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Clear cell renal cell carcinoma (ccRCC) is the most common subtype of kidney cancer,
and it is the major cause of kidney cancer death. Understanding tumor immune
microenvironments (TMEs) is critical in cancer immunotherapies. Here, we studied the
immune characterization at single-cell resolution by integrating public data of ccRCC
across different tissue types, and comparing the transcriptome features and tumor TME
differences in tumors, normal adjacent tissue, and peripheral blood. A total of 16 different
types of cell components of ccRCC were identified. We revealed that there is an overall
increase in T-cell and myeloid populations in tumor-infiltrated immune cells compared to
normal renal tissue, and the B-cell population in the tumor showed a sharp decrease,
which indicates that the cells in tumor tissue undergo strong immune stress. In addition,
the cell–cell communication analysis revealed specific or conserved signals in different
tissue types, which may aid to uncover the distinct immune response. By combining and
analyzing publicly available ccRCC bulk RNA-seq datasets, 10 genes were identified as
marker genes in specific cell types, which were significantly associated with poor
prognosis. Of note, UBE2C, which may be a good indicator of tumor proliferation, is
positively associated with reductions in overall survival and highly associated with tumor
grade. Our integrated analysis provides single-cell transcriptomic profiling of ccRCC and
their TME, and it unmasked new correlations between gene expression, survival
outcomes, and immune cell-type components, enabling us to dissect the dynamic
variables in the tumor development process. This resource provides deeper insight into
the transcriptome features and immune response of ccRCC and will be helpful in kidney
cancer immunotherapy.

Keywords: single cell, tumor microenvironment, biomarker, immunotherapy, clear cell renal cell carcinoma
org June 2022 | Volume 13 | Article 7911581

https://www.frontiersin.org/articles/10.3389/fimmu.2022.791158/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.791158/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.791158/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.791158/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:yangwang@hubu.edu.cn
mailto:malixing@hubu.edu.cn
https://doi.org/10.3389/fimmu.2022.791158
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.791158
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.791158&domain=pdf&date_stamp=2022-06-24


GRAPHICAL ABSTRACT |

Liu et al. Uncover the Immune Microenvironment of ccRCC by scRNA-seq
HIGHLIGHTS

1. Single-cell RNA-seq decodes the signature of the ccRCC
immune microenvironment

2. Dynamic changes in cell abundance and heterogeneity of cell
subtypes of ccRCC

3. UBE2C expression associated with prognostic signature aids
in predicting tumor progression

4. Significant decrease of B-cell populations in tumor-infiltrated
immune cells
INTRODUCTION

Clear cell renal carcinoma (ccRCC) is the most common and lethal
form of renal cell carcinoma (RCC) and is responsible formore than
75% of RCC cases (1). It is a malignant tumor with multiple
molecular features and a poor prognosis (2). Due to the lack of
typical clinical symptoms, it is difficult to diagnose ccRCC and
approximately 35% of patients had developed metastasis at the time
of diagnosis (3). Studies have demonstrated that ccRCC is among
the most immune and vascularly infiltrated cancer types (4). Hence,
understanding tumor immune microenvironments (TMEs) is
critical for identifying immune modifiers of cancer progression
and developing cancer immunotherapies. For example, immune
checkpoint blockade therapy and combination regimens have
significantly increased survival in patients with ccRCC (5). The
infiltrating CD4+ T cells can regulate the proliferation of RCC by
Frontiers in Immunology | www.frontiersin.org 2
modulating the TGFb1/YBX1/HIF2a signals (6). However, major
challenges remain, including lack of reliable predictive biomarkers
and identification of more immunotherapeutic targets.

Recent applications of single-cell RNA sequencing (scRNA-seq)
in dissecting TME have brought important insights into the biology
of tumor-infiltrating immune cells, including their heterogeneity,
dynamics, and potential roles in the disease progression and
response to immune checkpoint inhibitors and other
immunotherapies (7–11). The tumor immunology field has
focused heavily on local immune responses in the TME, yet
immunity is coordinated across the tissue. For example, many
myeloid cells are frequently replenished from hematopoietic
precursors in the bone marrow (12), and critical T-cell priming
events typically occur in lymphoid tissues (13). The localized
antitumor immune response cannot exist without continuous
communication with the periphery. Among these non-cancer
cells, the tumor-infiltrating immune cells (TIICs) exert a central
role in pro- and anti-tumorigenic processes; moreover, they have
been found to be closely correlated with the clinical outcome and
response to immunotherapy (6). Previous single-cell analyses of
renal cell cancers were mostly focused on solid tumor to study
mechanisms of intratumorally and intertumoral heterogeneity (14),
tumor microenvironment immune subtypes for classification (15),
as well as distinct immune characteristic between tumor and
peripheral blood or normal renal tissue (16, 17). However, the
conserved or specific immune response in ccRCC across the
peripheral blood mononuclear cells (PBMCs) and adjacent
normal tissue in addition to within the tumor also need to be
dissected. Therefore, a comprehensive understanding of ccRCC
holds the promise to improve personalized treatment strategies.
June 2022 | Volume 13 | Article 791158
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In this study, we integrated publicly available single-cell
RNA-seq data and comprehensively analyzed the immune
characterization, as well as dynamic changes in cell subtype
composition and intercellular interactions across tumor tissue.
Our analyses provide insight into the immune lineages in ccRCC
tumors, adjacent tissue, and PBMC. Specifically activated cellular
signals in tumor tissue revealed the potential relevance to tumor
progression or inflammation, and this may provide vital evidence
for dissecting tumor immune response mechanism. In addition,
by combining with The Cancer Genome Atlas Kidney Renal
Clear Cell Carcinoma (TCGA-KIRC) RNA-seq transcriptional
profile and clinical data, we focused on establishing an
understanding of the associations among the TME,
biomarkers, and clinical outcomes. Finally, 10 unique markers
are identified to be associated with patient prognosis. Notably,
UBE2C, which acts as one of the critical biomarkers specifically
expressed in CD8+ T_3 cells, is involved in tumor progression
and has essential prognostic value. This resource provides deeper
insights into ccRCC biology that will be helpful in advancing
kidney cancer diagnosis and therapy.
RESULTS

