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Yersinia pestis, the cause of plague, is a newly evolved Gram-negative bacterium.
Through the acquisition of the plasminogen activator (Pla), Y. pestis gained the means
to rapidly disseminate throughout its mammalian hosts. It was suggested that Y. pestis
utilizes Pla to interact with the DEC-205 (CD205) receptor on antigen-presenting cells
(APCs) to initiate host dissemination and infection. However, the evolutionary origin of Pla
has not been fully elucidated. The PgtE enzyme of Salmonella enterica, involved in host
dissemination, shows sequence similarity with the Y. pestis Pla. In this study, we
demonstrated that both Escherichia coli K-12 and Y. pestis bacteria expressing the
PgtE-protein were able to interact with primary alveolar macrophages and
DEC-205-transfected CHO cells. The interaction between PgtE-expressing bacteria
and DEC-205-expressing transfectants could be inhibited by the application of an
org March 2022 | Volume 13 | Article 7917991
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anti-DEC-205 antibody. Moreover, PgtE-expressing Y. pestis partially re-gained the ability
to promote host dissemination and infection. In conclusion, the DEC-205-PgtE interaction
plays a role in promoting the dissemination and infection of Y. pestis, suggesting that Pla
and the PgtE of S. enterica might share a common evolutionary origin.
Keywords: Yersinia pestis, Salmonella enterica, DEC-205 (CD205), PgtE, dissemination, evolution
INTRODUCTION

Yersinia pestis, a Gram-negative bacterium, is the causative agent
of bubonic, septicemic, and pneumonic plague (1). Y. pestis has
been responsible for all three historical plague pandemics,
including the Justinian, the Black Death, and the third
pandemic (2–4), as well as one or more prehistoric plague
pandemic (5, 6). The study by Rascovan et al. revealed a
prehistoric plague pandemic between 6,000–5,000 BP that
occurred at the same time with the decline of Neolithic
populations in Europe and suggested that this pandemic
caused by multiple lineages of Y. pestis expanded across
Eurasia might result in the decline (6). As also summarized by
the author, “Our results are consistent with the existence of a
prehistoric plague pandemic that likely contributed to the decay
of Neolithic populations in Europe” (6). This bacterial pathogen
was also used as a biological weapon during the Second World
War (7).

Y. pestis evolved from Yersina pseudotuberculosis within the
last 2,600 to 28,000 years (4, 8–11), but each of them causes very
different diseases in animals. Y. pseudotuberculosis typically
transmitted through the fecal-oral route and primarily causes
mesenteric lymphadenitis and self-limited diarrhea in the host
(12). In contrast, Y. pestis causes in the host a highly fatal disease,
known as the plague, in the host (1). Many comparative studies
between Y. pestis and Y. pseudotuberculosis have been carried out
to determine what are the virulence factors Y. pestis has acquired
during evolution that have converted the mild pathogen Y.
pseudotuberculosis to a highly virulent and deadly pathogen.
Notably, the plasmid pPCP1 was one of them.

The plasmid pPCP1 was acquired by an ancestral strain
after Pestoides F Y. pestis (do not carry pPCP1) in the
e v o l u t i o n t r e e , d u r i n g t h e d i v e r g en c e f r om Y .
pseudotuberculosis into modern Y. pestis (13–16). One key
factor that promotes Y. pestis pathogenesis is plasminogen
activator (Pla), which is encoded by the pPCP1 plasmid (17).
Zimbler et al. even speculated that the ancestral strain,
Pestoides F, was unable to cause primary pneumonic plague
prior to the acquisition of Pla (16). Pla is required for the full
virulence of Y. pestis in both bubonic and pneumonic plague
but is not essential for the pathogenesis of septicemic plague
(18–24). These results have indicated that Pla may facilitate
the dissemination of Y. pestis within hosts.

Studies have shown that Pla promotes the fibrinolysis,
allowing the bacteria to disrupt tissue barriers at the subdermal
injection sites either after a flea bite or experimental subdermal
inoculation. This process facilitates the bacterial dissemination
into the lymphatic tissue, liver, and spleen of the host (19, 21, 24).
org 2
Because Pla belongs to a family of enteric bacterial outer
membrane proteases, the bacterial species that initially
harbored the Pla-encoding gene is thought to most likely be an
enteric bacterium.

Sodeinde and Goguen reported sequence homology among
the Pla, OmpT, expressed by Y. pestis and Escherichia coli and the
PgtE enzyme expressed by Salmonella enterica, which causes
mouse typhoid (25). The DNA sequence identity between the pla
and pgtE genes within the coding regions is 69% (25).

PgtE is known to be involved in the host dissemination of S.
enterica (26). PgtE can degrade gelatine and activate matrix
metalloproteinase 9 (26) to enhance bacterial motility. The
deletion of the pgtE gene from S. enterica resulted in a ten-fold
reduction in bacterial dissemination within hosts to the liver and
the spleen following intraperitoneal infection in BALB/c (26).
Although other scientists began to observe that the
dissemination of S. enterica within the host involves a constant
phagocytosis process by antigen presenting cells (APCs) such as
macrophages and dendritic cells (27–31), the molecular
mechanism through which PgtE promotes bacterial
dissemination in hosts has been thought to be associated with
its ability to disrupt adjacent tissues too.

