be offset by erastin, sulfasalazine and sorafenib. In the FSP1 protection pathway, FSP1 can catalyze the
reduction of CoQ10 to panthenol and consume NAD(P)H to inhibit ROS. In the GCH1 protection pathway, GCH1 acts as a rate-limiting enzyme to manage the biosynthesis
of BH4 and reduce ferroptosis.
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decline of cellular antioxidant capacity and the accumulation of
lipid ROS. Abnormally elevated lipid ROS levels can be controlled
by GPX4 (37). GPX4 can effectively repair the oxidative damage of
unsaturated fatty acids inmammals, thereby inhibiting ferroptosis.
Stockwell et al. determined that the GPX4/GSH axis and the
system Xc- regulate ferroptosis, considered a classic pathway (38).
Earlier studies have shown that erastin, a system Xc- inhibitor,
inhibits GSH synthesis and increases lipid ROS, leading to
ferroptosis (21). Erastin has been shown to contribute to
cartilage tissue damage by promoting matrix metalloproteinase
13 (MMP-13) expression and inhibiting type II collagen
expression in chondrocytes (39), which may aggravate RA.

In addition to GPX4/GSH axis, ferroptosis suppressor protein
1 (FSP1)- Coenzyme Q10 (CoQ10) pathway has also been found
to be related to ferroptosis. GPX4 and FSP1 are two parallel
membrane lipid antioxidant pathways. FSP1 is one of the CoQ10
oxidoreductases, most of which are attached to the outer
mitochondrial membrane (40). The FSP1-CoQ10 pathway can
improve lipid peroxidation through free radical capture, and the
process of ferroptosis is also blocked. Some studies speculate that
FSP1 may improve RA through the TNF-a/ROS positive
feedback loop (41, 42). However, the specific contribution of
ferroptosis as a mode of cell death was not addressed in
these studies.

It is worth noting that the GTP cyclohydrolase-1 (GCH1)-
tetrahydrobiopterin (BH4) pathway is parallel but independent
of the GPX4 and FSP1 pathways (43). GCH1 is the primary rate-
limiting enzyme for the synthesis of BH4. Overexpression of
GCH1 can enhance the production of BH4, and then reduce
ferroptosis. So far, few such evidence has been provided for RA.
Although the GCH1-BH4 protective pathway is closely related to
ferroptosis, the interaction between GCH1-BH4 and RA is still
not fully understood, and further research is needed.
OXIDATIVE STRESS AND LIPID
PEROXIDATION

Studies have shown that oxidative stress plays a vital role in the
progression of RA. ROS, as a product of oxidative stress, exists in
the articular cavity of RA patients in large quantities. ROS can be
used as a potential marker for the progression of RA patients
(44). Excess ROS can be converted to hydrogen peroxide through
the fenton reaction. In this process, Fe3+ can be reduced to Fe2+,
generating hydroxyl (-OH) or alkoxy (RO-) free radicals, and
causing cell ballooning/blistering followed by plasma membrane
rupture (45). ROS in cells can activate the NLRP3 receptor
protein. Activated NLRP3 is polymerized by ATP to form
highly ordered NLRP3 protein oligomers. Under the action of
ASC, NLRP3 and pro-caspase-1 are connected to form a
complex pro-caspase-1 that can be activated to form an
enzymatic activity. The heterodimer caspase-1 cuts the inactive
pro-IL-1b and pro-IL-18 into mature IL-1b and IL-18,
aggravating RA. When the local inflammation of RA joints
accelerates, it can be used as an endogenous signal regulator to
expand the synovial inflammation response (46). ROS is a key
Frontiers in Immunology | www.frontiersin.org 4
element of the ROS/TNF-a feedback loop. The production of
TNF-a depends on the activation of NF-kB signaling pathway
stimulated by ROS, which in turn activates the p38/JNK
signaling pathway to accelerate the progression of RA (41)
(Figure 2). ROS can induce activation of metalloproteinases,
inhibit the synthesis of cartilage proteoglycans, and promote
chondrocyte apoptosis, which eventually leads to cartilage
destruction and bone erosion. This is consistent with
pathogenic manifestations of RA. A study detected a strong
positive correlation between the ROS level and the severity score
in RA patients (47). The levels of lipid peroxidation in the serum
and synovial fluid are increased in RA patients, and the
antioxidant system has also changed (48). Hence, ROS
production in excess is more likely to inhibit osteoblast
differentiation and lead to bone destruction.