Single-Cell Transcriptional Landscape of
ccRCC Tumor, Peripheral Blood, and
Adjacent Normal Tissue
In order to elucidate the TME of human ccRCC, we downloaded
public available scRNA-seq data to dissect the transcriptome
heterogeneity from tumors and matched peripheral blood from
three treatment-naive ccRCC patients. In parallel, the scRNA-seq
data from three other individuals derived from the renal tumor,
adjacent normal tissue, and peripheral blood were downloaded for
integrative analyses, aiming to facilitate the identification and
assessment of ccRCC-specific differences. The data collection
and quality control (QC) criteria are described in Methods. All
high-quality cells were integrated into an un-batched and
comparable dataset and subjected to principal components
analysis (PCA) after correction for reading depth and
mitochondrial read counts. Using graph-based uniform
manifold approximation and projection (UMAP), we identified
16 clusters across 75,173 cells.

A total of 31,093 cells originated from the tumor, 14,788 cells
were normal adjacent tissue-derived, and 29,292 cells were
obtained from peripheral blood (Figures 1A, B). We cataloged
cells into 16 distinct cell lineages, including myeloid (CD14 and
CD16 cells, cDC2, cDC1, and pDC cells), T cells (CD4+ T cells,
Treg, CD8+ T_1, CD8+ T_2, CD8+ T_3 cells, and NKT cells), B
cells (B, plasmablast cells), NK cells, HSPCs, and platelets as the
common cell types (Figure 1C). Seurat (18) cell reference
datasets, SingleR package (19), and known markers in the
CellMarker database (20) were together used for this cell-type
annotation. It is obvious to see that the distribution of the cells
from different tissue types of ccRCC is similar, but the abundance
of certain subclusters is different, while the original study
reported that the cells derived from renal tumors, matched
Frontiers in Immunology | www.frontiersin.org 3
peripheral blood, and healthy normal kidneys were enriched in
distinct clusters. This illustrated that the immune response in
pathology is different from the healthy condition. The relative
proportion of cell types comprised by tissue type is illustrated in
Figure 1D. The top five markers of the main cell lineages were
visualized as a heatmap (Figure 1E).

Cell-Type Differences and Hallmark
Signatures in ccRCC
To be more comprehensive and intuitive in observing changes in
cell composition in different groupings, cell components were
visualized in the form of a bar plot in the form of cell types and
samples (Figures 2A, B). The cell types contained in different
samples were almost identical but the abundance of cells in each cell
type was varied. Among the three groups, the abundance of CD14
cell clusters is the most of all the cell clusters, which indicates a vital
role of CD14 in tumor immune response. We observed a great
decrease of CD4+ T cells and B cells within tumors and adjacent
normal kidneys relative to peripheral blood (Figure 2A). This is
similar to the findings of the original study by Borcherding et al.
They observed a decreased CD4+ T cells and B cells within healthy
normal kidneys or tumors relative to peripheral blood (17). In
addition, we also noticed an increase in three subtypes of CD8+
T cells (CD8+ T_1, CD8+ T_2, and CD8+ T_3), and NKT cells in
tumors relative to adjacent normal tissue and peripheral blood. The
increasing tendency is similar to the decreasing tendency of CD4+
T cells and B cells. In the original study, the authors also revealed
that the trends of increased CD8+ and decreased CD4+ T cells were
similar, which is performed by immunohistochemistry on paired
normal and tumor tissue. cDC1 and cDC2 cell abundance shows a
clear decreased tendency from tumor versus adjacent normal tissue
and peripheral blood derived from ccRCC patient samples,
indicating the activation of adaptive immune responses. The
relative abundance of NK cells, CD16 cells, and plasmablast cells
in the tumor was comparable to that in peripheral blood but higher
than that in adjacent normal tissue. Notably, HSPC cells were
significantly enriched in tumor comparison with adjacent normal
tissue, and the abundance of HSPC in peripheral blood is much
lower. Furthermore, we notice that platelet cells are almost only in
the tumor and adjacent normal tissues, and the platelet cells were
highly enriched in tumor tissues (Figure 2B); this suggested an
important function of platelets in TME and the central component
during the development of tumors. The above result revealed that
the tumor microenvironment of ccRCC is highly heterogeneous. A
deep understanding of the tumor microenvironment, especially the
characteristics of tumor-infiltrating immune cells, is crucial for
exploring the key regulatory molecules of tumor development.

Next, we focused on the transcriptomic features of eachmajor cell
type. Specific marker genes of each cell cluster were obtained
according to their gene profiles, picking the marker gene with the
best specific indicative effect (Figure 2C). To explore the existence of
differential expressions of these marker genes in different groups, a
violin pagination map was made based on the sample source
(Figure 2D). Most of these markers’ relative expression in tumors
was comparable to that in peripheral blood and adjacent normal
tissue; the differences in these gene expression patterns were only
June 2022 | Volume 13 | Article 791158
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exhibited indistinct subtypes.The following threegenesareobviously
different in their expression: (1) S100A8 (S100 Calcium Binding
Protein A8), which plays a prominent role in the regulation of
inflammatory processes and immune response. It was highly
enriched in CD14 cells derived from peripheral blood. The unique
high expression level of S100A8 in theCD14 cell cluster indicates that
the CD14 cells may play pro-inflammatory and anti-tumor roles in
ccRCC. (2) JCHAIN (Joining Chain of Multimeric IgA and IgM),
which is almost only detected in tumor-derived plasmablast cells.
Oneof the JCHAIN-relatedpathways is cell surface interactionsat the
vascularwall; it indicated that the role of plasmablast is closely related
to tumor angiogenesis. (3) The third gene was KRT19 (Keratin 19),
whose relatedpathways are embryonic and inducedpluripotent stem
cell differentiation pathways and lineage-specific markers. In this
study, we found that it was detected in platelet cells derived from
tumor and adjacent tissue. These marker genes emphasized that the
transcriptional features of various immune cells derived from
Frontiers in Immunology | www.frontiersin.org 4
different tissue types are specificity, further demonstrating the
immune response heterogeneous in the tumor, matched adjacent
normal tissue, and peripheral blood.