However, the results from a 2008 study appeared to challenge
this accepted mechanism by reporting that the Pla of Y. pestis
interacted with a C-type lectin, DEC-205 (CD205), which is
typically expressed on antigen-presenting cells (APCs). By Pla-
mediated binding to DEC-205, Y. pestis might be able to hijack
alveolar macrophages or lung dendritic cells, acting as Trojan
horses to facilitate dissemination from the lungs to the spleen
(32). DEC-205 was originally identified as a strong antigen-
presenting receptor by Nussenzweig and Steinman’s group (33–
35). By conjugating with other antigenic proteins, such as the
proteins expressed by pancreatic cancers, the hybridized DEC-
205 displayed a strong adjuvant effect on the host immune
response to pancreatic cancers (36, 37).

Although sequence comparisons have suggested the
possibility that Pla in Y. pestis might have derived from PgtE
in Salmonella enterica (25), no direct evidence has been reported
to support any functional links between PgtE and Pla. Based on
the findings published on Journal of Biological Chemistry in
2008 (32), we were using a similar approach to investigate
whether the C-type lectin receptor CD205 would also bind to
PgtE from S. enterica to facilitate host dissemination and
bacterial infection in Y. pestis. The results from this study
might help us a further understanding of how Y.
pseudotuberculosis that causes mild mesenteric lymphadenitis
and self-limited diarrhea has evolved to such a deadly and
distinctive pathogen, Y. pestis.
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MATERIALS AND METHODS

Ethics Statement
All animal procedures and human experiments were conducted
in strict accordance with the Institutional Animal Care and Use
Committees (IACUCs) and Institutional Review Board (IRB) of
Tongji Hospital, Tongji Medical College, China. The handling of
mice and all experimental procedures were specifically approved
for this study by the Medical Ethics Committee of Tongji
Hospital and were performed in accordance with institutional
guidelines (IRB ID: TJ-A20141220 for animal experiments). All
procedures on mice were performed under sodium pentobarbital
anesthesia; all efforts were made to minimize animal suffering.

Mice
C57BL/6J mice, aged 6–8 weeks, were purchased from Wuhan
University Animal Center, China. Mice were housed in the animal
facilities at the Tongji Hospital, in direct accordance with the
guidelinesdraftedby theAnimalCareCommitteesofTongjiHospital.

Bacterial Strains
Bacterial strains used in this study were listed in Table 1. Y.
pseudotuberculosis Y1 is a strain that lacks the virulence plasmid
(pYV) and was used as a positive control in the cell invasion
assay in previous publications, because this strain appears
invading almost all mammalian cells lines (32, 40–46).

Y. pestis 1418 originates from KIM5 (KIM D27), a strain from
which the pgm (pigmentation) locus was deleted (45) and it therefore
is bio-safety level II strain. In this study, the virulence plasmid (pCD1)
and the ail genewere also deleted (32, 41). There are two purposes for
construction of this non-virulence Y. pestis. First, one of the
Frontiers in Immunology | www.frontiersin.org 3
important functions of Ail is to mediate Y. pestis attachment to and
invasion into the host cells (47, 48). The second reason was for the
biosafety issues set by our regulators. Strain Y.p1419 originates from
Y. pestis 1418 but features the additional deletion of pPCP1 plasmid.
Y. pestis strains Y.p1419 pla+ and Y.p1419 pgtE+ are derivatives of Y.
pestis 1419 that carries plasmids pMRK1 andpMRK3 that express the
Y. pestis Pla and Salmonella PgtE.

Y. pestis Y.p91001 was isolated from Microtus-related plague
focus in China, and is avirulent to humans but can cause plague
in rodents belonging to the genus Microtus and laboratory mice
(45, 49–51). Y. p 9100pPCP1- is Y. pestis 91001, from which the
plasmid pPCP1 has been cured. Y. p91001pPCP1-pla+ is
Y.p91001-pPCP1- restored with the plasmids pMRK1 encoding
Y. pestis Pla. Y. p91001pPCP1-pgtE+is Y.p91001-pPCP1- restored
with the plasmids pMRK3 encoding Salmonella PgtE.

E. coli pla+ carries the plasmid pMRK1 that expresses the Pla
of Y. pestis. E. coli pgtE+ carries the plasmid pMRK3 that
expresses the Salmonella PgtE.

The Y. pestis is cultured at 26°C in Luria-Bertani (LB) for 48
hours with shaking to log phase. The E. coli is cultured at 37°C in
Luria-Bertani (LB) overnight with shaking to log phase.

The plasmid pMRK1 was constructed by cloning complete
opening reading frame of pla from plasmid pC4006 into pSE380
plasmid (52). The source of Pla sequences for transgene
expression is Y. pestis KIM5 pgml (spontaneous non
pigmented mutant of Y. pestis KIM) (25).

The source of PgtE sequences for transgene expression was
from the genomic DNA of S. enterica SH401 (database accession
number AF239770) (53). The plasmid pMRK3 was constructed
by cloning the complete reading frame of pgtE from S. enterica
SH401 into pSE380 plasmid (53, 54).
TABLE 1 | Bacteria strains and cell lines used in the study.