In addition, studies have found that ROS production can also
be induced by activation of the phagocyte NADPH oxidase 2
(NOX2) complex in a process generally referred to as an
oxidative burst. NOX2-derived ROS have been shown to
suppress antigen-dependent T-cell reactivity and remarkably to
reduce the severity of experimental arthritis in both rats and mice
(49). In addition, NOX2 also plays a role in antigen presentation
and regulation of adaptive immunity. In CD4+ T cells, the lack of
NOX2 induces the production of Th17 cells and reduces
regulatory T cells in a ROS-dependent manner by affecting
Foxp3 and RORgt (50). The immunosuppressive properties of
CD4+CD25+Foxp3+Treg cells play a vital role in maintaining the
body’s immune tolerance and immune response homeostasis.
Early studies have demonstrated that regulatory T cells are
functionally compromised in RA (51). The CD4+CD25+Treg
cells in the joint synovial fluid of RA patients are significantly
increased (52). In addition, the reduction of NOX2 will increase
Th1, Th2, and Th17 cells, leading to inflammatory arthritis.
Antigen-presenting cells (APCs) are known to produce NOX2-
derived ROS. A study found that the NOX2-dependent
processing of the redox-sensitive autoantigens by APCs
modified T cell activity and induced development of RA in
mouse models (53). Despite many unknown facts, drugs
targeting ferroptosis may represent a potential strategy for
treating RA.
INFLAMMATION

Ferroptosis can also trigger the body’s innate immunity, release
inflammatory mediators, and activate the body’s inflammatory
response (14). Changes in the synovial membrane’s typical
physiological and metabolic properties can produce many
inflammatory mediators, such as IL-1b, TNF-a, and IL-6,
which increase uptake of transferrin and non-transferrin-
bound iron by monocytes and increase the uptake of
transferrin-bound iron by synovial fibroblast (54). Increased
iron intake accelerates the vicious cycle of hemorrhage-
synovitis-hemorrhage, and the proliferated synovial tissue
spreads to the surface of the articular cartilage. Cartilage
matrix is degraded by connective cathepsin released by
February 2022 | Volume 13 | Article 779585
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hypertrophic synovial tissue, chondrocytes and intravascular
tissue, which will eventually lead to the destruction of articular
cartilage and bone (55, 56).
FERROPTOSIS: A RISING STAR WITH
GREAT THERAPEUTIC POTENTIAL IN RA

P53 is an excellent tumor suppressor gene that can inhibit system
Xc- uptake of cystine by down-regulating the expression of
SLC7A11 and result in a decrease in antioxidant capacity.
Previous studies have confirmed that p53 protein is expressed in
RA fibroblast-like synovial cells, and its overexpression is a
characteristic of RA (57). It plays a role in controlling the balance
between Th17 cells and Treg (58). Aberrant p53/p21 activation-
mediated aging-related secretory phenotype can accelerate
destruction of cartilage tissue (59). Studies have shown that
endogenous p53, which is inducible in rheumatoid synovial cells,
is functionally active based on the findings that its expression blocks
the G1/S transition by inhibiting the CDK-mediated
phosphorylation of Rb via p21 induction (60). Clinical studies
have found that the expression of p53 in lymphocytes is lower in
RA patients than that of healthy people (61, 62). Acyl−CoA
synthetase long−chain family member 4 (ACSL4, an enzyme
involved in the activation of PUFAs) is located in peroxisomes
Frontiers in Immunology | www.frontiersin.org 5
and mitochondria, which can determine the sensitivity of cells to
ferroptosis activation. Doll et al. found GPX4-ACSL double-
knockout cells showed marked resistance to ferroptosis (63).
Mechanistically, ACSL4 enriched cellular membranes with long
polyunsaturated w6 fatty acids. ACSL4 has a marked preference for
activating PUFAs (64), therefore, deletion of ACSL4 prevents
PUFAs from being incorporated into membrane PLs where they
would become oxidized following GPX4 inactivation (26). Clinical
studies have found that the ACSL4 is down-regulated in RA patients
(65). BECN1 is a crucial regulator of autophagy, which can promote
ferroptosis by regulating the activity of the system Xc-. BECN1-
dependent ferroptosis requires the formation of BECN1-SLC7A11
complex. Studies have found that autophagy of osteoblasts affects
bone metabolism, and BECN1 may become a new target for the
treatment of bone metabolism diseases (66). CoQ10, a fat-soluble
antioxidant, is a crucial regulator of ferroptosis. Studies have shown
that CoQ10 has anti-inflammatory effects on autoimmune diseases.
Jhun et al. used CoQ10-encoded liposome/gold hybrid
nanoparticles targeting STAT3/Th17 to slow RA’s progression
(67). Although the FSP1-CoQ10 protective pathway is closely
related to RA, the interaction between CoQ10 and other
ferroptosis regulators is still not fully understood, and further
research is needed.

