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CD8+ T-cells play a crucial role in the control of HIV replication. HIV-specific CD8+ T-cell
responses rapidly expand since the acute phase of the infection, and it has been observed
that HIV controllers harbor CD8+ T-cells with potent anti-HIV capacity. The development
of CD8+ T-cell-based vaccine against HIV-1 has focused on searching for
immunodominant epitopes. However, the strong immune pressure of CD8+ T-cells
causes the selection of viral variants with mutations in immunodominant epitopes.
Since HIV-1 mutations are selected under the context of a specific HLA-I, the
circulation of viral variants with these mutations is highly predictable based on the most
prevalent HLA-I within a population. We previously demonstrated the adaptation of
circulating strains of HIV-1 to the HLA-A*02 molecule by identifying mutations under
positive selection located in GC9 and SL9 epitopes derived from the Gag protein. Also, we
used an in silico prediction approach and evaluated whether the mutations found had a
higher or lower affinity to the HLA-A*02. Although this strategy allowed predicting the
interaction between mutated peptides and HLA-I, the functional response of CD8+ T-cells
that these peptides induce is unknown. In the present work, peripheral blood
mononuclear cells from 12 HIV-1+ HLA-A*02:01+ individuals were stimulated with the
mutated and wild-type peptides derived from the GC9 and SL9 epitopes. The functional
profile of CD8+ T-cells was evaluated using flow cytometry, and the frequency of
subpopulations was determined according to their number of functions and the
polyfunctionality index. The results suggest that the quality of the response
(polyfunctionality) could be associated with the binding affinity of the peptide to the HLA
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molecule, and the functional profile of specific CD8+ T-cells to mutated epitopes in
individuals under cART is maintained.
Keywords: CD8+ T-cells, T-cell epitopes, HIV-1, HLA-A*02, polyfunctionality, class I HLA-peptide binding affinity,
gag-derived peptides
INTRODUCTION

HIV-1/AIDS still represents one of the most significant health
issues worldwide (1). Since the beginning of the pandemic,
approximately four decades ago, no treatment to eradicate the
virus or an effective prophylactic vaccine has been developed (2).
Despite the success of combined antiretroviral therapy (cART) in
reducing AIDS-associated deaths and changed the prospects of
HIV/AIDS disease, this therapy has pitfalls such, the non-
adherence of the patients, poor tolerability, drug resistance,
and drug interactions (3), but also the continuous HIV
replication in compartments and persistence of viral reservoirs
(4). These problems point out the need for further therapeutic
strategies that contribute to HIV control. Recently, alternative
therapeutic strategies against HIV-1 have focused on inducing
specific CD8+ T-cell responses that are crucial in controlling
HIV-1 replication (5). HIV-specific CD8+ T-cell responses
rapidly expand since the acute phase of the infection, and their
direct effector function can be observed throughout the chronic
phase of the disease (6). Furthermore, it has been observed that
individuals that maintain low to undetectable viral loads in the
absence of cART for at least one year, known as HIV-1 controllers,
harbor CD8+ T-cells with a potent anti-HIV-1 ability (5, 7). Thus,
a vaccine targeted to induce a strong anti-HIV CD8+ T-cell
response would be a promising therapeutic approach.

Efforts in developing CD8+ T-cell-based vaccine against
HIV-1 have been focused on the search of immunodominant
epitopes circulating in a population (8), and the identification
of high affinity epitopes that bind strongly to the respective
HLA-I molecule and induce a potent CD8+ T-cell response (9).
However, the strong immune pressure of CD8+ T-cells causes
the se lec t ion of v i ra l var iants wi th mutat ions in
immunodominant epitopes (10). The response to such
mutated epitopes has been evaluated in different studies; for
example, the R3K substitution in the wild-type LARNCRAP
(LR9) epitope selected for the HLA-A*03:01 allele, induces a
greater magnitude of response in CD8+ T-cells compared to
the WT epitope (11). Also, Karlsson et al. reported CD8+ T-cell
response to the E93D mutant variant of the HLA-B*08-
restricted EVKDTKEAL epitope and the effectiveness of the
CD8+T cell response in killing cells infected with this viral
variant (12). In addition, the M41L mutation, selected in the
presence of didanosine and stavudine, localizes to the
ALVAICTEM epitope presented by HLA-A*02/*03 molecules, is
associated with increased epitope immunogenicity in vivo and
CD8+ LT activation and expansion in vitro (13). Since HIV-1
mutations are selected under the context of a specific HLA-I, the
circulation of viral variants with these mutations is highly
org 2
predictable based on the most prevalent HLA-I within a
population (14), representing one of the essential factors for
HIV-1 diversification at the population level.