Strains Genotypes References

Y. Pseudotuberculosis
Y. pestis
Y.p1418-Dail Originated from KIM5 (KIM D27) with pgm (pigmentation) and ail gene deleted (6)
Y.p1419 a derivative of Y.p1418, Originated from KIM5 (KIM D27) with pgm, pla and ail gene deleted this study
Y.p1419 pPCP1+ a derivative of Y.p1418,Y.p1418 transformed with pPCP1 plasmid, with ampicillin antibiotic resistance this study
Y.p1419 pla+ a derivative of Y.p1418,Y.p1418 transformed with plasmid carrying pla expressing gene of Y.pestis, with ampicillin

antibiotic resistance
this study

Y.p1419 pgtE+ a derivative of Y.p1418, Y.p1418 transformed with pgtE expressing gene of Salmonella, with ampicillin antibiotic
resistance

this study

Y.p91001 a human avirulent Y.pestis strain F1+, LcrV+, Pst+ and Pgm+ isolated from Microtus-related plague focus in China (38, 39)
Y.p91001pla- 91001 Y. pestis strain with pla gene deleted From Yicheng

Sun
Y.p91001pla-+pla+ 91001 Y. pestis strain with pla gene deleted and restored with the Pla expression, with ampicillin antibiotic resistance thiss study
Y.p91001pla-+pgtE+ 91001 Y. pestis strain with pla gene deleted and restored with the PgtE expression, with ampicillin antibiotic resistance this study
Y.p 91001pPCP1- 91001 Y. pestis strain with pPCP1 plasmid cured this study
Y.p 91001pPCP1-pla+ 91001-pPCP1- restored with the plasmids pMRK1 encoding Y. pestis Pla, with ampicillin antibiotic resistance this study
Y.p 91001pPCP1-pgtE+ 91001-pPCP1- restored with the plasmids pMRK3 encoding Salmonella PgtE, with ampicillin antibiotic resistance this study
E. coli K-12
E. coli Wide type E. coli
E. coli pla+ E. coli XL1 transformed with the plasmids pMRK1 encoding Y. pestis Pla, with ampicillin antibiotic resistance (27)
E. coli pgtE+ E. coli XL1 transformed with the plasmids pMRK3 encoding Salmonella PgtE, with ampicillin antibiotic resistance (27)
Cell lines Characteristics
CHO-NEO cells Control cell line, which expresses the neomycin resistance gene only (40, 41)
CHO-m-DEC205 cells Generated by transfecting CHO cells with CD205 cDNAs (6)
Mouse alveolar macrophages Primary macrophages from mouse alveolar
March 2022 | Volume 13 |
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Generation of the pla-Knockout of
Y. pestis 91001
For generating the pla knockout strain, CRISPR-Cas12a system
were used to delete the pla gene in the plasmid pPCP1 of Y.
pestis, following the protocol that worked on other Y. pestis
strains (55). Briefly, a protospacer adjacent motif (PAM) TTC
and a short DNA sequence adjacent to the protospacer site were
selected from the coding sequence of the pla gene. Two
complementary oligonucleotides (crRNA-pla top and crRNA-
pla bottom) containing the protospacer sequence were
synthesized, annealed to yield a protospacer cassette with BsaI
overhangs at the 5’and 3’ends. Then the protocpacer was cloned
into the crRNA expression plasmid pAC-crRNA-Cm to generate
the recombinant plasmid pcrRNA-pla-Cm. An 80 nt ssDNA
oligonucleotide (pla oligo for lagging) with identity to flanking
regions sequence on both sides of the pla gene was synthesized.
The ssDNA oligonucleotides and the recombinant plasmid
pcrRNA-inv-Cm were co-transformed into Y. pestis cells
harboring the plasmid pKD46-cpf1 (Cas12a) . The
transformants were plated on LB agar supplemented with 100
mg/mL ampicillin and 30 µg/mL chloramphenicol and incubated
at 26°C Single colonies were picked up to inoculate LB medium
supplemented with appropriate antibiotics at 26°C. PCR was
used with appropriate primers to carry out preliminary screen,
and sequencing to verify the pla deletion clones. The primers
used in this study were listed in Table 2. Finally, the plasmids
pcrRNA-pla-Cm and pKD46-cpf1 were cured from the strain by
incubating on LB agar plate with supplemented with 7% of
sucrose, and by incubating in LB medium at 42°C with shaking
overnight, respectively. The plasmids used in this study were
listed in Table 3.
Frontiers in Immunology | www.frontiersin.org 4
Biological Reagents
Human Glu-Plasminogen was purchased from Hematologic
Technologies (Essex Junction, VT, USA), and the chromogenic
plasmin substrate S-2251 was purchased from Chromogenix
(Milano, Italy). Anti-human CD205 antibodies were purchased
from Pharmingen (San Diego, CA, USA).

Cell Lines
CHO-m-DEC205 was generated by transfecting CHO cells with the
corresponding human C-type lectin cDNA. Transfected cells were
selected by G418 (1.5 mg/ml) and screened for the stable surface
expression of CD205. CHO-NEO, which expresses the neomycin
resistancegenewithoutotherexogenousgenes,wasusedas thecontrol
cell line (32). Cells were cultured in RPMI supplemented with 10%
fetal calf serum (FCS), streptomycin (100 mg/ml), and penicillin (100
units/ml) and incubated at 37°C with 5% CO2.

Isolation of Mouse Alveolar Macrophages
C57BL/6J mice, aged 6–8 weeks, were anesthetized (32). Alveolar
macrophages were obtained using the following procedures.
After the mice were euthanized, the bronchial tract was
opened, the upper bronchia tract was ligated with surgical
suture and 1 ml of RPMI medium was injected into the lungs
through a syringe. The mouse chest was gently massaged for 3
mins, and then the lavage fluid was collected. The cell number in
the lavage fluid was adjusted to 1×105 cell/ml. A glass-slide was
plated in the 24-wells plate before seeding the cells. The
macrophages were seed into 24-wells plates at the
concentration of 1×105 cell/well and placed in RPMI medium
with 2% FBS in a CO2 incubator for 2 h. The cell layers were
washed three times to remove non-adherent cells.
TABLE 2 | Primers and oligonucleotides used in this study.