In addition, many studies have focused on the relationship
between oxidative stress metabolism and ferroptosis regulators. For
example, Nrf2 and heme oxygenase-1 (HO-1) level can regulate
FIGURE 2 | ROS is a critical element of the ROS/TNF-a feedback loop. The production of TNF-a depends on the activation of ROS-stimulated NF-kB signaling, which
activates the p38/JNK signaling pathway to accelerate the progression of RA inflammation. High levels of iron ions can catalyze the production of ROS. Excessive ROS
will aggravate the proliferation of synovial fibroblasts; induce osteoclast differentiation and inhibit osteoblast proliferation; activate metalloproteinases, as well as lead to
cartilage destruction and bone erosion. Excessive ROS will also promote lipid peroxidation, leading to cell ferroptosis. Moreover, the ferroptosis inducer (erastin) can
promote the expression of matrix metalloproteinase 13 and promote cartilage destruction, while the ferroptosis inhibitor ferrostatin-1 can reduce cartilage degradation.
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ferroptosis (68). A study found that reduced levels of the Nrf2 factor
can lead to RA (69). Targeted activation of Nrf2 can inhibit ROS
production, which in turn inhibits the proliferation andmigration of
RAfibroblast-like synovial cells (70). LuoHet al. found thatRSL3can
reduceNrf2 andGPX4 in synovial cells (17). In addition, lack ofNrf2
can lead tochanges in theexpressionofSLC7A11,which further leads
to oxidative stress damage and aggravates joint destruction (71).
Studies have found that ferroptosis can be induced through theNrf2-
SLC7A11-HO-1 pathway, which may play a regulatory role in joint
destruction (71, 72).

The study found that FDA-approved RA drugs such as
sulfasalazine and auranofin can prevent cell growth and induce
ferroptosis. Sulfasalazine and auranofin activity were largely
mitigated by the ferroptosis inhibitor ferrostatin-1, antioxidants,
or by the iron scavenger deferoxamine (DFO). DFO can inhibit
ferroptosis by preventing iron ions from supplying electrons to
oxygen to form ROS. However, the specific mechanism is still
unclear. Dixon et al. made synthetic ferrostatin-1 (ferroptosis
inhibitor) and proved that it could specifically inhibit ferroptosis,
but it did not impede other oxidative substances and apoptosis-
induced death (21). Yao et al. found that intra-articular injection of
ferrostatin-1 increased the expression of collagen II, promoted the
activation of the Nrf2 antioxidant system, and reduced cartilage
degradation, which is beneficial to alleviate joint inflammation (39).
Some natural polyphenol compounds can also significantly inhibit
ferroptosis, such as baicalein, curcumin, and gastrodin (73, 74).
Baicalein was demonstrated to suppress T cell proliferation in
collagen−induced arthritis model mice and significantly improve
T cell-mediated autoimmune diseases (75). Studies have confirmed
that curcumin alleviates inflammation, synovial hyperplasia, and the
other main features involved in the pathogenesis of collagen-
induced arthritis (76). Targeting ferroptosis regulators may be a
new direction for developing therapeutic drugs for RA.
DISCUSSION