CD8+ T_3 Cluster Associated With the Cell
Cycling Process
Clustering of cells revealed three distinct CD8+ T subtypes with
relative transcriptional specific features, and CD8+ T_3 subtypes
highly exhibited cell cycle association characteristics that were
mainly in S or G2M phases (Figure 3A). To further understand
the characteristics of the tissue-specific distribution of CD8+ T_3
subclusters, CD8+ T_3 cells were sub-clustered into five distinct
clusters (Figure 3B). The top 5 marker genes in each subgroup
were selected to visualize the specific gene expression pattern
(Figures 3C, D). The expression of these marker genes in
different tissues showed high heterogeneity. Tissue-infiltrating
CD8+ T cells (both tumor and adjacent normal tissue)
B C

D

E

A

FIGURE 1 | The immune landscape of patients with ccRCC at single-cell resolution. (A–D) UMAP embedding of transcriptional profiles from all patients and
samples. Each dot represents a single cell, and colors represent clusters denoted by inferred cell type or tissue type. “N” is an abbreviation for adjacent normal
tissue, “P” is for peripheral blood, and “T” is abbreviated for tumor tissue. (E) Heatmap of top 5 normalized expressions of markers in each cell type. Each row
indicated marker genes, and columns represented cells. Yellow indicates high log-normalized expression; purple indicates low log-normalized expression.
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comprised the majority of C1 and C4. Clusters C2 and C3
comprised tumor and peripheral blood cells, and cluster C0
cells were only derived from renal tumor cells. Going from left to
right across the x-axis of the UMAP, there is a change in tissue-
specific contribution starting from peripheral blood, tumor, and
adjacent normal tissue to the tumor, which may represent the
process of tissue infiltration CD8+ T3 cells. Previous studies
revealed that the proliferation of CD8+ T cells is an important
surrogate marker of the antitumor immune response (17, 21).
Furthermore, we found that the C0 subcluster has high
expression of inhibitory checkpoints, including LAG3, CTLA4,
GZMK, and PDCD1. Since these molecules are markers of T-cell
exhaustion, these data indicated that C0 subclusters were
exhausted CD8+ T cells. At present, PD-1/PD-L1 and CTLA4
are the most popular targets of immunotherapy. Since the
expression of LAG3, GZMK, FXYD2, and TRBV20-1 was
higher than that of PD-1 in the exhausted T-cell subcluster,
our data revealed that LGA3, GZMK, FXYD2, and TRBV20-1
may serve as potential targets for ccRCC immunotherapy.

In order to assess possible functional differences based on
these subclusters in CD8+ T3 cells, we performed gene set
variation analysis (GSVA) (Figure 3E). As expected, based on
the process features of tissue infiltration of CD8+ T3 cells
(Figure 3D), PANCREAS_BETA_CELLS, COAGULATION,
and ANGIOGENESIS pathways were upregulated in C4 and C1
clusters (Figure 3E), and the APICAL_SURFACE signal pathway
and the BILE_ACID_METABOLISM pathway are upregulated in
C2 and C3 clusters (Figure 3E), respectively. Cluster C0 showed
upregulated activity of the KRAS_SIGNALING_DN pathway
(Figure 3E). These specific pathways in different subsets
reflected the characteristics of tumor immune infiltration and
response processes. For example, the C2 and C3 clusters
exhibited obviously metabolic re-program characteristics, while
C1 and C4 demonstrated a strong immune stress response of
Frontiers in Immunology | www.frontiersin.org 5
immune cells no matter which tissue they were derived from in
tumor patients, and cluster C1 indicated that the expression of
immune checkpoint inhibitors may be associated with the
KRAS pathway.

In order to examine gene expression patterns across distinct
subclusters in CD8+ T_3 cells, we utilized monocle2 (22) to build
branched structures among subclusters, inferring the developmental
trajectory of CD8+ T_3 clusters (Figure 3F). We identified one
major curve with the origin in C4; cluster C0, which represented an
exhausted T-cell cluster, was inferred as the end state of the
differentiation trajectory; C1 and C2 cells were located between
these two end states. Afterwards, genes were selected based on
biological functions or immune response features to prove the
inferring, and the result is consistent with the inferred trajectory
(Figure 3G). For example, LAG3, which is an immune checkpoint
inhibitor that represented exhausted T cells, showed high expression
at the late pseudotime. In order to ensure the accuracy performance
of inferring trajectory, we also performed trajectory inference by the
dyno package (23), which is a benchmark of trajectory inferring
methods for cellular ordering, topology, scalability, and usability.
The top three good performances inferring results of trajectory
show high consistency with the predicted results of monocle2 (24)
(Supplementary Figures 1A–3A). Lastly, the top 50 differentially
expressed genes (DEGs) were selected to visualize the features of
gene expression in developmental trajectory in a heatmap
(Figure 3H). The expression pattern of these genes ordered by
pseudotime was examined by the top three methods with good
performance (Supplementary Figures 1B–3B).