Primer/oligonucleotide Sequence 5′–3′

crRNA-pla top TGGGCACATGATAATGATGAGCACTAGT
crRNA- pla bottom TAGTGCTCATCATTATCATGTGCCCATC
pla oligo for lagging TAATATGTTTTCGTTCATGCAGAGAGATTAAGGGTGTCTAAAAATACAGATCATATCTCTCTTTTCATCCTCCCCTAGCGG
pKD46-Cpf1-F ACTTTGCGGCTATTCCGATGA
pKD46-Cpf1-R TGCCGTATTGTCAGGCTCTT
pAC-crRNA-F AGCAAGAGATTACGCGCAGA
pAC-crRNA-R TGTAAGGGGTGACGCCAAAG
pla -WT-F ACTATTCTGTCCGGGAGTGC
pla -WT-R TCATGAGACTTTCCACTCAGCA
pla -deletion-F ATTCTGTCAGACGACGAGAA
pla -deletion-R GCGTTCCATGTCTAATTTGA
TABLE 3 | Plasmids employed in this study.

Plasmid Relevant characteristic(s) Refs

pKD46-Cpf1-Amp Cpf1 inserted in pKD46 using Gibson cloning, ampicillin resistance (55, 56)
pAC-crRNA-Cm SacB and synthetic Repeat-AcRFP1-Repeat insertedinto pACYC184 using Gibson cloning, chloramphenicol resistance (55)
pcrRNA-pla-Cm Protospacer of pla in pAC-crRNA-Cm, chloramphenicol resistance This study
pSE380 commercially available backbone plasmid, Escherichia coli expression vector, 4476 BP, ampicillin resistance (52)
pMRK1 the plasmid vector pSE380 carrying pla, with ampicillin resistance (52)
pMRK3 the plasmid vector pSE380 carrying pgtE, with ampicillin resistance (57)
March 2022 | Volume 13 | Arti
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Cell Invasion Assay
The cell invasion assays were performed as described previously
(43, 44). CHO and CHO-m-DEC205 cells were suspended in
RPMI 1640 medium supplemented with 2% FCS. Cells were
plated in 24-wells plates at a density of 1 × 105 cells/well in 0.5 ml
medium. Then, 50 µl of bacterial suspensions were added at a
concentration of 1 × 107 colony-forming units (CFU)/
ml,5×105CFU in total. Y. pestis was centrifuged at 500 rpm for
5min to initiate the in vitro infection. The cells were incubated
with the bacteria at 37°C for 2.5 h with 5% CO2. The cells were
washed with phosphate-buffered saline (PBS) three times. To kill
any extracellular bacteria, 2 ml RPMI-1640 containing 2% fetal
bovine serum (FBS) containing gentamycin, at 100 mg/ml, was
added to each well and incubated for 1 hour. The cells in the 24-
well plate were washed twice with PBS, and then the cells were
lysed with 1 ml 1% Triton X-100. The cell lysates were diluted
and plated on LB agar plates. The bacterial colonies recovered
from the lysed cells were counted after 2 days to define the level
of internalized bacteria in the host cells. All experiments were
performed in triplicate, and the data were expressed as the mean
± standard error.

Plasminogen Activation Assay
Plasminogen activation was measured as described in previously
published studies (46, 52, 53). Briefly, 8×107 of bacteria were
suspended in PBS and combined with 4 mg human Glu-
Plasminogen and 0.45 mM S-2251 in 96-well plates, at a final
volume of 200 µl, followed by incubation at 37°C. The absorption
values at 405 nm were measured at 30-min intervals. The results
are presented as the difference between each measurement value
and the starting value.

Animal Challenge for Bacterial
Dissemination
Y. pestis were cultured at 27°C and suspended in PBS at an
OD600 = 1, resulting in the retrieval of 3 ml bacterial suspension
(32). C57BL/6J mice, 6–8 weeks of age, 5 mice in each group,
were inoculated with 20 µl bacterial suspension, 2*107 CFU
in total, via the intranasal route using the following
bacteria: Y.p91001, Y.p91001pPCP1-, Y.p91001pPCP1-pla+

and Y.p91001 pPCP1-pgtE+, and another panel of bacteria
Y.p91001, Y.p91001pla-, Y.p91001pla-+pla+, Y.p91001pla-

+pgtE+. It is should be stated that all the strains of Y. pestis
used here were the virulence plasmid (pYV) -cured derivatives
of Y. pestis. After 3 days of infection, the liver and spleen were
collected and homogenized in 1% Triton X-100 to release the
bacteria. The tissue lysate was plated onto LB agar plates
supplemented with 50mg/ml ampicillin as shown in our
previous publications (41, 45, 46). The dissemination rate was
calculated by determining the CFU recovered from the lysed
tissue samples.

