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Neutrophil Extracellular Trap
Targeting Protects Against Ischemic
Damage After Fibrin-Rich Thrombotic
Stroke Despite Non-Reperfusion
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Maria Isabel Cuartero?, Maria Angeles Moro2* and Ignacio Lizasoain®”

" Unidad de Investigacion Neurovascular, Dpto. Farmacologia y Toxicologia, Facultad de Medicina, and Instituto Universitario
de Investigacion en Neuroquimica (IUIN), Universidad Complutense de Madrid (UCM) and Instituto de Investigacion Hospital
12 de Octubre (i+12), Madrid, Spain, 2 Neurovascular Pathophysiology Group, Centro Nacional de Investigaciones
Cardiovasculares Carlos Ill (CNIC), Madrid, Spain

Stroke is one of the most prevalent diseases worldwide caused primarily by a thrombotic
vascular occlusion that leads to cell death. To date, t-PA (tissue-type plasminogen
activator) is the only thrombolytic therapy approved which targets fibrin as the main
component of ischemic stroke thrombi. However, due to its highly restrictive criteria, t-PA
is only administrated to less than 10% of all stroke patients. Furthermore, the research in
neuroprotective agents has been extensive with no translational results from medical
research to clinical practice up to now. Since we first described the key role of NETs
(Neutrophil Extracellular Traps) in platelet-rich thrombosis, we asked, first, whether NETs
participate in fibrin-rich thrombosis and, second, if NETs modulation could prevent
neurological damage after stroke. To this goal, we have used the thromboembolic in
situ stroke model which produces fibrin-rich thrombotic occlusion, and the permanent
occlusion of the middle cerebral artery by ligature. Our results demonstrate that NETs do
not have a predominant role in fibrin-rich thrombosis and, therefore, DNase-| lacks lytic
effects on fibrin-rich thrombosis. Importantly, we have also found that NETs exert a
deleterious effect in the acute phase of stroke in a platelet-TLR4 dependent manner and,
subsequently, that its pharmacological modulation has a neuroprotective effect.
Therefore, our data strongly support that the pharmacological modulation of NETs in
the acute phase of stroke, could be a promising strategy to repair the brain damage in
ischemic disease, independently of the type of thrombosis involved.

Keywords: stroke, fibrin, NETs, neuroprotection, TLR4

INTRODUCTION

Stroke affects 15 million people per year due to a thrombus producing an abrupt decrease in blood flow
supply to the brain that leads to the initiation of an inflammatory cascade and that, ultimately, will drive
to cell death if the blood flow is not restored. Only two treatment regimens are currently approved by the
FDA and the EMA: pharmacological thrombolysis using t-PA (tissue plasminogen activator) and
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mechanical thrombectomy. Unfortunately, both treatments have,
as limitations, a low rate of arterial recanalization and the
phenomenon of hemorrhagic transformation (HT), among others
(1, 2). Indeed, recanalization of the occluded artery is limited to a
small proportion of patients (3): specifically, due to highly restricted
criteria, t-PA can only be administrated to less than 10% of stroke
patients and less than 50% of t-PA-treated patients have successful
recanalization (4). In this context, the research in fibrinolytic but
also neuroprotective agents in stroke has been extensive with no
translational results from medical research to clinical practice up
to now.

Stroke elicits an extensive inflammatory response in brain with
the recruitment of circulating leukocytes (5). Among these,
neutrophils are the most abundant white blood cells that are
rapidly recruited to the site of injury providing an effective
immune response. Neutrophils are known to release their
intracellular content in a web-like structure called Neutrophil
Extracellular Traps (NETs). NETosis is a complex cellular
process characterized by the release of DNA decorated with
granular proteins (MPO or elastase) and histones in response to
microbial infection (6). The release of these traps is dependent on
the citrullination of histones by the peptidyl arginine deiminase
type IV (PAD) enzyme and decondensation of chromatin (7). In
addition to their bactericidal effect, NETs have also been
documented in sterile inflammation, atherosclerosis, or
ischemia/reperfusion injury (8, 9). Additionally, NET formation
has been related to platelet TLR4 (Toll-like receptor 4) activation,
but its role in the setting of thrombotic stroke is unknown (10).