A previous study from our group demonstrated the
adaptation of circulating HIV-1 strains from Medellı ́n,
Colombia, to the most prevalent HLA-I alleles in the
population, HLA-A*02:01. Different mutations mapped into
HLA-I-specific GC9 and SL9 epitopes associated with
decreased or increased binding affinity towards HLA-
A*02:01 were identified (15). Interestingly, our analyses
showed that two different mutations in the HLA-A*02-
restricted GC9 epitope, S54A, and S54T, significantly
increased the epitope binding affinity towards HLA-A*02;
also showed a mutation, Y79F/T84V/L85F, associated with
low HLA-binding affinity in HLA-A*02-restricted SL9, which
has been considered immunodominant epitope (16).
However, the experimental evaluation of the peptide
immunogenicity is required to validate HLA-I ligands
prediction, since it has been shown that the binding affinity
of the epitope to HLA-I is not the only determinant variable
(17). Therefore, we evaluated the functional profile of the
CD8+ T-cell response to positively selected mutations located
in HLA-A*02:01-restricted epitopes from HIV strains that
circulate in our population.
MATERIALS AND METHODS

Study Design and Sample Collection
The Bioethics Committee from the Institute of Medical Research,
School of Medicine, Universidad de Antioquia, approved this
study design and informed consent. This was an observational
and descriptive study, divided into two phases. We first identified
individuals who met the inclusion criteria and expressed the
HLA-A*02 allele. Then, the sample size was determined taking
into account the allelic frequency of HLA-A*02 in Colombia
(20%), and the number of HIV-1 infected individuals who attend
the HIV healthcare program of “Corporación para Investigaciones
Biológicas – CIB”, with a confidence level of 95% and a precision
of 10%, using the software Epidat 4.2. The inclusion criteria were:
i) Residency in Medellıń, Colombia; ii) Confirmed HIV-1
infection; iii) Antiretroviral therapy naïve or on therapy for less
than five years. Exclusion criteria were: i) Less than 18 years of age;
ii) Active opportunistic infection; iii) Received chemotherapy/
immunosuppressive treatment. In the second phase of the study,
once the study population was identified, the functional profile of
the CD8+ T-cells response was evaluated.
March 2022 | Volume 13 | Article 793982
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Measurement of T-cell Counts and
HLA-I Typing
CD4+ and CD8+ T-cell counts were performed in peripheral
blood (PB) using flow cytometry. Briefly, 100 mL of PB was
incubated with conjugated human anti-CD3, anti-CD4, and anti-
CD8 monoclonal antibodies; red blood cells were lysed using a
commercial cell lysis buffer (BD Biosciences) and washed twice
with phosphate buffer saline (PBS) (Sigma-Aldrich, St. Louis,
MO). The cells were acquired on the BD LSRFortessa flow
cytometer with FACSDiva software v 8.0.1 (BD Biosciences).
HLA-I typing was performed with genomic DNA extracted from
PB through a phenol/chloroform DNA extraction protocol. In
addition, HLA-A typing was performed by the sequence-specific
oligonucleotide (SSO) technology, using the Lifecodes® HLA-
SSO Typing Kit (Immucor Transplant Diagnostics, Inc.,
Stanford, CT) and measured using the Luminex®100/
200TMinstrument (Luminex, Austin, TX, USA), as was
previously reported (15).

Peptide Synthesis and Purification
Peptide synthesis was performed according to the Fmoc/tBu
standard strategy using a “tea-bag” protocol (18). Peptides were
characterized by high-performance liquid chromatography
(HPLC) in a JASCO system (JASCO Corp., Tokyo, Japan), and
molecular mass was determined by electrospray-mass
spectrometry (ESI–MS) in an LCMS-2020 ESI–MS equipment
(Shimadzu Corp., Kyoto, Japan). Peptides were purified using
preparative Clean-Up® CEC18153 C-18 columns (UCT. Bristol.
PA. USA) and eluted with an acetonitrile/water gradient from 10
to 60% (v/v). Fractions were analyzed by HPLC and ESI–MS.
Afterward, peptides were lyophilized, reconstituted in sterile
water (1 mg/mL), and stored at −20°C.

In vitro Stimulation of CD8+ T-cells
Peripheral blood mononuclear cells (PBMCs) were isolated
through density gradient (Lymphoprep, STEMCELL
Technologies Inc., Vancouver, Canada) by centrifugation at
400 x g for 30 minutes and cultured in 96-well V bottom
plates (Costar, Corning, NY) with a density of 4 x 106 cells/mL
in RPMI-1640 medium supplemented with 10% fetal bovine
serum (FBS), 100 U/mL of penicillin, 100 mg/mL of streptomycin
and 2 mM L-glutamine (complete medium; all from Gibco,
Carlsbad, CA). PBMCs were stimulated with 10 mg/mL of each
peptide (Table 1), in presence of 1 mg/mL of both anti-CD28
(clone: CD28.2, eBioscience) and anti-CD49d (clone: 9F10,
eBioscience). Cells stimulated only with anti-CD28 and anti-
CD49d antibodies were used as the negative control. The PBMCs
were stimulated with 1 mg/mL of staphylococcal enterotoxin B
Frontiers in Immunology | www.frontiersin.org 3
(SEB) from Staphylococcus aureus (Sigma-Aldrich) or with 50
ng/mL of phorbol 12-myristate 13-acetate (PMA) and 500 ng/
mL of ionomycin (both from Sigma-Aldrich) was also included
in the analysis. All stimulated cells were incubated for 12 h at
37˚C in 5% CO2, in the presence of 10 mg/mL of brefeldin A and
monensin (both from Thermo Fisher), as well as anti-human
CD107a (clone H4A3, BD).