Hallmark Signatures and Metabolism
Disturbance of the CD8+ T_2 Cluster
The previous observation showed that the majority of cells in the
CD8+ T_2 subcluster were derived from tumor tissue (Figure 2B),
indicating that it is the most infiltrating CD8+ T-cell subset in
B

C

D

A

FIGURE 2 | Illustration of the heterogeneity of ccRCC tumor immune environment in different tissue types. (A) Cell-type abundance in each tissue type. Each bar
corresponds to one tissue type, colored according to the cell types. (B) Sample distribution in each cluster. Each bar corresponds to one cell-type cluster, colored
according to the samples. (C) Dot plot of canonical cell-type markers of 16 major cell types. The circle size indicates the percentage of genes expressed in a cell.
The darker the color indicates a higher average expression level. (D) Violin plot of canonical cell-type markers of 16 major cell types in different tissue types.
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tumor tissue. Hence, we next focused on the transcriptomic features
of the CD8+ T_2 subcluster. Across CD8+ T_2 cells, sub-clustering
found six distinct clusters that were labeled as C0 to C5 (Figures 4A,
B), and the expression patterns of specific marker genes in distinct
subclusters were further examined (Figures 4B, C). Results
exhibited tissue-specific distribution, with the majority of tumor-
infiltrating CD8+ T cells in C0, C1, C4, and C5. In contrast, both C2
and C3 clusters were composed of renal tumors, in matched
adjacent normal parenchyma, and peripheral blood. The
expression patterns of marker genes of different tissues were
visualized as violin plots (Figure 4C). Marker genes in tumor-
infiltrating CD8+ T cells could be mainly classified into three types:
(1) T-cell receptor-associated genes, such as TRDV1, TRGV2,
TRGV8, and TRBV20-1; (2) chemokines and cytokines, such as
CXCL13, XCL1, and XCL2; and (3) stressful stimuli genes, such as
BAG3, HSPA6, and HPPA1A. The above genes played a key role in
tumor growth or inflammation. Notably, in the C3 cluster, marker
Frontiers in Immunology | www.frontiersin.org 6
genes like COX1, COX2, COX3, ATP6, and ND3 were only
detected in adjacent normal tissue, and these genes play
important roles in the mitochondrial oxidative respiratory chain.
The finding indicated that mitochondrial oxidative stress is strongly
linked to immune responses in tumor progression, and it may
contribute to exploring the different immune responses in the
tumor, adjacent normal tissue, and PBMC.

In order to assess possible functional differences based on these
subclusters, we performed the KEGG pathway and GSVA analysis
(Figures 4D, E). The KEGG enrichment results show that these
marker genes in the CD8+ T_2 cluster are essential in interfering
with antigen presentation, apoptosis, and host immune system
response (Figure 4D). The MITOTIC SPINDLE, ADIPOG
ENESIS, ANDROGEN_RESPONSE, ESTROGEN RESPONSE,
and SPERMATOGENESIS pathways all upregulated in CD8+
T_2 subclusters from C0 to C5 (Figure 4E). We noticed that the
activities in certain pathways exhibited two patterns: in C2 and C3
B C

D E F

G

H

A

FIGURE 3 | Subtypes and development trajectory of CD8+ T_3 cells. (A, B) UMAP visualization of all cell types (A) or CD8+ T_3 subtype (B). Each dot corresponds
to a single cell, colored according to cell cycle state or subtype. (C) Heatmap of selected markers for the CD8+ T_3 subcluster. (D) Violin plot of the CD8+ T_3
subtype in different tissue types. (E) Hallmark enrichment visualization of each subtype. The redder color indicates an upregulated pathway activity; the bluer color
means downregulated pathway activity. (F–H) Illustration of CD8+ T_3 cell development trajectory inferred by monocle2, and canonical markers of each state were
selected to visualize the cell development. Heatmap showing relative expressions of canonical markers of CD8+ T_3 cells along inferred trajectories. The red and
blue colors correspond to the relative gene expression level.
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subclusters, the pathway activities are downregulated, while in C0,
C1, C4, and C5, the activities of pathways are upregulated. As the
cells in C0, C1, C4, and C5 are all tumor-infiltrating, we performed
gene set analysis on the genes in C0, C1, C4, and C5 compared with
genes in clusters C2 and C3. The results revealed that the
INTERFERON_GAMMA_RESPONSE pathway , the
IL2_STAT5_SIGNALING pathway, the TNFA SIGNALING VIA
NKFB pathway, the UV_RESPONSE_UP, IL6_JAK_
STAT3_SIGNALING pathway, and the HYPOXIA pathway were
upregulated in tumor-infiltrating cells (Figure 4F). The six hallmark
signals not only produce more parsimonious but equivalent results,
avoiding the problem of gene set redundancy and over-
representation altogether, but also provide candidate pathways
that play a vital role in ccRCC tumor tissue.

Relationship Between Prognostic
Features and Cell Type-Specific
Marker Genes in ccRCC
To assess the clinical significance of expression of a given gene
set, we utilized RSEM normalized log2 bulk RNA-seq expression
data available from TCGA through the Firehose pipeline hosted
by the Broad Institute (25). We utilized clinical and outcomes
data available through the TCGA project website. From these
resources, we filtered our analysis by patients who underwent
testing for a renal tumor or in matched adjacent tissue. We then
Frontiers in Immunology | www.frontiersin.org 7
scaled and centered the log2 bulk RNA-seq data for the patients,
and used this dataset for gene set enrichment analysis.