Importantly, it has been widely described that stroke thrombi are
mainly composed by fibrin, platelets, red blood cells, and NETs (11,
12) Since Fuchs and cols. described for the first time the relationship
between NETs and thrombosis in a platelet-dependent manner
(13), many researchers including us have been trying to understand
how platelets and NETs interact to lead to thrombus formation (14—
16), (16). Indeed, our group recently described that inhibition of
NETs through different pharmacological approaches leads to an
effective lysis of platelet-rich thrombi in a platelet TLR4-dependent
manner (17). However, it remains unknown whether NET' play a
crucial role in fibrin-rich thrombi, as well as in tissue damage in the
acute phase of stroke.

Therefore, in this study, we decided to elucidate 1) the role of
NETs in fibrin-rich thrombosis, and 2) whether NET formation
affects outcome in acute stroke.

MATERIALS AND METHODS

Animals
All experiments were performed in C57bl/6 male mice, 8-12
weeks-old and weighting 20-25g (Harlan, Spain). Transgenic
mice that express the Cre recombinase enzyme under platelet
factor 4 promoter (PF4-Cre) were kindly donated by Dr. Andrés
Hidalgo. Transgenic mouse was crossed with TLR4™"*** mice,
kindly donated by from Prof. Timothy Billiar (University of
Pittsburgh, USA), to delete TLR4 in platelets.

Mice were kept in ventilated cages at 22°C in a 12h light/dark
cycle and 35% humidity with ad libitum access to food and water.

All procedures were performed in accordance with the European
Communities Council Directive (86/609/EEC) and approved by
the Ethics Committee on Animal Welfare of University
Complutense (PROEX number 016/18) and are reported
according to ARRIVE guidelines. A special effort was made to
reduce the number of animals used in the study and to provide
them with the most comfortable conditions possible.

Treatments

In the first set of experiments saline, t-PA (10mg/kg intravenously),
or DNase-I (50pg in 250yl of saline intraperitoneally and a second
dose of 10pg intravenously) were administrated 3 hours after the
thromboembolic occlusion (17).

For permanent middle cerebral artery occlusion (pMCAO) set of
experiments, either vehicle or DNase-I treatments were administered
10 minutes after MCA occlusion. Peptidylarginine deiminase (PAD)
inhibitor N-o-benzoyl-N5-(2-chloro-1-iminoethyl)-l-ornithine
amide (Cl-amidine, Cayman) was used to inhibit NET formation
(18). Cl-amidine was dissolved in PBS and a dosage of 10mg/kg was
intravenously administered 20 min before and after MCAO and 24
hours after the occlusion. A second group of mice received similar
volume of PBS alone at the same time points as control group.

Surgical Procedures

All experiments were performed and quantified in a randomized
fashion by investigators blinded to specific conditions for prevention
of bias. Two different animal models of ischemic stroke were used:
occlusion of the middle cerebral artery occlusion by thromboembolic
in situ model and permanent middle cerebral artery occlusion by
ligature (pMCAO). In both models, mice were anesthetized and
maintained during surgery at 1-2% isoflurane in a mix of O, and
syntheticair (O,/N,; 0.2/0.8 L/min). Body temperature was maintained
at physiological levels with a heating blanket during surgery and
anaesthesia recovery. Following surgery, subjects were returned to
their cages and allowed free access to water and food. Animals were
sacrificed by an overdose of isoflurane 24h after the ischemic insult.

Thromboembolic In Situ Middle Cerebral Artery
Occlusion (MCAO)

To recapitulate fibrin-rich thrombotic stroke, a thromboembolic
in situ MCAO model was used. Briefly, the skin between the left
ear and eye was cut and then temporal muscle retracted to
perform a small craniectomy over the artery bifurcation. Then,
the dura was removed and thrombin (Molecular Innovations, 1 p,
2 UI) was injected into the lumen of the MCA to produce a fibrin-
rich clot (19). A laser doppler was used in order to measure the
cerebral perfusion (PeriFlux System 5000; Perimed AB, Sweden)
placed over the parietal branch of the MCA. The occlusion was
considered to be appropriate with a drastic fall of brain perfusion
(reduction of 50%). A recovery of brain perfusion beyond 50% of
the basal level in the ischemic territory was considered as a
successful reperfusion of the occluded vessel.