Intracellular Cytokine Staining
After PBMCs stimulation, cells were washed with PBS and
incubated at 4°C for 30 minutes with Fixable Viability Dye
eFluor 506 (eBioscience), and with the anti-CD3-AF700 (clone:
UCHT1, eBioscience) and anti-CD8-eFluor450 (clone: RPA-T8,
eBiocience) antibodies. Next, cells were fixed and permeabilized
with Foxp3 Fixation/Permeabilization Buffer (eBioscience) and
then incubated with the following conjugated antibodies: anti-
IL-2- (clone: 5344.111, BD), anti-Granzyme B (clone: GB11,
BD), anti-Perforin (clone: B-D48, Biolegend), anti-IFN-g (clone:
4S.B3, Biolegend), anti-TNF-a (clone: MAb11, eBioscience) and
anti-IL-10 (clone: JES3-9D3, eBioscience). Cells were acquired
on an LSR Fortessa flow cytometer using the BD FACSDiva
software v 8.0.1 (BD). At least 100,000 CD3+ events were
recorded. Fluorescence minus one (FMO) control for the
effector molecules was included to define positive thresholds.
For fluorochrome spillover compensation, unstained and single-
stained cells were used with each of the fluorochrome-labeled
antibodies. Then, automatic compensation was performed on
LSR Fortessa.

Analysis of Flow Cytometry Data
FlowJo Software version 10.4 (Tree Star, Inc, Ashland, OR, USA)
was used to analyze flow cytometry data. Cells were analyzed
following the gating strategy shown in Supplementary Figure 1.
Boolean gating was performed to create a full array of possible
combinations of expression of effector molecules, with up to 64
response patterns from the CD8+ T-cell gate. Data were reported
after background subtraction (from the negative control) and
background correction. The background correction was defined
according to the number of functions (19). A value equal or higher
than 0.05%, 0.005%, and 0.0005%were considered positive for cells
showing 1-2, 3-4, and 5-6 functions, respectively. Data were
visually represented using SPICE software v5.35 (Vaccine
Research Center, NIAID/NIH, Bethesda, MD, USA). Also, the
polyfunctional index (PI) was determined, which numerically
evaluates the degree and variation of polyfunctionality (20),
reducing the n-dimensional polyfunctionality profiles to a one-
dimensional index value, using the mathematical equation:
Polyfunctionality index = Sn

i=0   Fi :   ( in)
q, 100 = Sn

i=0   Fi, and Fi ≥ 0
TABLE 1 | List of the wild type and mutated GC9 and SL9 epitopes.

Protein/ Position in Gag Epitope Wild type sequence Mutated sequence Abbreviation mutated sequence Peptide affinity relative to WT

Gag-p17 49-57 GC9 GLLETSEGC GLLETAGGC S54A/E55G Decrease
GLLETAEGC S54A Increase
GLLETTEGC S54T Increase

Gag-p17 77-85 SL9 SLYNTVATL SLFNTVAVF Y79F/T84V/L85F Decrease
March 20
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for all i, where n > 0 is the number of cell functions, Fi is the frequency
(%) of cells performing i functions and q ≥ 0 is the parameter that
modulates the differential weight assignment of each Fi. The algorithm
requires that the sumof allFi equals 100 and that allFi are absolute values
(20), through the FunkyCells ToolBox software (www.FunkyCells.com).

Statistical Analysis
GraphPad Prism software v. 7.0 (GraphPad Software, La Jolla,
CA) was used for statistical analysis. Non-parametric analyses
were performed. Data were presented as median and
interquartile range. The Wilcoxon signed-rank test was used
for the comparison of paired data. In all cases, a P-value <0.05
was considered significant.
RESULTS

Demographic and Clinical Characteristics
of the Study Population
Twelve HIV-1 infected individuals were identified with the HLA-
A*02:01 allele; in this study population, 75% were men with a
median age of 45 years, which is consistent with the reported
behavior of the infection in Colombia (21). The median time of
diagnosis was 50.5 months. In most individuals, the CD4+ T-cell
count was above 400 cells/mL, with a median of 527 cells/mL and
a CD4+/CD8+ T-cell ratio of 0.8. Nine out of 12 (75%)
individuals were under cART, with a median time on therapy
of 46 months, all of them with undetectable viral load (Table 2).
In general, there is no evidence of a marked immunological
deterioration in these individuals, which may be associated with
rapid initiation of antiretroviral therapy after the diagnosis of the
infection (median of 2 months).