In summary, ferroptosis is a recentlydiscovered significant regulatory
cell death pattern, and three protective pathways have been
successively confirmed. An in-depth study of the underlying
mechanism of ferroptosis is of great significance for mapping its
role in various related autoimmune diseases. It is worth noting that
different cell types (synovial cells, chondrocytes, osteoclasts, and
macrophages) may have different susceptibility to ferroptosis. The
expression profile of specific genes related to the ferroptosis pathway
maynotbeobserved inall cells.Moreover, attention shouldbepaid to
the phenomenon of ferroptosis, and the judgment criteria may vary
depending on the triggermechanism. Herein, it is necessary to study
Frontiers in Immunology | www.frontiersin.org 6
the mechanism of ferroptosis regulators. At present, the inner link
between ferroptosis and RA has not been studied in depth. With an
in-depth understanding of the relationship between ferroptosis and
other biological processes, peoplewillfind that ferroptosis, apoptosis,
autophagy, and other cell death patterns have some common
characteristics in their regulations. Although simultaneous
regulation of multiple cell death pathways is vital for the treatment
of RA, the relationship between these different types of cell death is
not yet fully elucidated. This requires further exploration to validate
whether they are integrated into a complex regulatory network.

In short, with the unprecedented prosperity of research on
ferroptosis, ferroptosis regulation represents a potential future
avenue of investigation in the effort to identify novel therapeutic
targets for RA.
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Metabolism in Patients With Rheumatoid Arthritis. Eur Rev Med
Pharmacol Sci (2021) 25(12):4325–35. doi: 10.26355/eurrev_202106_26140

36. Ma XN, Zhou J, Ge BF, Zhen P, Ma HP, Shi WG, et al. Icariin Induces
Osteoblast Differentiation and Mineralization Without Dexamethasone In
Vitro. Planta Med (2013) 79(16):1501–8. doi: 10.1055/s-0033-1350802

37. Basit F, van Oppen LM, Schöckel L, Bossenbroek HM, van Emst-de Vries SE,
Hermeling JC, et al. Mitochondrial Complex I Inhibition Triggers a
Mitophagy-Dependent ROS Increase Leading to Necroptosis and
Ferroptosis in Melanoma Cells. Cell Death Dis (2017) 8(3):e2716.
doi: 10.1038/cddis.2017.133

38. Dixon SJ, Stockwell BR. The Role of Iron and Reactive Oxygen Species in Cell
Death. Nat Chem Biol (2014) 10(1):9–17. doi: 10.1038/nchembio.1416

39. Yao X, Sun K, Yu S, Luo J, Guo J, Lin J, et al. Chondrocyte Ferroptosis
Contribute to the Progression of Osteoarthritis. J Orthop Translat (2021)
27:33–43. doi: 10.1016/j.jot.2020.09.006

40. Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH, et al. The
CoQ Oxidoreductase FSP1 Acts Parallel to GPX4 to Inhibit Ferroptosis.
Nature (2019) 575(7784):688–92. doi: 10.1038/s41586-019-1705-2

41. Xie Z, Hou H, Luo D, An R, Zhao Y, Qiu C. ROS-Dependent Lipid
Peroxidation and Reliant Antioxidant Ferroptosis-Suppressor-Protein 1 in
Rheumatoid Arthritis: A Covert Clue for Potential Therapy. Inflammation
(2021) 44(1):35–47. doi: 10.1007/s10753-020-01338-2

42. Doll S, Freitas FP, Shah R, Aldrovandi M, da Silva MC, Ingold I, et al. FSP1 is a
Glutathione-Independent Ferroptosis Suppressor. Nature (2019) 575
(7784):693–8. doi: 10.1038/s41586-019-1707-0