Ligature Model by Permanent Middle Cerebral

Artery Occlusion (pMCAOQ)

Left common carotid artery (CCA) and left middle cerebral artery
(MCA) were exposed and occluded permanently by ligation as
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previously described (pMCAO) (20). Complete interruption of
blood flow was confirmed under an operating microscope.

Neurobehavioral Assessment

Modified neuroseverity score (mNSS) was used to measure
functional deficits induced by MCAO in mice 24h after the
ischemic insult. Sensory and motor deficits were evaluated
through the neuroseverity score adapted for mice (21). A
minimum score of 7 reflects most severe neurological deficit
and a maximum score of 21 reflects absence of deficits.

Determination of Brain Infarct Size

Infarct volume was assessed at 24h using magnetic resonance
imaging (MRI). MRI was performed using a BIOSPEC BMT 47/
40 (Bruker, Ettlingen, Germany). T2-weighted images were
acquired, and infarct volume was determined as described (22).

Cytokine Determination by Cytometric
Bead Array (CBA)

Blood extraction was performed by cardiac puncture in the right
ventricle of euthanized mice. Plasma cytokines levels were
measured 24h after pMCAO with BD CBA Mouse Ty,1/T,2/T},17
Cytokine kit (BD Biosciences, San Jose, CA, USA) according to
manufacturer’s instructions. The kit was used for the detection of
mouse IL-2, IL-4, IL-6, IL-10, IFN-y, TNF-oc and IL-17A in a single
sample simultaneously. This kit provides a mixture of 7 capture
beads with distinct size and fluorescent intensities that have been
conjugated with specific antibodies for each cytokine. Four-color
flow cytometric analysis was performed using a FACSCalibur flow
cytometer (Becton Dickinson). Data was acquired with the BD
CellquestTM PRO and analyzed using the FCAP Array' " software.
Protein concentration was expressed as pg/ml.

Immunofluorescence on Mouse

Brain Sections

Mice were anesthetized and perfused intracardially with phosphate
buffer (pH 7.4) followed by paraformaldehyde (PFA, 4% in
phosphate buffer). The brain was removed, post-fixed with PFA
overnight, cryoprotected in 30% sucrose, frozen and 15 pm-thick
sections were obtained in the cryostat. Sections were first incubated
for 2 h with blocking solution (BSA 0.5%, normal serum 10% and
Triton X-100 0.25% in PBS); next, primary antibodies were
incubated overnight at 4°C: histone-3 citrulline (1:400, Abcam),
elastase (1:500, Abcam) and NIMP-R14 (1:200, Abcam). Then,
sections were incubated for 2 h at room temperature with secondary
antibodies (Alexa Fluor-488, -532, -647, Abcam). Immunoreaction
controls were always carried out by omission of the primary
antibodies. Sections were observed under a confocal laser
microscope with x63 oil lens. (LSM710; Zeiss, Germany) (17).

Quantification of NETs

NETs were identified by NIMP-R14, neutrophil elastase and
histone-3 citrulline antibodies. The number of NETs present in
the ipsilesional brain was counted in 10 randomly selected fields
with confocal laser microscope (LSM710; Zeiss, Germany). The
sum of them (a total number of 10 fields) was expressed as the
number of NIMP-R14/Elastase/Cit-H3 positive cells (23).

Platelet Aggregation Assay

Mouse blood was drawn from the inferior vena cava of anesthetized
mice, using a 25-gauge needle, into clexane (100U). Platelets were
isolated as previously described (24). Next, platelet aggregation was
evaluated by transmission aggregometry light in a 96-well plate. Briefly,
isolated platelets were adjusted to a concentration of 3 x 10%/mL and
subsequently stimulated with different thrombin concentrations (0.01-
1 U/mL). The plate was analyzed in a plate reader of Infinite F-50 plates
(TECAN) with a 405 nm excitation filter for 20 minutes (10 cycles with
1 minute of agitation between each cycle) (25).