Animal Challenge for Survival
Y. pestis 91001 were cultured at 27°C, collected by centrifugation,
and suspended in PBS at OD600 = 1, resulting in the collection of
3 ml bacterial suspension following centrifugation (45). C57BL/
Frontiers in Immunology | www.frontiersin.org 5
6J mice, aged 6-8 weeks, were infected with 20 µl of the various
Yersinia suspensions, 2*107 CFU in total, via the intranasal
route. Ten mice in each group were infected by two sets of
bacteria, including Y.p91001, Y.p91001 pPCP1-, Y.p91001
pPCP1-pla+ and Y.p91001 pPCP1-pgtE+ strains. The death of
the mice was recorded every 12 h for 12 days.

Histopathological Studies
Samples from either the dissemination or survival assays were
fixed in 4% neutral buffered formalin. Tissue embedding,
sectioning, and staining with hematoxylin and eosin (H&E)
were performed by the Servicebio biological laboratory. Stained
sections were analyzed under a light microscope.

Statistical Analyses
All statistical analyses were completed using Prism software,
version 6 (Graph Pad, San Diego, CA, USA). Significance was
assessed using ANOVA test. Survival group comparisons were
performed via the log-rank test using Kaplan–Meier analysis.
P<0.05 was considered to be the threshold for significance.
RESULTS

PgtE Expressed in Y. pestis Can Activate
Plasminogen Into Plasmin
One proposed mechanism for the dissemination of Y. pestis
depends on the plasminogen activator Pla, which can degrade
fibrous connections in the tissue matrix. We examined whether
Y. pestis strains that express PgtE of S. enterica could activate
plasminogen to plasmin similar to the action of Pla. Plasmids
expressing Pla and PgtE were transformed into the Y. pestis
strain 1419 that does not contain the pPCP1 plasmid. We
compared the plasminogen activation activity among Y. p1419
pPCP1+, Y.p1419, Y.p1419 pgtE+ and E.coli, E.coli pla+., Y.p1418,
which expresses Pla, were used as positive controls (53). Y. p1419
was used as the negative control. As shown in Figure 1, Y.p 1418
showed the highest plasminogen activation activity among the
examined strains. Y.p1419 pPCP1+ showed higher plasminogen
activation activity than Y.p1419 pgtE+ (53). Consistent with
previous studies, this result also indicated that Pla induced
higher plasminogen activation activity than PgtE did.

These data demonstrated that Y. pestis Pla and S. enterica
PgtE shared similar functions with regarding to the activation of
plasminogen into plasmin, suggesting that Y. pestis Pla might
have evolved from S. enterica PgtE.

PgtE-Expressing E. coli and Y. pestis
Enhance Phagocytosis by Primary Alveolar
Macrophages and Invade CHO-DEC-205
Our previous study demonstrated that Pla in Y. pestis could
promote the invasion of alveolar macrophages, mediated by the
interaction with the C-type lectin receptor CD205 (32).
Therefore, we tested the invasion of alveolar macrophages by
two panels of bacteria, including E. coli, E. coli pla+, E. coli pgtE+

and Y.p1418, Y.p1419, Y.p1419 pla+, Y.p1419 pgtE+.
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As shown in Figure 2, we found that the both Pla- and PgtE-
expressing Y. pestis and E. coli were able to enhance the invasion
of bacteria into mouse alveolar macrophages. Previous studies
have indicated that mouse alveolar macrophages express a C-
type lectin DEC-205, which could be hijacked by Y. pestis via
PLA, leading to dissemination within the host (32, 58). It was
therefore investigated whether CD205 plays a role in the
phagocytosis of recombinant E. coli and Y. pestis pgtE via
alveolar macrophages.

(32), We further explored whether this interaction was
mediated by the binding between PgtE and CD205 on mouse
alveolar macrophages. The results shown in Figures 2C, D
demonstrated that the CHO-mDEC-205 cells were able to
phagocytize PgtE-expressing E. coli and Y. pestis. E. coli pla+

was used as a control for its ability to interact with DEC-205 in
Figure 2C (32). This CD205-PgtE interaction was inhibited by
anti-CD205 antibody (Figures 2C, D). Y. pseudotuberculosis was
used as another control for its invasion of almost all epithelial
cells (32, 38, 45, 46).

Based on the above evidence, we conclude that CD205 serves as
a receptor for PgtE and contributes to the phagocytosis of PgtE-
expressing E. coli and Y. pestis, indicating that PgtE and Pla share a
similar ability to binding to the C-type lectin receptor CD205. The
inhibition of the interaction by adding the anti-CD205 antibody
supports that the binding is specific, and that CD205 functions as a
receptor in the interaction between CD205 and pgtE-expressing E.
coli and Y. pestis.”

PgtE Expressed in Y. pestis Confers the
Ability to Promote Host Dissemination
We showed previously that Pla in Y. pestis could bind to CD205
to facilitate the dissemination of Y. pestis (32). Therefore, we
hypothesized that the dissemination of Y. pestis to the spleen and
Frontiers in Immunology | www.frontiersin.org 6
liver would also be facilitated by the PgtE-CD205 interaction. To
mimic evolution, we chose a wild-type and Y. pestis strain 91001
that contains the pigmentation locus, pgm, and the plasmids
pCD1 and pPCP1 (Figure 3) (49).

C57BL/6J mice were inoculated via the intranasal route with
Y. pestis Y.p91001, its isogenic strain that lacks Pla
(Y.p91001pPCP1-), the pPCP1-strain complemented with the
coding sequence for Pla (Y.p91001pPCP1-pla+), and the pPCP1-

strain complemented with the coding sequence for PgtE (Y.p
91001pPCP1-pgtE+).