CD8+ T-cell Response to Polyclonal
Antigen-Independent Stimulation Is
Maintained in the Study Population
Considering that previous reports have shown alteration in the
response of CD8+ T-cells to different stimuli, even upon
prolonged cART (22), we initially focused our analysis on the
expression of IFN-g, TNF-a, IL-2, IL-10 cytokines and as well as
in cytotoxic molecules like granzyme B and perforin in CD8+ T-
cells after oligoclonal and pharmacological stimulation with SEB
Frontiers in Immunology | www.frontiersin.org 4
or PMA/Ionomycin respectively. In addition, the surface
expression of CD107a was also evaluated as a marker of cell
degranulation (23). As shown in Figure 1, all patients exhibited
CD8+ T-cell responses to both polyclonal stimuli. Furthermore,
IFN-g and TNF-a were the most highly expressed cytokines
(Figures 1A, B), whereas IL-2 and IL-10 were produced to the
lowest extent (Figures 1C, D). Also, de novo expression of
granzyme B and perforin was observed, evaluated by their
coexpression with CD107a molecule, in response to both
stimuli (Figures 1E, F).

To characterize the functional profile of the CD8+ T-cells
response after polyclonal antigen-independent stimulation, a
Boolean gating was performed to create a full array of possible
combinations of the expression of effector molecules. Consistent
with a more potent activating signal (24), CD8+ T-cells were
more polyfunctional in response to PMA/Ionomycin than SEB
(Figures 2A, B). In addition, the production of IFN-g and TNF-
a dominated the response to both polyclonal stimuli, together
with the expression of granzyme B and perforin (Figure 2A).
Accordingly, a higher polyfunctionality index (PI) in response to
PMA/Ionomycin compared to SEB was observed (Figure 2C).
Thus, despite the different magnitudes of the functional response
among the individuals, these results indicate that CD8+ T-cells
from this cohort of HIV-infected individuals exhibit lytic and
non-lytic effector functions and polyfunctionality following
polyclonal antigen-independent stimulation, which may be
related to the degree of immune reconstitution observed in
most of these individuals.

Mutated Peptides Induce a Functional
Response of CD8+ T-cells
The response of CD8+ T-cells to the wild type (GC9 WT) and
three mutated peptides of HIV-1 Gag protein (S54A/E55G,
S54A, and S54T) located in the GC9 epitope (position 49-57)
(Table 1) was evaluated. It was observed that most of the
individuals responded to both WT and mutated peptides.
There were no significant differences in the frequencies of IFN-
g-producing CD8+ T-cells between the GC9WT and the mutated
peptides S54A/E55G, S54A, and S54T (Figure 3A). In general,
nine individuals showed a positive response to the WT peptide,
and from them, seven, five, and five also showed response to
S54A/E55G, S54A and S54T mutated peptides, respectively.
TABLE 2 | Clinical characteristics of the study cohort.

Parameter Value

Age, years, median (IQR) 45 (30.8-51)
Gender, Female/Male 3/9
CD4+ T-cell counts, cells/mL, median (IQR) 527(423-591)
Percentage CD4+ T-cells among CD3+ T-cells, median (IQR) 26.1(23-30.1)
CD4+/CD8+ T-cell ratio, median (IQR) 0.8 (0.6-1.6)
Time since diagnosis, months, median (IQR) 50.5 (43-57)
% receiving cART 75
Time on cART, months, median (IQR) 46 (31-54)
Time between diagnosis and cART initiation, months, median (IQR) 2 (1-15)
Viral load at the time of cART initiation, copies/mL, median (IQR) 25,148 (10,525.2-84,485)
March 2022 | Vo
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However, a particular pattern was observed among the mutated
peptides. Specifically, in four individuals, the IFN-g response to
the S54A peptide was stronger than GC9 WT, whereas, in three
individuals in which no response to GC9 WT was observed, a
low but detectable frequency of IFN-g+ CD8+ T-cells was
obtained in response to the S54A peptide (see light green
point, Figure 3A). Also, one individual showed a high
frequency of IFN-g-producing CD8+ T-cells in response to
S54A/E55G, S54A, and S54T peptides vs. GC9 WT peptide
(Figure 3A, light blue point), whereas another individual
responded only to WT peptide stimulation (Figure 3A, golden
points). These results suggest that the S54A peptide, associated
with high affinity to the HLA molecule, could be a better inducer
of an IFN-g CD8+ T-cell response than the other peptides.

Concerning TNF-a-production, in 3 out of 10 individuals
was found a higher frequency of TNF-a-producing CD8+ T-cells
in response to the GC9 WT peptide, where two of them also
maintained a high response to the three mutated peptides
(Figure 3B). About the IL-2 response, most individuals
Frontiers in Immunology | www.frontiersin.org 5
respond to both WT and mutated peptides, where one
individual exhibited a higher frequency of IL-2+ CD8+ T-cells
in response to the GC9 WT and S54A/E55G peptides
(Figure 3C). Also, it was observed IL-10-expressing CD8+ T
cells in response to WT and the mutated peptides S54A/E55G
and S54A (Figure 3D). Noticeably, most individuals who
responded with IFN-g production also responded with IL-2
and IL-10 production.