To determine if these transcriptional differences led to functional
differences in tumor response, we investigated whether gene
signatures were associated with prognostic values. Using the
TCGA dataset for ccRCC, a total of 899 DEGs between tumor
and adjacent normal tissue were identified, 281 survival-associated
DEGs were obtained after using univariate Cox proportional hazard
regression to evaluate the association between the expression of
DEGs and patient overall survival (OS). In addition, by overlapping
prognostic-associated DEGs with the top-ranked marker genes in
16 major subclusters at single-cell resolution, 10 cell type-specific
marker genes that were associated with prognosis were obtained.
The transcriptional features of the 10 markers, including expression
patterns in tumor or in matched adjacent normal tissue, as well as
the prognostic signatures, are visualized in Figure 5A.

Furthermore, we compared these gene expression patterns at
single-cell resolution (Figure 5B), and the result showed that the
expression of these genes in different immune cells is totally
distinct. For example, ZNF683 is mainly expressed in NKT cells,
while BATF, TNFRSF18, and CTLA4 are mainly expressed in
Treg cells. The UBE2C gene is highly enriched in the CD8+ T_3
cluster (which is associated with cell cycle progress), and LILRA4
is mainly enriched in pDC cells. We utilized clinical data from
TCGA to explore whether the expression of these genes is
B
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FIGURE 4 | Subtypes and immune response characters of CD8+ T_2 cells. (A) UMAP visualization of the CD8+ T_2 subtype. Each dot corresponds to a single cell,
colored according to cell subtype. (B, C) Heatmap of selected markers for CD8+ T_2 subcluster and visualization of the expression level of selected markers in each
tissue type. “N” indicates tumor in matched adjacent normal tissue, “T” means renal tumor tissue, and “P” represents peripheral blood. (D) KEGG pathway
enrichment analysis of the CD8+ T_2 subtype. The points size indicates the counts of genes enriched in a specific pathway, and the color means the statistical
significance. (E) GSVA enrichment visualization of the CD8+ T_2 subtype. The red color indicates that the specific pathway is upregulated in a subtype, and the blue
color means the pathway is downregulated. (F) GSEA pathway enrichment visualization of differentially expressed genes in tumor tissue compared to adjacent
normal tissue in the CD8+ T_2 subtype. All six pathways are upregulated in renal tumor tissue.
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associated with tumor grade. Notably, the cell cycle G2/M phase
gene UBE2C is specifically expressed in tumor-infiltrating cells
(Figure 5C), and the expression levels of the UBE2C gene in the
tumor, adjacent tumor, and peripheral blood are basically the
same (Figure 5D). We also observed that the UBE2C gene
expression was associated with increasing histological grades
(Figure 5E), indicating that it may be a potential novel target
for tumor progression prediction. Lastly, we compare the gene
expression of UBE2C across TCGA cancers (Figure 5F), results
revealed that the gene expression is significantly different
between tumor and normal. This indicates that the UBE2C
may be a good biomarker for patients on clinical application.

Cell–Cell Communication Diversity in
Distinct Tissues in ccRCC
To better understand global communications among cells in tumor
progression, accurate representation of cell–cell signaling links and
global analyses of those links were required. We integrated cell–cell
communications using the CellChat (26) R package across all cell
types in ccRCC (Figure 6). As there were no cells detected in platelet
cell groups derived from PBMC, cell–cell communication analysis
only focused on the other 15 major cell types. We first examined the
overall patterns of communication across all cell populations, and
statistical analysis of the strength of cell interactions was performed
(Figure 6A). Results revealed that the cell–cell interaction strength
in tumor tissue is obviously higher than that in PBMC and adjacent
Frontiers in Immunology | www.frontiersin.org 8
normal tissue. Next, we compared the signal information flow for
each signaling pathway between PBMC and tumor tissue, or
adjacent normal and tumor tissue (Figures 6B, C). The
information flow for a given signaling pathway is defined by the
sum of communication probability among all pairs of cell groups in
the inferred network. We found that some pathways, including
BAFF, IL1, IL16, FLT3, TNF, and ANNEXIN, maintain a similar
flow between the tissue conditions (black in Figures 6B, C). We
interpret that these pathways are equally important in the tumor
progression or immune response in both tissues. In contrast, other
pathways prominently change their information flow at PBMC or
normal as compared to tumor tissue: (i) turn off (BAG), (ii) decrease
(such as BAFF, FLT3, and IL1), (iii) turn on (such as GAS and
LIGHT), or (iv) increase (such as MIF, PARs, ANNEXIN,
and IL16).

Moreover, we studied the detailed interaction strength across all
cell types in different groups (Figures 6D, E). Results once again
demonstrated that the communication strength of cells in distinct
tissues is significantly altered. The cell–cell interaction strength in
tumor tissue experienced an obvious increase in CD8+ T_2 cells,
CD8+ T_3 cells, NKT cells, and Treg as compared to PBMC
(Figure 6D). When we compare the interaction strength between
normal adjacent tissue to tumor tissue, we noticed that the strength
in tumors almost increased. However, the signal information sent
from plasmablast to other cells was decreased and the strength of
interaction from platelet cells to other cell types was increased in
B

C

D

E

F

A

FIGURE 5 | Clinical outcome correlation analysis of cellular composition and gene expression. (A, B) Marker genes identified by bulk RNA-seq data associated with
scRNA-seq data. Boxplot visualized the gene expression level of genes in the tumor or adjacent normal tissue group (A left). Each dot represents a candidate gene;
the blue and red color means tumor or matched adjacent normal tissue group. Survival analysis for candidate markers of each cell type in ccRCC (A) right. The red
and light blue lines indicate the groups with high or low gene expression. Violin plot shows the candidate markers’ expression profile in all major cell types. (C, D)
Dot plot shows the UBE2C gene expression level in different tissue types or cell types. N indicates tumor in matched adjacent normal tissue, T means renal tumor
tissue, and P represents peripheral blood. (E) Visualization of the association relationship of the expression level of UBE2C with ccRCC tumor grades. (F) Comparing
the expression of UBE2C in tumor tissue and adjacent normal tissue across pan-cancer.
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tumors as compared to normal adjacent tissue (Figure 6E). Hence,
these results revealed that cell–cell communication is highly
associated with pathophysiological characteristics of the
tumor microenvironment.