The dissemination rates of bacteria into the different organs
were calculated by counting the CFUs on the plates. Figure 3
shows that the CFU numbers of 91001pPCP1− were lower than
the other strains that were isolated from the liver and spleen.
Furthermore, both Y.p91001pPCP1-pla+ and Y.p91001pPCP1-

pgtE+ were able to disseminate to the liver and spleen. In short,
the results suggested that PgtE conferred the ability to promote
host dissemination of Y. pestis.

The Expression of PgtE in Y. pestis
Enhances the Fatality Rate in Mice
CD205 appeared to participate in the in vitro interaction of PgtE-
expressing E. coli or Y. pestis with APCs; however, whether this
interaction also occurs in vivo remained to be elucidated. C57BL/
6J mice were inoculated via the intranasal route with Y. pestis
Y.p91001, Y.p91001pPCP1-, Y.p91001 pPCP1-pla+ and Y.p
91001 pPCP1-pgtE+. The survival of the mice infected with
these various Y. pestis strains was monitored. In addition, we
knocked out pla in the plasmid of pPCP1 (Y.p 91001pPCP1−)
and introduced pMRK1 (the plasmid vector pSE380 carrying
pla) and pMRK3 (the plasmid vector pSE380 carrying pgtE).

As shown in Figure 4A, we found that mice infected with
wild-type Y. pestis 91001 succumbed to the infection. Curing of
FIGURE 1 | PgtE in recombinant Y. pestis activates plasminogen to plasmin. The plasminogen activation activities of Y.p1419 pPCP1+, Y.p1419, Y.p1419 pgtE+

and E.coli, E.coli pla+ were compared. Y.p1418 was used as a positive control. PBS was used as negative control. The data presented were pooled from three
independent experiments.
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the pPCP1 from Y. pestis 91001 reduced the virulence, which is
consistent with the finding from Lathem et al., who reported that
the inhibition of Pla expression prolonged the survival of animals
(20). We next restored the expression of Pla or PgtE using
specific plasmids, which rescued the virulence of Y. pestis.
Frontiers in Immunology | www.frontiersin.org 7
However, compared with the Pla+ bacteria, their PgtE+

isogenic variants showed significantly lower virulence.
In Figure 4B, Y.p91001, Y.p91001pla-, Y.p91001pla-+pla+,

Y.p91001pla-+pgtE+ were administered to mice by intranasal
challenge. We found that the absence of pla attenuated in a
FIGURE 3 | PgtE expressed in Y. pestis enhances the ability to promote host dissemination. Y.p91001, Y.p91001pPCP1-, Y.p91001 pPCP1-pla+ and Y.p91001
pPCP1-pgtE+ were used to challenge mice via the intranasal route. After 72 hours of infection, the liver and spleen were collected and homogenized. The bacterial
loads were quantified by counting the bacteria colonies on the plates after two days. (The data shown were obtained from three independent experiments.
*P < 0.05, **P < 0.01.
A B

DC

FIGURE 2 | PgtE-expressing E. coli and Y. pestis invade alveolar macrophages and invade CHO-m-DEC-205. (A) PgtE-expressing E. coli were examined for their
ability to enter alveolar macrophages. The bacteria used were E. coli, E. coli pla+ and E. coli pgtE+. (B) PgtE-expressing Y. pestis were examined for their ability to
enter alveolar macrophages. The bacteria used were Y.p1418, Y.p1419, Y.p1419 pla+, Y.p1419 pgtE+.The number of phagocytized bacteria was determined by
evaluating the CFUs on the plates after two days. The data presented were collective from three independent experiments. *P < 0.05, **P < 0.01, ***P < 0.001.
(C) PgtE-expressing E. coli invade the CHO cell line expressing CD205. Epithelial CHO cells expressing or not expressing CD205 (CHO and CD205, respectively)
were infected with PgtE- and Pla-expressing E. coli. Y. pseudotuberculosis (Y1); E. coli, E. coli pla+, and E. coli pgtE+ were examined for their abilities to invade CHO/
CHO-m-DEC-205 cells during a gentamicin protection assay, in presence or absence of anti-DEC-205 (5 mg/ml). The numbers of phagocytosed bacteria were
determined by counting the bacterial CFUs on the plates the next day. The data presented were pooled from three independent experiments. *P < 0.05, **P < 0.01,
***P < 0.001. (D) PgtE-expressing Y. pestis invades the CHO cell line expressing CD205. Epithelial CHO cells expressing or not expressing CD205 (CHO and
CD205, respectively) were infected with PgtE- and Pla-expressing Y. pestis. Y. pseudotuberculosis (Y1), Y.p1419, Y.p1419 pla+ and Y.p1419 pgtE+ were examined
for their abilities to invade CHO/CHO-m-DEC-205 cells during a gentamicin protection assay, in presence or absence of anti-DEC-205 (5 mg/ml). The numbers of
phagocytosed bacteria were determined by counting the bacterial CFUs on the plates after two days. The data presented were pooled from three independent
experiments. *P < 0.05, **P < 0.01, ***P < 0.001.
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mouse model of pneumonic plague infected by Y. pestis 91001.
Restoring Pla expression in Y.p91001pla- can almost restore the
virulence to Pla(-) mutant. Overexpression of PgtE from plasmid
alone can also increase the mortality rate of mice. We have
shown that PgtE played a critical pathogenic role in mice
succumbed to respiratory infection.

We concluded that PgtE-promoted bacterial dissemination
and virulence in host may be due to in part the ability of PgtE to
interact with CD205.