Regarding the capacity of CD8+ T-cells to de novo cytotoxic
molecules, it was observed that most individuals responded to
mutated peptides (Figure 3); in some of them, with a higher
frequency of CD107a+Perforin+ CD8+ T-cells compared to WT
peptide (Figure 3F). Noticeably, the individual who showed the
highest frequency of IFN-g and TNF-a producing CD8+ T-cells
in response to all GC9 peptide also had the most increased de
novo production of granzyme B and perforin (Figures 3E, F, blue
points). This individual was the only one homozygous for HLA-
A*02 in our study cohort. Together, these results suggest that the
mutated peptides induce a functional response of CD8+ T-cells,
A B C

D E F

FIGURE 1 | CD8+ T-cell response to polyclonal antigen-independent stimulation. Frequencies of CD8+ T-cells positive for IFN-g (A), TNF-a (B), IL-2 (C),
IL-10 (D), and CD107a together with granzyme B (E) or perforin (F). Each point represents the CD8+ T-cell response in the negative control (NC), and after
stimulation with SEB and PMA/Ionomycin (PMA) for 12 hours. The Wilcoxon test was used to compare the response of cells stimulated with each polyclonal
stimulus and NC. Plots depict median and IQR, n = 10-12.
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where all individuals showed at least one positive response to any
of the cytokines evaluated.

Higher Polyfunctionality Index in Response
to GC9 S54T Peptide Is Associated With
High HLA-A*02:01 Binding Affinity
The functional quality of the CD8+ T-cell response was
evaluated, considering that the polyfunctionality of these cells
has been associated with the natural control of HIV-1 (25). As
observed in Figures 4A, B, all the peptides from the GC9 epitope
mostly induced a monofunctional response, being significantly
lower the percentage of monofunctional cells after stimulation
with the high HLA-A*02:01 binding affinity S54T peptide
compared to the low binding affinity S54A/E55G peptide.
Similar to GC9 WT peptide, TNF-a (purple arc) and
Frontiers in Immunology | www.frontiersin.org 6
granzyme B (blue arc) product ion dominated the
monofunctional response to S54A/E55G peptide, while for the
peptides associated with high affinity, most of the response was at
the expense of TNF-a and perforin (brown arc), with a higher
proportion of perforin-producing cells with S54A peptide
(Figure 4A). The granzyme B+ perforin+ profile was dominant
in cells exhibiting two functions, followed by the IFN-g+ TNF-a+

profile. Cells performing three or more functions were mainly
constituted by TNF-a+ granzyme B+ perforin+ cells Figure 4A).
Consistent with the lower proportion of monofunctional cells, a
higher index of polyfunctionality induced with peptide S54T was
observed, being significant only compared to the S54A/E55G
peptide (Figure 4C). Together, the results suggest that the quality
of the functional response of CD8+ T-cells could be better in
A

B C

FIGURE 2 | Polyfunctional CD8+ T-cell response to polyclonal antigen-independent stimulation. (A) Pie charts represent the average frequencies of CD8+ T-cells
cells secreting cytokines and cytotoxic molecules producing every possible combination of the six molecules analyzed after stimulation with Staphylococcal
Enterotoxin B (SEB) and PMA/Ionomycin (PMA) for 12 hours SEB and PMA/Ionomycin. The segments within the pie chart denote populations producing different
combinations of molecules (pie segment legend). The size of the pie segment correlates to the frequency of the particular population. The arcs around the
circumference indicate the particular molecule (see outer arc legend) produced by the proportion of cells that lie under the arc. Parts of the pie surrounded by
multiple arcs represent polyfunctional cells. (B) Percentage of cells exhibiting one, two, or more than three functions. (C) Polyfunctionality index. Wilcoxon test was
used for matched-paired samples. Plots depict the median and IQR, n = 10.
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response to S54T peptide, associated with higher HLA
binding affinity.

Lower Frequency of CD8+ T-Cell Co-
expressing CD107a+ Granzyme B+ Is
Observed to the Low HLA-A*02:01 Binding
Affinity Y79F/T84V/L85F Peptide
Also, we determined the pattern and magnitude of the CD8+ T-
cell response to the SL9 WT peptide and its mutated form Y79F/
T84V/L85F, associated with low affinity to the HLA-I molecule
(Table 1). Similar to the GC9 epitope, a heterogeneous response
was observed in the CD8+ T-cell stimulated with SL9 WT or
Y79F/T84V/L85F peptides, with most individuals responding to
the WT peptide (Figures 5A–D). No significant difference was
observed for any of the cytokines evaluated. However, three
individuals exhibited a higher frequency of IFN-g+ CD8+ T-cells
(Figure 5A), in response to the mutated peptide than SL9WT. In
contrast, two individuals showed a higher frequency of TNF-a or
IL-2+ CD8+ T-cells (Figures 5B, C).

However, a lower frequency of CD107a+ granzyme B+ CD8+

T-cells in response to the mutated peptide was observed than the
SL9 WT peptide (Figure 5E), suggesting that the lower HLA
Frontiers in Immunology | www.frontiersin.org 7
binding affinity of the Y79F/T84V/L85F peptide impairs the
cytotoxic capacity of CD8+ T-cells. No difference was observed
for CD107a+ perforin+ CD8+ T-cells (Figure 5F).