Discovering Major Signaling Changes in
Response to ccRCC
Intercellular connections are an important pathway for cell–cell
crosstalk. Such crosstalk in cells is critical for informing diverse
cellular decisions, including decisions to activate the cell cycle or
programmed cell death, undergo migration, or differentiate along
the lineage. In humans, cell–cell crosstalk is mediated through
ligand–receptor signaling pathways or secretion/uptake of
exosome-transmitting information across the surrounding
intercellular environment. Hence, we studied the detailed changes
in the outgoing signaling across all significant pathways using
pattern recognition analysis. There are 25 and 30 signaling
pathways with differential strength in tumors compared to PBMC
or normal tissue, separately (Figures 7A, B), including MIF,
GALECTIN, FLT3, IL16, CCL, and MK pathways. We found that
the accumulated effect strength of platelet cells obviously increased
in tumor tissue compared with PBMC or normal tissue. Notably,
the SPP1 signal is turned on in tumor tissue, and the accumulated
effect strength of it in the tumor is obviously higher than other
pathways. This suggests that SPP1 is an important pathway that
may be associated with tumor progression.

Next, we inferred intercellular communication networks for
the tumor as compared to PBMC or adjacent normal tissue
Frontiers in Immunology | www.frontiersin.org 9
separately. Six pathways were specifically active in tumors
compared to PBMC, including known inflammatory signals
MIF, TNF, and IL16, suggesting that these pathways might
critically contribute to tumor progression. Specific to MIF
signaling in tumor tissue, CellChat identified ligand MIF and
its multi-subunit receptor CD74+CXCR4 as the most significant
signaling, contributing to the communication from CD4+ T cells
to CD8+ T2 and CD8+ T3 cells (Figures 7C, D). This is in
agreement with a reported experiment finding. That study
reported that CD74 and CXCR4 are upregulated in renal cells
in diseased kidneys and MIF activation of CD74 in kidney cells
promotes an inflammatory response (27). Ligand TNF and its
receptor TNFRSF1B were found to act as major signaling from
CD4+ T cells to CD8+ T2/T3 cells, and the ability of the TNF–
TNFRSF1B pair to kill tumor cells in vitro has been reported
before (28). Ligand CD70 and its receptor CD27 were also found
to be active in tumors, in particular, for the signaling from Treg
to CD8+ T2 and CD8+ T3 (Figures 7C, D). This reveals the
dynamic changes in the levels and patterns of ligand–receptor
expression in different tissue or tumor progression conditions.

By computing the Euclidean distance between any pair of the
shared signaling pathways, we observed a large distance for
signaling pathways like IL16, ANNEXIN, GALECTIN, BTLA,
TNF, and MIF, suggesting that these pathways exhibit
significantly different communication network architectures in
tumors compared to PBMC or adjacent normal tissue
(Figures 7E, F). The signaling pathways also show relatively
small distances in tumors as compared to normal adjacent
B C

D E

A

FIGURE 6 | Global analysis cell–cell interaction features in different tissue types. (A) The number or strength of the interaction among all major cell types in peripheral
blood (PBMC), tumor-adjacent normal tissue (Normal), and renal tumor tissue (Tumor). (B, C) Comparison of the signal information flow in tumor compared to PBMC
(B) or normal (C). (D, E) Heatmap of different interaction strengths in tumor compared to PBMC (D) or Normal (E). The vertical axis is the cell sending the signal, the
horizontal axis is the cell receiving the signal, the shades of color on the heatmap represent the relative signal strength, and the bars on the top and right represent
the cumulative intensity on the horizontal and vertical axes.
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tissue, including CD40, APRIL, and FLT3. This indicates
communication network architectures for these overlapping
pathways in both tumor and normal tissues. A closer look at the
IL16 pathway (Figures 7G, H) shows its high signaling
redundancy (i.e., multiple signaling sources) and high target
promiscuity. The latter finding indicated that certain pathways
have highly conserved signaling architecture (i.e., high degree of
redundancy), which is largely independent of the specific cellular
composition of the tissue. Taken together, the results provided
insights into the heterogeneity of cell–cell interactions from
different locations within the tumor, and it may reveal how
various tissue microenvironments influence which cell–cell
interactions occur.
DISCUSSION

With the improvement of understanding of how immunotherapies
work, the phenotypic and functional profile of immune cells in the
Frontiers in Immunology | www.frontiersin.org 10
TME is now well known to influence prognosis and disease
outcome. The latest advances in immunotherapy are completely
changing the pattern of clinical immuno-oncology and are
significantly improving the survival rate of patients with various
cancers (29). Although the single-cell expression profile of ccRCC
was previously reported (17), the original study mainly focuses on
the distinct immune characteristic of tumor and peripheral blood or
normal renal tissue. In this study, we integrated publicly available
single-cell RNA-seq data and comprehensively analyzed the
immune characterization. Compared with adjacent normal tissue
and PBMC, CD8+ T2 and CD8+ T3 cells were significantly tumor-
infiltrating cell clusters, which were cell cycle or T-cell exhaustion-
associated cells, indicating well-functioning immunosurveillance in
tumor tissue of ccRCC (30–32). Consistent with this finding,
enrichment of CD8+ T (CD8+ T1, CD8+ T2, and CD8+ T3)
cells and DCs (cDC1 and cDC2) in tumor tissue conferred
enhanced immune activation and recruitment of antitumor
effector cells (32, 33), while the abundance of B cells was fewer in
tumor tissue compared to adjacent normal tissue and PBMC. B cell-
B