Statistical Analysis

Data were expressed as mean + SEM for the indicated number of
experiments. Statistical analysis was performed with Prism4
(GraphPad Software, La Jolla, CA) using parametric or
nonparametric unpaired student t-test or ANOVA comparisons
with a p value <0.05 was considered statistically significant.

RESULTS

Delayed Administration of DNase-l Improves
Stroke Outcome After Thromboembolic
MCAO Despite Lack of Reperfusion

One of the main components of ischemic stroke thrombi is fibrin
and t-PA is the only FDA approved drug for stroke patients. In a
previous study we showed how early tPA administration recanalizes
the occluded vessel and improves outcome after thromboembolic
MCAO (26). We now corroborate that, in contrast, the delayed
administration of t-PA, despite being able to effectively recanalize
high-fibrin content thrombi resulting from the in situ
thromboembolic stroke model (Figure 1), does not affect infarct
volume (n=6; Figure 2A) and causes bleeding and cerebral edema
because of the HT phenomenon (n=6; p<0.05; Figures 2B, C). At
the same time, we demonstrate that the delayed administration of
DNase-I (a promoter of NET's degradation) is not able to effectively
recanalize the occluded artery in this fibrin-rich thrombotic model
(Figure 1), suggesting a scarce contribution of NETS to fibrin-rich
thrombi composition.

Importantly, despite non-reperfusion, DNase-I administration
significantly reduced the infarct volume when compared to either
vehicle or t-PA-treated mice (n=6; p<0.05; Figure 2A) and, unlike
t-PA, produces neither increased cerebral edema nor HT (n=6;
p<0.05; Figures 2B, C), this demonstrating that DNase-I does not
exacerbate damage to the blood-brain barrier.

Early Administration of DNase-l Reduces

Infarct Size and Improves Stroke Outcome
After Ligature-Induced Permanent MCAO

These results support that DN Ase-I exerts protective effects which
are independent of blood vessel recanalization. To investigate the
mechanisms involved, the MCAO by ligature model was selected
to produce a permanent occlusion of the middle cerebral artery.
Thus, pMCAO produced an infarct lesion, as assessed 24 h after
the occlusion using magnetic resonance imaging (MRI) and
caused neurological deficits (Figure 3B). Again, the early
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FIGURE 1 | Flow chart of the study. MCAQ indicates middle cerebral artery occlusion by the thromboembolic in situ stroke model; and tPA, tissue-type plasminogen activator.

in the ischemic cortex 24 h after stroke (n=7-8; p<0.05;
Figures 3D, E).

after pMCAO (n=7-8; p<0.05; Figure 3B)

In order to explore further the mechanisms involved in the
protective effect of DNase-I, we performed a quantitative analysis
of different plasma cytokines using a customised CBA. Animals
treated with DNase-I showed a significant increase in plasma
protein levels of IL-10 24 h after the ischemic insult, when
compared with vehicle group (n=4-5; p<0.05; Figure 3C). No
significant differences were found between groups in IL-2, IL-4,
IL-6, IFN-y, TNF and IL-17A protein levels (data not shown).

To identify signs of NETosis in the ischemic brain, we used
different antibodies against neutrophil (NIMP-R14), elastase and
citrulline histone 3 (Cit-H3). Our data show that early
administration of DNase-I significantly reduces the presence of
neutrophils with Cit-H3 and neutrophil elastase positive staining

NETs Inhibition by Cl-amidine Is Protective
After Stroke by Ligature-Induced
Permanent MCAO
Because DNase-I could not only depredate the DNA released by
neutrophil extracellular traps but also the DNA released by dying
cells after stroke, and to further confirm the detrimental role of
NETs after experimental stroke, we treated animals with amidine
to inhibit NETs formation (18) (Figure 4A). Compared to
vehicle-treated animals, mice treated with Cl-amidine showed
reduced infarct volume as well as a significant improvement in
functional outcome scores (n=8; p<0.05; Figure 4B).

Our results also indicate an anti-inflammatory profile in Cl-
amidine-treated mice as shown by an increase in systemic cytokine
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(B) Hemorrhagic volume (mm?). (C) Cerebral edema. Data are mean+ SEM (n = 6 *p < 0.05 vs vehicle; *p < 0.05 tPA vs DNase-; $p < 0.05 tPA vs DNase-|).

levels of IL-10 after stroke when compared to vehicle treated ones
(n=4-6; p<0.05; Figure 4C).