Lower Polyfunctionality Index in Response
to SL9 Y79F/T84V/L85F Peptide Is
Associated With Lower HLA-A*02:01
Binding Affinity
Finally, the functional profile of the CD8+ T-cell response to the
SL9 WT and Y79F/T84V/L85F was evaluated. Although no
significant difference was found, the Y79F/T84V/L85F peptide
exhibited a higher monofunctional response than SL9 WT
(Figures 6A, B). Perforin expression dominated the
monofunctional cell response for both types of peptides, and
bifunctional responses were predominantly granzyme B+

perforin+ (Figure 6A). The responses of three functions were
predominantly TNF-a+granzyme B+perforin+, and four
functions were essentially IFN-g+TNF-a+granzyme B+perforin+

(Figure 6A). Interestingly, the PI for Y79F/T84V/L85F was
significantly lower than SL9 WT (P=0.02, Figure 6C),
suggesting that the CD8+ T-cell response quality could be
affected by this mutation.
A B C

D E F

FIGURE 3 | Cytokine mediated and cytotoxic CD8+ T-cell response to GC9 WT, S54A/E55G, S54A and S54T. Frequency of CD8+ T-cells positive for IFN-g
(A), TNF-a (B), IL-2 (C), and IL-10 (D), CD107a co-expressed granzyme B (E) or CD107a co-expressed perforin (F). Each point represents the CD8+ T-cell
response in an individual to each peptide (10 µg/mL) after subtraction of the negative control. Wilcoxon test was used for matched-paired samples and comparisons
were made between each mutated peptide with the wild type version (GC9 WT). Plots depict the median and IQR, n = 11-12.
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The Functional Profile Against Peptides Is
Influenced by the Degree of Immunological
Reconstitution and the Time of Treatment
Also, the association between clinical variables and the functional
response of CD8+ T-cells to the peptides was evaluated. As shown in
Figure 7, the functional profile against the WT peptides of the two
epitopes is influenced by the degree of immunological
reconstitution (CD4+ T-cell count and CD4+/CD8+ T-cell ratio);
but also, the functional profile to the mutated peptides S54A and
Y79F/T84V/L85F could be associated with the treatment time.
DISCUSSION

The induction of HIV-specific CD8+ T-cell responses is
postulated as a promising strategy for developing an HIV
Frontiers in Immunology | www.frontiersin.org 8
vaccine and alternative immune therapy in HIV-infected
individuals (26). The STEP vaccine trial assessed the efficacy of
the MRK Ad5 HIV-1 gag/pol/nef vaccine, designed to stimulate a
T-cell mediated immunity. The vaccine was shown to be highly
effective in inducing CD8+ T cells in most of those vaccinated;
however, it did not prevent HIV-1 infection or reduce early
plasma viremia (27). Nonetheless, a follow-up analysis suggested
that a higher number of Gag peptides showed increased control
of HIV-1 replication of infected individuals who previously
received the vaccine (28). Another example of a CD8+ T-cell-
based vaccine is the HIVconsv immunogen, which consists of a
chimeric protein assembled from highly conserved domains
derived from HIV-1 genes Gag, Pol, Vif, and Env (29). This
vaccine strategy focuses exclusively on eliciting T-cell responses
toward more conserved and protective epitopes and has shown
to induce high frequencies of polyfunctional and long-lived HIV-
specific CD8+ T-cells capable of controlling HIV-1 replication in
A

B C

FIGURE 4 | Functional profile of CD8+ T-cell response to GC9 WT, S54A/E55G, S54A and S54T. (A) Pie charts represent the average frequencies of CD8+ T-cells cells
secreting cytokines and cytotoxic molecules producing every possible combination of the six molecules analyzed in response to GC9 WT and mutated peptides (10 µg/mL).
The size of the pie segment correlates to the frequency of the particular population. The arcs around the circumference indicate the particular molecule (see outer arc legend)
produced by the proportion of cells that lie under the arc. Parts of the pie surrounded by multiple arcs represent polyfunctional cells. (B) Percentage of cells responding
through one, two, or more than three functions. (C) Polyfunctionality index. Wilcoxon test was used for matched-paired samples and comparisons were made between each
mutated peptide with the wild type version (GC9 WT), but also among mutated variants. Plots depict the median and IQR, n = 11-12.
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vitro (28–31). Moreover, this vaccine strategy has been evaluated
in phase I clinical trial with a therapeutic purpose consisting of a
cohort of HIV-1+ individuals under cART. A shift in
immunodominance profiles of HIV-1-specific cells toward
more conserved epitopes was observed (32). Although this
vaccine strategy did not show a significant decrease in viral
reservoir size, these data encourage further clinical development
of this approach to a T-cell-based vaccine against HIV-1.

Identifying immunodominant peptides to activate CD8+ T-
cells is a field of active research, pointing to the design of vaccines
that elicit cellular immune responses (33). In this regard, peptide
binding affinity to the HLA-I molecule is a crucial determinant of
the epitopes to be considered as vaccine components (34).
Previous studies postulated that the peptide binding affinity to
the HLA-I molecule determines its immunogenicity (35, 36).
Frontiers in Immunology | www.frontiersin.org 9
Consistently, a study by Colleton et al. (37) observed that
potential HIV-derived epitopes having a high binding affinity
to its HLA-I molecule tend to be associated with a better immune
response, an increase in the CD4+ T-cell counts, and a slow
disease progression.