C D E F

G H

A

FIGURE 7 | Identify signal patterns in major cell types. (A, B) Outgoing communication patterns identification in different tissue types. The color indicates the relative
strength of the signal among cells. The horizontal axis is the cell type, and the vertical axis is the pathway. Bars and heatmaps above and to the right correspond to
cumulative signal strength. (C, D) Comparison of the significant ligand–receptor pairs between PBMC vs. Tumor, and Normal vs. Tumor, which contributed to the
signaling from CD4+ T/Tregs to CD8+ T cells (CD8+ T_2, CD8+ T_3). Dot color reflects communication probabilities and dot size represents computed p-values.
Empty space means the communication probability is zero. (E, F) The overlapping signaling pathways in PBMC vs. Tumor, and Normal vs. Tumor were ranked
based on their pairwise Euclidean distance in the shared two-dimensional manifold. A large distance implies a larger difference. (G, H) Hierarchical plot showing the
inferred intercellular communication network of the IL16 signaling pathway in PBMC vs. Tumor and Normal vs. Tumor, respectively. The edge width represents the
communication probability.
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mediated antibody production can lead to the killing of tumor cells
through the complement cascade activation, phagocytosis by
macrophages, and activation of the tumor-killing activity of NK
(34). The decreased population of B cells may suggest an increased
pro-tumoral activity. The different abundance of specific cell types
in distinct tissues revealed the immune response association and
heterogeneity in the tumor, adjacent normal tissue, and PBMC. The
results will facilitate the understanding of intratumor heterogeneity
and the immune microenvironment complexity in the ccRCC.

As critical players in tumor immunity, CD8+ T cells can directly
recognize and kill cancer cells upon recognition of neoantigens. In
addition, it also responds to various cues to tune their
developmental lineages and states. In this study, we identified
three subclusters of CD8+ T cells. We revealed that CD8+ T_3
cluster cells, which mainly stay on cell cycle G2/M and S1 phases,
showed exhaustion characterization in ccRCC. T-cell exhaustion
was previously characterized as a loss of proliferative capacity and
high levels of PD-1 and LAG3 expression in human tumors (28, 35,
36). We identified several markers specifically expressed in the C0
cluster that was tumor-infiltrated, such as checkpoint inhibitor
(LAG3), cytotoxicity-associated genes (GZMK), and oncogenic
driver gene (FXYD2), further indicating that these CD8+ T cells
were exhausted. This finding is consistent with the original study
(17). In addition, we noticed that the expression of LAG3 and
GZMK is higher than that of immune inhibitors, such as PD-L1,
TIM3, and CTLA4, in the CD8+ T_3 cluster; thus, LAG3 or GZMK
may be a better target for tumor immunotherapy in ccRCC.

A total of 10 candidate biomarkers were obtained by combining
analysis with TCGA-KIRC bulk RNA-seq data. Some of them have
been mentioned in hematological malignancies or solid tumors
and affect tumor progression (35, 37–41). Previous studies may
report that some of them were associated with prognostic signature
(36, 42–44), but they all focus on gene expression level or epigenetic
modification. In this study, we identified several cell type-specific
expressed biomarkers, including CCL5, BATF, and CTLA4 at a
single-cell resolution, whose good clinical prognostic signature may
be highly associated with specific immune cell types, like CD8+ T
cells and Tregs. Lin et al. (45) reported that CCL5 was highly
expressed in breast cancer lymph node metastasis and that CCR5–
CCL5 interaction promotes cancer cell migration under hypoxic
conditions. Zhang et al. (46) reported that CCL5 deficiency delayed
tumor growth and metastasis via facilitating CD8+ T cells to
accumulate into the tumor site. NNMT was identified as one
clear cell renal cell carcinoma (ccRCC)-associated gene (47), and
it induces the proliferation and invasion of squamous cell carcinoma
cells (48); Tang et al. (47) demonstrated the crucial role of NNMT in
the promotion of cellular invasion in ccRCC cell lines. Therefore,
the high expression of NNMT in ccRCC was linked to poor
prognosis, further suggesting that it may be a potential biomarker
for worse prognosis. We also found that CTLA4 was upregulated in
CD8+ T_2 and Treg cells in ccRCC tissues and closely related to the
disease progression as well as a poor prognosis. This is consistent
with the previous study result that Tregs can inhibit the activation of
CD8+ T ce l l s through CTLA4 , t r i gger ing tumor
immunosuppression (49). In addition, we found that CTLA4 was
markedly correlated with multiple immune checkpoints, which
suggested that ccRCC patients with high expressed CTLA4 may
Frontiers in Immunology | www.frontiersin.org 11
benefit more from immune checkpoint blockade combined therapy.
Notably, we identified UBE2C, the most important biomarker that
is specifically expressed in exhausted CD8+ T cells, as being
associated with clinical factors including TNM stage, gender, and
pathological stage. Higher UBE2C expression predicted shorter OS
and progression-free survival. This is consistent with the previous
study that UBE2C is an important gene in ccRCC and is essential to
the proliferation and migration of ccRCC (50). Strikingly, we
noticed that the expression of UBE2C in CD8+ T_3 cluster cells
is almost identical, regardless of origin (tumor tissue, adjacent
normal tissue, or PBMC in ccRCC). Hence, we concluded that
UBE2C may be a critical factor for predicting the prognosis of
ccRCC patients and that the detected expression level of UBE2C
from PBMC may contribute to predicting tumor progression and
aid immunotherapy in ccRCC.
CONCLUSION

In conclusion, this study comprehensively compares the
transcriptomic signature in different regions of ccRCC, and it
unmasked the conserved and specifically activated signals among
tumor tissue, adjacent normal tissue, and PBMC in ccRCC. The
biomarkers identified uncovered the correlations between gene
expression, survival outcomes, and immune cell-type
components, aiding in the development of more effective
immunotherapy strategies for ccRCC.
METHODS

GEO Dataset Acquirement
All samples were obtained from the National Center for
Biotechnology Information GEO dataset. GSE121636 (17)
performed single-cell sequencing on the peripheral blood and
tumor-infiltrating cells of three patients with renal clear cell
carcinoma. GSE139555 (51) sequenced the peripheral blood,
adjacent tissues, and tumor tissues of three patients who were
sick of renal cell carcinoma. We divided all patients into three
groups according to their origin tissue (PBMC: peripheral blood;
T: renal tumor; N: normal adjacent tissue).