To further confirm the effect of Cl-amidine in NET content in
the brain after ischemia, NETs immunostaining was examined
using different antibodies. As expected, the administration of Cl-
amidine significantly decreased NET content in ischemic brain
when compared to vehicle-treated mice (n=6-7; p<0.05;
Figures 4D, E).

Genetic Deletion of Platelet TLR4 Induces
Neuroprotection After Stroke by Ligature-
Induced pMCAO

To further explore the in vivo mechanism of NETs formation
and, considering that platelet TLR4 plays an instrumental role in
platelet-rich thrombosis mediated by NETosis, we hypothesized
that TLR4 on thrombocytes might have a role in NET's formation
in experimental stroke by pMCAO.

To test our hypothesis, we used transgenic mice that express
the Cre recombinase enzyme under the PF4 promoter (PF4),
crossed with TLR4'**** mice, to obtain a deletion of TLR4
selectively in platelets (27). First, ablation of TLR4 on platelets did
not affect platelet function when compared with TLR4'>**/1xP
mice (n=6; Figure 5A). More importantly, our data show that
TLR4'F/PH-er mice have smaller lesion volumes compared with
their respective controls after permanent MCAO by ligature,
accompanied by a better functional outcome (TLR4'***/1oxP;
n=10; p<0.05; Figure 5C).

To further confirm the role of platelet TLR4 in NET content
in the brain after ischemia, NETs immunostaining was
performed. Of note, the genetic deletion of TLR4 on platelets
significantly decreased NET content in ischemic brain when
compared to control mice (n=4; p<0.05; Figures 5C, D). Overall,
these data support that platelet TLR4 has a crucial role in stroke
damage in a NET-dependent manner.
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DISCUSSION

Stroke is caused primarily by a thrombotic vascular occlusion that
initiates a cascade of events that ultimately lead to neuronal cell
death. Recent data suggest that the efficacy of either thrombectomy
or intravenous thrombolysis is affected by thrombi composition;
more specifically it has been found that fibrin-rich clots were

associated with less favourable clinical outcomes (28). Since NET's
have a predominant role in thrombosis (12) and since we have
previously demonstrated that these extracellular traps play a key role
in platelet-rich thrombosis in cerebral ischemia (17), we next want
to explore their role in high-fibrin rich thrombosis. Our results
demonstrate for the first time that NET's are not a main component
in stroke thrombi with high fibrin content (Figure 1). This is in
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accordance with previous results showing that fibrin content in
thrombus is associated with a decrease in neutrophil accumulation
and NET formation (29).

At the same time, on the one hand, we have demonstrated that
DNase-I was not able to effectively reperfuse the MCA, at least within
the first 3 hours after the thromboembolic occlusion, whereas tPA
did (Figure 1). However, we cannot discard the possible
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FIGURE 4 | Effect of Cl-amidine treatment after stroke. (A) Design of the study. (B) Infarct volumes determined 24 hours after the occlusion. (C) Effect of Cl-amidine
on plasma concentration of IL (interleukin)-10 24 hours after the occlusion. (D) Number of NIMP-R14, elastase and Cit-H3-positive cells. (E) Representative images.
Data are mean+ SEM (n = 4-8 *p < 0.05 vs vehicle).

recanalization within the next following 20 hours previous to the
sacrifice, issue that should be explore in future studies. This is in
agreement with previous results showing that lower levels of NET's in
thrombi produced by fibrin makes the administration of DNase
ineffective (24). On the other hand, despite non-reperfusion, a novel
and important observation of our study is that the late
administration of DNase-I had a protective effect shown as an
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improvement in infarct volume and in stroke outcome (Figure 2). At
the mechanistic level, this could be due to a direct protective effect of
DNase-I and/or to a decrease in NET-dependent microthrombotic
“no-reflow” phenomena that could contribute to ischemic injury.
In this context, DNAse-1, by favouring the degradation of NETs,
could have direct protective properties since NETs have been
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occlusion. (C) Number of NIMP-R14, elastase and Cit-H3-positive cells. (D) Representative images. Data are mean = SEM (n = 4-10 *p < 0.05 vs TLR4'>F/oF),