The most prevalent HLA-I allele is HLA-A*02, and alleles
grouped into the HLA-A2 supertype are expressed in multiple
populations around the world (38). For instance, in the
Colombian population, the HLA-A*02 allele frequency is
22.5% (39). Alleles belonging to the HLA-A2 supertype are
characterized by the ability to present an extensive repertoire
of peptides with a strong binding affinity compared to other
alleles, such as HLA-A*01 and HLA- A*24 (40). In addition, it
has been reported that approximately 90% of the epitopes
presented by HLA-A*02:01 can also be presented by other
A B C

D E F

FIGURE 5 | Cytokine mediated and cytotoxic CD8+ T-cell response to SL9 WT and Y79F/T84V/L85F. Frequency of CD8+ T-cells positive for IFN-g (A), TNF-a
(B), IL-2 (C), IL-10 (D), CD107a co-expressed granzyme B (E) or CD107a co-expressed perforin (F). Each point represents the CD8+ T-cell response in an individual
to each peptide (10 µg/mL) after subtraction of the negative control. Wilcoxon test was used for matched-paired samples. Plots depict the median and IQR, n = 11.
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subtypes of HLA-A*02 (41), suggesting that the identification of
epitopes presented by the HLA-A*02 is of great interest for the
therapeutic or prophylactic vaccine design in populations with a
high frequency of this allele.

Regarding the GC9 epitope, which is found in the p17 protein,
is located in a Gag region that presents high variability among
the sequences belonging to the HIV-1 subtype B (42). In Los
Alamos National Laboratory global HIV-1 sequence database,
one of the variants reported for the GLLESSEGC (GC9) epitope
is GLLESSEGC (S53T) (43), and CD8+ T-cells stimulated with
S53T can produce IFN-g (44). In genome alignments of strains
belonging to epitopes of HIV-1 subtype B, a high frequency of
S53T substitution is observed (43). Since this variant circulates in
a high proportion of the studied population, it was considered
the wild type variant of the GC9 epitope (GC9 WT) (15).
Furthermore, Gesprasert et al. (45) reported that the amino
acid variations at positions 5 and 6 of this epitope are directly
Frontiers in Immunology | www.frontiersin.org 10
caused by the HLA-A*02 allele. To the best of our knowledge,
this is the first study that demonstrates a functional CD8+ T-cells
response to the GLLETSEGC epitope and three mutated variants,
two of them (S54A and S54T) associated with an increase in the
HLA-I binding affinity.

Interestingly, we observed a higher quality of the CD8+ T-cell
response to the S54T mutated variants, suggesting a relationship
between HLA-I binding affinity and the antigen response. In the
acute phase of infection, mutated peptide variants have low
frequency and are thus poorly immunogenic; however, these
mutated variants are relevant in the chronic phase of the
infection, where a higher percentage of CD8+ T-cells are
specific for mutated variants (46). Furthermore, viral variants
in the chronic phase tend to be immunogenic, capable of
inducing a CD8+ T-cell response characterized by cells
expressing IFN-g and strong cytotoxic response against CD4+

T-cells pulsed with the variants (46). Consistently, here it was
A

B C

FIGURE 6 | Polyfunctional CD8+ T-cell response to SL9 WT and Y79F/T84V/L85F. (A) Pie charts represent the average frequencies of CD8+ T-cells cells secreting
cytokines and cytotoxic molecules producing every possible combination of the six molecules analyzed in response to SL9 WT and mutated peptides (10 µg/mL).
The size of the pie segment correlates to the frequency of the particular population. The arcs around the circumference indicate the particular molecule (see outer arc
legend) produced by the proportion of cells that lie under the arc. Parts of the pie surrounded by multiple arcs represent polyfunctional cells. (B) Percentage of cells
responding through one, two, or more than three functions. (C) Polyfunctionality index. Wilcoxon test was used for comparison. Plots depict the median and IQR, n = 11.
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observed that the S54A and S54T peptides induce a CD8+ T-cell
response composed of IFN-g, CD107a, and cytotoxic molecules.
Besides, an association between the level of CD8+ T-cell
polyfunctionality and the peptide-HLA-I binding affinity was
observed; specifically, higher CD8+ T-cell polyfunctionality was
found in response to the S54T peptide compared to S54A/E55G
peptide, associated with lower HLA-I binding affinity. Some
studies have shown that changes at the central position of an
epitope may alter its recognition by the T cell receptor (TCR) (47,
48) and that the level of polyfunctionality is influenced by the
affinity of the TCR-pMHC interaction (49). Thus, our findings
suggest that position six is a relevant site for epitope recognition
and that the change from a serine to a threonine may contribute
to the avidity of the TCR-pMHC complex.