Single-Cell Data Processing
Raw data were converted into a Seurat object by the R package
Seurat (v 3.1.2) (18). Cells whose percentage of ribosomes or
percentage of mitochondria are less than 15 or single cells with
less than 500 genes detected were considered low-quality cells
and were removed. In order to eliminate potential doublets,
single cells with over 4,000 genes detected were also filtered out.
Finally, 75,173 single cells remained, and they were applied in
downstream analyses.

After quality control, the Seurat object was normalized by the
function SCTransform of the Seurat package. Since samples from
six patients were processed and sequenced in batches, their
origin tissue was used to remove the potential batch effect. In
this progress, the top 2,000 variable genes were used to create
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potential anchors with the FindIntegrationAnchors function of
Seurat. Subsequently, the Harmony function was used to
integrate data and merge a new matrix with 2,000 features, in
which potential batch effect was regressed out.

To reduce the dimensionality of the scRNA-Seq dataset, PCA
was performed on an integrated data matrix. With the elbowplot
function of Seurat, the top 30 PCs were used to perform the
downstream analysis. The main cell clusters were identified with
the FindClusters function offered by Seurat, with resolution set as
default (res = 0.8), and then they were visualized with 2D UMAP
plots (52). Conventional markers described were used to
categorize every cell into a known biological cell type. Firstly,
all cells were clustered into twenty-four major clusters and
further clustered into sixteen clusters in a previous annotation
by Azimuth, SingleR (19), and CellMarker database (20). All
details regarding the Seurat analyses performed in this work can
be found in the website tutorial (https://satijalab.org/seurat/v3.0/
pbmc3k_tutorial.html).

Cell–Cell Communication Analysis
The CellChat v1.1.3 software (26) was used to infer cell–cell
communication based on ligand–receptor interaction with
default parameters. For each ligand–receptor pair, only the
secreted signaling interaction category was considered for
downstream analysis . We fi l tered out the cel l–cel l
communication if there are fewer than 15 cells in certain cell
groups. The statistical significance of communication probability
values was assessed by a permutation test. p < 0.05 was
considered statistically significant.

Marker Gene Selection Is Specific
to Clusters
For pairwise comparisons between clusters, we manually
calculated the log2 fold change (log2FC) between each cluster
using the Seurat FindMarkers function. Genes were required to
be expressed in >10% of cells with each of the sixteen cell clusters.
Genes were selected as marker genes based on the statistical
threshold [log2FC > 0.25, adjusted p-value (Bonferroni) < 0.01].
The top 5 genes of each cluster were visualized with
heatmap plots.

Data Collection and Code
Availability Statement
The datasets analyzed during the current study are available in the
TCGA, TCGA-KIRC, and GEO repository (GSE121636 and
GSE139555). The data and code are available in GitHub (https://
github.com/Wang-biolab/scRNA-ccRCC/). Transcriptome RNA-
sequencing data of KIRC were downloaded by the R package
RTCGA.rnaseq. There were 534 cases of KIRC tissues and 72 cases
of normal tissues. The clinical information and demographic data
were also obtained by the R package RTCGA.clinical.

Differentially Expressed Genes
DEGs between KIRC tissues and normal tissues were
preliminarily screened via the R software limma package and
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edgeR package. DEGs were determined with the following cutoff
value: false discovery rate (FDR) = 0.01, log2|fold change| = 3.

Survival Analysis
The OS was involved as the endpoint and index for the
prognostic outcome. For DEGs, the survival R package was
applied to screen the survival-associated DEGs by univariate
Cox analysis, with a p-value < 0.01 based on the log-rank test.
Kaplan–Meier curves were generated to illustrate the
relationship between patients’ OS and gene expression levels
of DEGs.

Pathway and Functional Annotation
A gene functional enrichment analysis was performed based on
the marker genes in each cell cluster using KEGG pathway
enrichment analysis. These DEGs were loaded into cluster
profiles for the GO and KEGG pathway enrichment analysis
(53). Pathways for which the adjusted p-value was less than 0.05
were considered significantly enriched.

Gene set enrichment analysis (GSEA) algorithm was
implemented to evaluate the relative activation status between
gene expression within clusters and sets of genes of known
biological significance. Gene sets used for analysis were derived
from the C7 (immunological gene sets) database available
through the MSigDB Collections at the Broad Institute for all
gene set analysis. Only gene sets with a false discovery rate (FDR)
p-value less than 0.05 and nominal p-values less than 0.05 were
considered significantly enriched.

GSVA was performed on the 50 hallmark pathways
annotated in the molecular signature database (54), which was
exported using the GSEA Base package (version 1.40.1). The
GSVA package (version 1.26.0) was applied with default settings
to assign pathway activity estimates to individual cells.

Single-Cell Trajectory Analysis
R package (monocle2) (24) was applied to conduct cellular
trajectory analysis with the assumption that one-dimensional
“time” can describe the high-dimensional expression values, the
so-called pseudotime analysis of single cells. Genes for ordering
cells were selected if they expressed more than 1% of the cells,
their mean expression value was larger than 0.3, and dispersion
empirical value was >1. Based on the “DDRTree” method, the
data were reduced to two-dimensional, and then the cells were
ordered along the trajectory.
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