implicated in brain damage: specifically, neutrophils, as the first
group of cells infiltrating the damaged brain tissue, produce
NETosis in brain parenchyma and peripheral blood that
aggravate inflammation and subsequent brain damage after stroke
(30, 31). NETSs are also associated with severity and mortality in
patients (32). In fact, we have demonstrated that NET degradation
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has a protective effect as measured by the peripheral levels of IL-10
(Figure 3) which is in accordance with what others have observe not
only in stroke but in sepsis models (33, 34). However, the fact that
we didn’t observe any significant difference among treatments in
other cytokines should be deeply explore in future studies.

Furthermore, hyperglycemia, which increases NETs formation,
also exacerbates ischaemic brain damage (35). Finally, we and others
have shown that drugs that prevent NET formation protect against
ischemic damage in several stroke models (Figure 4) (16, 36).
However, not only neutrophils released their content to extracellular
space but also macrophages (METs), eosinophils (ET's) or even mast
cells released their intracellular content in a ETosis cell-death way
(37-39). In this context, even though we have target NETs with
neutrophil specific antibodies, we cannot exclude the detrimental
role of other form of ETosis in the acute phase of stroke, a fact that
should be explore in future studies.

Secondly, DNAse-I, by preventing the formation of
microthrombosis and “no-reflow” phenomena, may have also
neuroprotective effects. It is well known that clot removal and
vessel recanalization do not always go along with tissue reperfusion,
a phenomenon called “no-reflow” that occurs at both the cardiac and
cerebral levels (40). Only about 50% of t-PA treated patients have
successful reperfusion. It is likely that multiple mechanisms might
contribute to the microvascular no-reflow phenomenon, including
endothelial cell dysfunction, microthrombosis, neutrophil
accumulation and NETs formation, among others (41-43). In this
context, several studies have shown the existence of microthrombi-
induced occlusions in small-calibre vessels adjacent to the infarcted
area (41,44). Microvascular obstruction of 20-30% of capillaries in the
core and penumbra of the infarct has been shown to be produced by
neutrophils adhering to distal capillary segments; furthermore,
removal of circulating neutrophils using an anti-Ly6G antibody
restores microvascular perfusion without increasing the rate of
hemorrhagic complications (41). Of note, the involvement of NET's
in microthrombosis phenomena has been demonstrated (43).
Therefore, NETs could be participating in the formation of small
thrombi generated after a large vessel occlusion, in such a way that
both DNase-I (by favouring the degradation of NETs) and Cl-
amidine (by inhibiting the formation of NETs) could be beneficial
in resolving the microthrombosis phenomena associated with stroke,
a fact that deserves to be studied in more detail.

Interestingly, we have also demonstrated the deleterious role of
platelet TLR4 in brain ischemia caused by non-platelet-rich
thrombosis (Figure 5). We had previously demonstrated that
TLR4 in platelets is determinant for the photothrombotic
formation of a stable platelet-rich thrombus which, in turn,
depended on NETs (16); now, we demonstrate that platelet TLR4
is also determinant in brain damage produced by occlusions/thrombi
in which NETs do not play a relevant role. These data support the role
of NETs-induced microthrombosis in ischemic damage, since
platelet TLR4 ultimate triggers the NETosis process (10, 17).

DNAse-I treatment did not affect the blood-brain barrier
since, as opposed to t-PA, its delayed administration produced
neither cerebral edema nor HT (Figure 1). This finding supports
that DNase-I could be a safe therapy, deprived of the severe side
effects associated with tPA-induced fibrinolysis.

Our study has some limitations. One is that the experiments have
been performed in young animals, without the co-morbidities
present in many stroke patients. In addition, we included only male
mice to compare our results with the previous work done in this
stroke model. Therefore, co-morbidities, sex-related differences and
mechanisms involved in neuroprotection and no-reflow after stroke
deserve further investigations.

Opverall, our results support the important role of NETs in
cerebrovascular disease and point to the involvement of the platelet
TLR4 receptor in this process, thus providing new avenues for the
treatment of the acute phase of stroke through the inhibition and/or
degradation of the extracellular traps released by the neutrophil.
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