43. Kraft VAN, Bezjian CT, Pfeiffer S, Ringelstetter L, Müller C, Zandkarimi F,
et al. GTP Cyclohydrolase 1/Tetrahydrobiopterin Counteract Ferroptosis
Through Lipid Remodeling. ACS Cent Sci (2020) 6(1):41–53. doi: 10.1021/
acscentsci.9b01063

44. Datta S, Kundu S, Ghosh P, De S, Ghosh A, Chatterjee M. Correlation of
Oxidant Status With Oxidative Tissue Damage in Patients With Rheumatoid
Arthritis. Clin Rheumatol (2014) 33(11):1557–64. doi: 10.1007/s10067-014-
2597-z
February 2022 | Volume 13 | Article 779585

https://doi.org/10.1016/j.jaut.2019.102392
https://doi.org/10.1016/j.jaut.2019.102392
https://doi.org/10.1126/science.1199214
https://doi.org/10.1016/j.autrev.2019.102398
https://doi.org/10.1136/annrheumdis-2013-204575
https://doi.org/10.1002/acr.22784
https://doi.org/10.1007/s13346-018-0589-2
https://doi.org/10.1016/j.pneurobio.2020.101890
https://doi.org/10.1016/j.pneurobio.2020.101890
https://doi.org/10.1016/j.lfs.2020.118660
https://doi.org/10.1038/s41590-021-00993-3
https://doi.org/10.1016/j.pbiomolbio.2020.04.001
https://doi.org/10.1182/blood.2019002907
https://doi.org/10.1111/j.1445-5994.1994.tb02192.x
https://doi.org/10.1111/j.1445-5994.1994.tb02192.x
https://doi.org/10.3892/etm.2020.9504
https://doi.org/10.1080/01926230701320337
https://doi.org/10.2174/138161210789941793
https://doi.org/10.1038/nrm2312
https://doi.org/10.1038/nrm2312
https://doi.org/10.1016/j.cell.2012.03.042
https://doi.org/10.1016/j.chembiol.2008.02.010
https://doi.org/10.1016/j.chembiol.2008.02.010
https://doi.org/10.1016/j.cell.2017.09.021
https://doi.org/10.1016/j.cell.2017.09.021
https://doi.org/10.1016/j.tcb.2015.10.014
https://doi.org/10.1038/nature05859
https://doi.org/10.1038/nature05859
https://doi.org/10.1016/j.chembiol.2018.11.016
https://doi.org/10.1016/j.chembiol.2018.11.016
https://doi.org/10.1021/acscentsci.7b00028
https://doi.org/10.1016/j.redox.2020.101670
https://doi.org/10.1002/jcp.27678
https://doi.org/10.1002/jcp.26405
https://doi.org/10.1530/joe-14-0657
https://doi.org/10.1182/blood-2003-12-4231
https://doi.org/10.1007/bf00290523
https://doi.org/10.26355/eurrev_202106_26140
https://doi.org/10.1055/s-0033-1350802
https://doi.org/10.1038/cddis.2017.133
https://doi.org/10.1038/nchembio.1416
https://doi.org/10.1016/j.jot.2020.09.006
https://doi.org/10.1038/s41586-019-1705-2
https://doi.org/10.1007/s10753-020-01338-2
https://doi.org/10.1038/s41586-019-1707-0
https://doi.org/10.1021/acscentsci.9b01063
https://doi.org/10.1021/acscentsci.9b01063
https://doi.org/10.1007/s10067-014-2597-z
https://doi.org/10.1007/s10067-014-2597-z
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Zhao et al. Ferroptosis in Rheumatoid Arthritis
45. Su LJ, Zhang JH, Gomez H, Murugan R, Hong X, Xu D, et al. Reactive Oxygen
Species-Induced Lipid Peroxidation in Apoptosis, Autophagy, and Ferroptosis.
Oxid Med Cell Longev (2019) 2019:5080843. doi: 10.1155/2019/5080843

46. Phull AR, Nasir B, Haq IU, Kim SJ. Oxidative Stress, Consequences and ROS
Mediated Cellular Signaling in Rheumatoid Arthritis. Chem Biol Interact
(2018) 281:121–36. doi: 10.1016/j.cbi.2017.12.024
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