The SL9 epitope has been reported as immunodominant
among chronically infected individuals expressing the HLA-
A*02:01 allele. Approximately 75% of HLA-A*02+ individuals
mount a CD8+ T-cell response against SL9 WT. Therefore, this
epitope is an attractive candidate for immunotherapy (50). A
study carried out by Boggiano et al. (51) showed that low affinity
variants of SL9 impair the recognition of this epitope in HLA-
A*02+ HIV-1-infected individuals, and therefore, the magnitude
of the CD8+ T-cell response. However, the immune response
induced by the mutated variant Y79F/T84V/L85F in the SL9
epitope has not been reported. A study by Jamieson et al. (52)
observed that the Y79F/T84V mutated variant decreased by
more than 50% the CD8+ T-cell response to SL9 WT,
suggesting that the decrease in response may occur due to the
loss of TCR recognition. In our study, there was a lower
degranulation and de novo production of granzyme B, and
lower polyfunctionality in response to Y79F/T84V/L85F
compared to SL9 WT. Importantly, residues P8 and P9 located
at the C-terminal region are critical anchor sites for the
interaction of the peptide with the F binding pocket of the
HLA-I molecule (53), so that mutations in these sites may alter
the affinity of the pMHC complex and therefore, reduce the
CD8+ T-cell response. Interestingly, a positive correlation
Frontiers in Immunology | www.frontiersin.org 11
between CD8+ T-cells producing de novo perforin and CD4+

T-cell counts was found in response to SL9 WT epitope,
suggesting that an optimal response to SL9 epitope in these
individuals could play a role in viral control. Indeed, perforin
secretion by CD8+ T-cells plays a significant role in eliminating
virus-infected cells is associated with the control of virus
replication observed in long-term elite controllers/non-
progressors (54).

Finally, consistent with our results, showing a functional
competence of CD8+ T-cells in response to both polyclonal
antigen-independent stimuli and HIV peptides, previous
studies have observed that in HIV-1-infected individuals on
prolonged cART, CD8+ T-cell dysfunction is partially
improved, even though the levels of activation and exhaustion
are maintained (55–57). Nevertheless, also, some studies indicate
that the functional profile of HIV-1-specific CD8+ T-cells in
treated individuals is maintained or even expanded (58). CD8+

T-cells from HIV-infected individuals improve their
polyfunctional response to SEB after 24 weeks of cART. In
contrast, this improvement is also observed for Gag-specific
CD8+ T-cells after 114 weeks of therapy (55). Similarly, other
studies have shown that IFN-g+ HIV-specific CD8+ T-cells
increase in magnitude after one year of suppressive cART (59).
In line with these data, we observed a higher polyfunctional
response to the mutated variants S54A and Y79F/T84V/L85F in
individuals with longer treatment duration, suggesting that the
quality of the CD8+ T-cells response to epitope variants may be
maintained in the setting of low-level viremia induced by cART.

One of the main limitations of our study is that we did not
sequence the circulating HIV strains in each individual to
confirm the presence of the Gag-derived epitope variants.
Furthermore, the emergence of mutations in HIV-1 strains is a
stochastic process involving mutation rates (60) and the
potential for the variation to persist (60). Thus, high and low
affinity mutations might appear with the same probability, but
these emerging mutations are selected depending on the virus
replication fitness (61, 62) and the immune pressure (63).
A B C

FIGURE 7 | Association between clinical variables and the CD8+ T-cell response to wild type and mutated peptides. (A) Correlation between the PI of CD8+ T-cells
after stimulation with the S54A (black dots) and Y79F/T84V/L85F peptides (gray dots), and the time on treatment of the HIV-1-infected individuals. (B) Correlation
between the PI of CD8+ T-cells after stimulation with the GC9 WT and CD4:CD8 ratio. (C) Correlation between the frequency of CD107a+perforin+ CD8+ T-cells after
stimulation with the SL9 WT and CD4+ T-cell counts. The rho and P-value of the Spearman test are shown.
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Nonetheless, our previous reports support the notion that a
process of immune pressure most likely occurred in these
individuals, providing a window of exposure to these peptides
at some point of infection (15, 64). Another limitation is that this
study considered only the HLA-I-peptide interaction; therefore,
the TCR repertoire effect in recognizing the mutated peptides
remains to be addressed, considering that changes in amino acids
can affect also the molecular interaction with TCR (65) and that
different clonotypes could constitute the Ag-specific T-cell
population, which also may contribute to the quality response
and the differences observed among individuals (66).

The present study characterized the CD8+ T-cells response to
mutant Gag-derived epitopes of circulating strains in the HLA-
A*02:01 context. Responses of CD8+ T-cells to the wild type and
mutated epitopes were polyfunctional, producing multiple
cytokines and cytotoxic molecules, resembling an effector
profile. The key findings of this study are (i) Consistent with a
chronic phase of HIV infection, we observed a high frequency of
CD8+ T-cells that responded to the viral variants with the
identified mutations; in most of the individuals, these variants
have not displaced the response to the WT epitopes, and mainly
induced a response mediated by IFN-g+ and cytotoxic molecules
expression. (ii) Quality of CD8+ T -cells responses (in terms of
polyfunctionality) is associated with the binding affinity of the
peptide to the HLA molecule. These results emphasize the
importance of considering in silico HLA-I binding affinity
predictions and evaluating the functional profile of CD8+ T
cells to identify potential epitopes candidates for vaccine design.
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