PgtE-Expressing Y. pestis Increases Lung
Tissue Inflammation
After determining the survival rate of mice, we explored whether
the interaction between CD205 and Pla promotes the virulence
of Y. pestis. We examined pathological changes in sections of
infected lung histologically, using H&E staining. C57BL/6J mice
were infected via intranasal inoculation of Y. pestis Y.p91001,
Y.p91001pPCP1-, Y.p91001pPCP1-pla+ and Y.p91001pPCP1-

pgtE+ strains. Mice inoculated with PBS were used as control.
48 hours after infection, the lung pathological changes were
examined in the mice. As shown in Figure 5A, an influx of
inflammatory cells could be detected in all lung tissue sections
from infected mice. Tissue destruction and hemorrhage were
more severe in 91001 wild-type- and Y.p91001pPCP1− pla+or
pgtE+-infected mice than in 91001pPCP1− infected mice.
However, the increasing tissue damages were most likely
resulted of the increasing presences of bacteria.

The amount of bacteria in the lung tissues was determined in
parallel with the data from the histological examination.
Y.p91001pPCP1-pla+ is Y.p91001-pPCP1- restored with the
plasmids pMRK1 encoding Y. pestis Pla, and Y.p91001pPCP1-
pgtE+ is Y.p91001-pPCP1- restored with the plasmid pMRK3
encoding Salmonella pgtE. As shown in Figure 5B, mice infected
with Y.p91001pPCP1-pla+ and Y.p91001pPCP1-pgtE+ showed
exhibited a larger amount of bacteria in the lung tissues than the
mice infected by 91001pPCP1−, especially the mice infected with
Y.p91001pPCP1-pla+. This is consistent with the lung
histological results.

Consistent with the results of the survival assay described
above, we showed that the plasminogen-activating activity of Pla
is essential to Y. pestis virulence during the injury of lung tissue.
Frontiers in Immunology | www.frontiersin.org 8
DISCUSSION

In this study, we identified CD205 as a cellular receptor for PgtE,
enhancing the host dissemination and infection abilities of Y.
pestis. PgtE-expressing Y. pestis may utilize a similar mechanism
as that demonstrated for the Pla-DEC205 interaction (32). Our
data from this study indicated that PgtE and Pla shared
functional similarity and were both able to bind with the C-
type lectin receptor CD205. The expression of Pla and PgtE in
pPCP1−/− Y. pestis increased the mortality rate in a pneumonic
plague mice model. These findings provided evidence from a
functional perspective that Pla might have derived from PgtE.

The pPCP1 plasmid was acquired by an ancestral Y. pestis
strain during the divergence from Y. pseudotuberculosis into
modern Y. pestis (16). The key factor that promotes Y. pestis
pathogenesis is plasminogen activator (Pla), which is encoded by
the pPCP1 plasmid. In detail, biovar Caucasica (0.PE2) lack pla,
pla in all the stains of the biovars Altaica (0.PE4), Qinghaiensis
(0.PE4ab), Xilingolensis (0.PE4cd), Talassica (0.PE4), Hissarica
(0.PE4), and Ulegeica (0.PE5) is the I259 phenotype. Bronze-Age
(0. PRE1, 0. PRE2) (59), and Neolithic-lineage strain (6) were
also express the ancestral pla allele (5). The most important event
in the virulence optimization was the single substitution I259T
occurred on the ancestral Y. pestis Microtus and Angola species;
this increased the fibrinolytic activities of the Pla (16). In the
ancestral Y. pestis lineages Microtus and Angola, the residue 259
in Pla is isoleucine. A single substitution I259T occurs in the
ancestral lineages, in the modern lineages KIM and CO92 of Y.
pestis, the position 259 is threonine (16). Cui et al. articulated
that this modification of PLA may be the ‘big bang’ event during
the evolution of Y. pestis (60, 61).

The notion, in which microbial pathogens are able to utilize
the C-type lectins and the antigen presenting cells (APCs) as
tools to achieve host dissemination, has started for two decades.
The most established example of this process is the infection of
the human immunodeficiency virus (HIV), which is mediated by
the binding of HIV gp120 protein with DC-SIGN (CD209), to
facilitate the infection of CD4+ T-cells (62–64).

In a series of our previous studies, we demonstrated that C-type
lectin receptors, such as DEC-205 (CD205), Langerin (CD207),
and DC-SIGN, on APCs, can bind with several Gram-negative
A B

FIGURE 4 | Mice infected intranasally with PgtE-expressing Y. pestis are more susceptible to death compared with pPCP1 plasmid cured and pla-deleted Y. pestis.
(A) Y.p91001, Y.p91001pPCP1-, Y.p91001 pPCP1-pla+ and Y.p91001 pPCP1-pgtE+ were used to challenge mice via the intranasal route. The mice were monitored
for 12 days, and the log-rank test was performed. (B) Y.p91001, Y.p91001pla-, Y.p91001pla-+pla+, Y.p91001pla-+pgtE+ were used to challenge mice via the
intranasal route. The data shown were obtained from three independent experiments.
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bacteria, including Y. pestis, Y. pseudotuberculosis, and S. enterica
serovar Typhimurium, through the core bacterial LPS, which is a
key component of the outer membrane of Gram-negative bacteria,
to promote bacterial dissemination (38–41, 45, 46, 48, 65–71). Our
very recent report indicated that the dissemination of parasites
might also follow a similar mechanism (68). These studies,
particularly the 2008 report published in the Journal of
Biological Chemistry (32), formed the foundation for this
current study.

In the current study, two sets of Y. pestis with distinctively
different virulence were used. One set of Y. pestis included
Y.p1418, Y.p1419, Y.p1419 pla+ and Y.p1419 pgtE+. The
Frontiers in Immunology | www.frontiersin.org 9
virulence of this set of bacteria is attenuated due to deficient
pigmentation activity. The other set is the strain Y. pestis 91001
is, which a strain that was isolated from Microtus brandti in
China, with the phenotype F1+/LcrV+/Pst+/Pgm+ (51). In short,
in order to address biosafety concerns regarding different
protocols, we performed the in vivo assay using the Y. pestis
91001 strains in a biosafety level III lab through collaboration
with other co-authors.

Unlike the 2008 study (32), in which none of virulent strains
was used, we examined whether the acquisition of PgtE would be
sufficient to cause pneumonic plague following intranasal
inoculation in the pneumonic plague mouse model. We
A

B

FIGURE 5 | The expression of PgtE in Y. pestis was able to enhance the inflammatory lesions in the lungs from C57BL/6 mice. (A)Y.p91001, Y.p91001pPCP1-,
Y.p91001 pPCP1-pla+ and Y.p91001 pPCP1-pgtE+ were used to challenge mice via the intranasal route. Lung damage was examined by hematoxylin and eosin
(H & E) staining of formalin-fixed sections 48 hours after infection. C57BL/6 mice were inoculated with PBS (mock), Y. pestis Y.p91001, Y.p91001pPCP1-, Y.p91001
pPCP1-pla+ and Y.p 91001pPCP1-pgtE+ strains Representative images of inflammatory lesions are shown. (B) The bacteria amount in the lung tissues of the mice
infected by Y.p91001, Y.p91001pPCP1-, Y.p91001 pPCP1-pla+ and Y.p91001 pPCP1-pgtE+ were examined 8 hours after infection. **P < 0.01, ***P < 0.001.
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infected the mice with a panel of virulent 91001 strains to
examine the PgtE/mDEC-205 interaction-mediated virulence
in vivo. Our experiments showed PgtE was in part able to
rescue the competence of Y. pestis. This finding was consistent
with the findings of a previous study, suggesting that the
ancestral isolate Pestoides F, which does not carry pPCP1, was
not speculated to cause primary pneumonic plague, whereas the
expression of Pla in Pestoides F empowered the bacteria to cause
pneumonic plague in a mouse model (16).

Our results showed that the expression of PgtE in Y. pestis
with deleted pPCP1 was partially able to restore several
functions, including plasminogen activation activity,
phagocytosis by alveolar macrophages, the invasion of C-type
Lectin mDEC-205-expressing cell lines, and systemic
dissemination in the host. These characteristics are similar to
those ascribed for Pla in previous studies from our lab and other
researchers (20, 32). The ability of PgtE to restore partially the
infective abilities of Y. pestis revealed the functional similarity
between PgtE from S. enterica and Pla from Y. pestis and
provided evidence to support the hypothesis that Pla in Y.
pestis might have derived from PgtE from S. enterica
during evolution.

CD209 and CD205 are two members of the C-type lectin
receptor family, but they exhibit different characteristics. CD209
can bind with the sugar ligands from different bacteria (Gram-
negative bacteria) (38–41, 45, 46, 65–70), viruses (human
immunodeficiency virus) (62–64), and parasites (Toxoplasma
gondii) (68). Thus, CD209 is a relatively unspecific receptor. In
fact, the authors claim that CD209 might be responsible for
almost all the so-called “non-specific binding” mediated by
APCs. In contrast, CD205 can only bind with certain protein
ligands, for example, the Pla of Yersinia pestis (32), and the pgtE
of Salmonella enterica used in the current study. Thus, CD205 is
a specific C-type lectin receptor.

As was summarized in 2006, “From an evolutionary point of
view, the interaction of bacterial core LOS/LPS and the innate
immune receptor, DC-SIGN, may represent a primitive
interaction between microbial pathogens and the professional
phagocytic host cells” (67). Moreover, in 2019, the following was
stated: “We therefore propose that the loss of O-antigen represents
a critical step in the evolution of Y. pseudotuberculosis into Y. pestis
in terms of hijacking APCs, promoting bacterial dissemination
and causing the plague” (45). Historically, CD209 has played a
profound role in the evolution of pathogens, and CD205 is more
specific in binding with protein ligands.

In summary, the original goal of this study was to understand
of how Y. pseudotuberculosis, an enteric bacterial pathogen that
causes only mild enteric infection, has evolved to such a deadly
and distinctive pathogen, Y. pestis. The result provided in the
study showed the PgtE from S. enterica can enhance the invasive
abilities of Y. pestis through the binding of the C-type lectin
receptor CD205. The CD205-PgtE interaction, similar to the
CD205-Pla interaction (32), may allow the infected APCs to
function as Trojan Horses, to promote dissemination within
mammalian hosts and infection of Y. pestis. These results provide
Frontiers in Immunology | www.frontiersin.org 10
additional evidence to suggest that Pla in Y. pestis might have
originated from PgtE in S. enterica. Finally, this study was
initially focused on Y. pestis, which may however uncover for
the first time one of molecular mechanisms of how S. enterica is
able to be disseminated in the mammalian hosts.
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