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To rapidly prognosticate and generate hypotheses on pathogenesis, leukocyte multi-cellularity
was evaluated in SARS-CoV-2 infected patients treated in India or the United States (152
individuals, 384 temporal observations). Within hospital (<90-day) death or discharge were
retrospectively predicted based on the admission complete blood cell counts (CBC). Two
methods were applied: (i) a “reductionist” one, which analyzes each cell type separately, and
(ii) a “non-reductionist” method, which estimates multi-cellularity. The second approach uses
a proprietary software package that detects distinct data patterns generated by complex and
hypothetical indicators and reveals each data pattern’s immunological content and associated
outcome(s). In the Indian population, the analysis of isolated cell types did not separate survivors
from non-survivors. In contrast, multi-cellular data patterns differentiated six groups of patients,
including, in two groups, 95.5% of all survivors. Some data structures revealed one data point-
wide line of observations, which informed at a personalized level and identified 97.8% of all non-
survivors. Discovery was also fostered: some non-survivors were characterized by low
monocyte/lymphocyte ratio levels. When both populations were analyzed with the non-
reductionist method, they displayed results that suggested survivors and non-survivors
differed immunologically as early as hospitalization day 1.

Keywords: COVID-19, pattern recognition, cutoff-free, error prevention, biological complexity, personalized
methods, multi-cellularity, personalized medicine
INTRODUCTION

The rapid extraction of more or new biologically interpretable information from the same data is a
classic priority of clinical medicine and biomedical research. This goal is pursued by integrative
approaches, which analyze several biological levels ‒including but not limited to genetic, molecular,
cellular, and supra-cellular relationships (1, 2). For example, in COVID-19, mass cytometry has
identified three disease phenotypes (3).
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Yet, integrative biology still faces significant computational
challenges (4). They derive from two competing needs. On the
one hand, technologists feel pressed to “reduce dimensions” ‒so
the time and cost involved in data analysis are reduced.
Therefore, only “principal” data components are prioritized.
This situation is driven by ‘the curse of dimensionality’:
datasets may not be statistically treatable because there may be
more parameters than data points (5). This operational emphasis
is known as reductionism: it assumes that the whole is the sum of
the parts. Consequently, inferences can be reduced to or
explained by a few “low-level” variables (6, 7).

On the other hand, clinicians and researchers need
biologically valid information fast, which should derive from
and be applied to specific patients. This need applies to “n=1”
situations, in which the number of patients is just one. While
appropriate in population medicine, approaches that utilize
averages are not applicable in personalized medicine (8).
Furthermore, clinicians must address the complexities and
dynamics of biological systems, such as those induced by host-
pathogen-environmental relationships.

While reductionist techniques explicitly diminish the number
of data inputs and, consequently, may miss information that
characterizes system-level organizations, non-reductionist
procedures do not do that. Instead, non-reductionist methods
investigate distinct data patterns revealed by complex and
dynamic biological systems (6, 7, 9–11). Is it possible to merge
the strengths while limiting the weaknesses of bio-complexity
and reductionism?

One approximation is to analyze multi-cellular interactions.
While multi-cellularity is a well-known concept a structure
composed of two or more cell types, the functions performed
by groups of cells are less comprehended (12). It is now
acknowledged that immune responses are not only determined
by low-level structures (such as a single cell type or subtype) but
also by groups of cells (13).

Immunological multi-cellular interactions may inform
beyond network analysis. One example of such models is to
capture one-to-many and many-to-one relationships (14). Such
a construct could provide a functional architecture to a theory
that demands “economical” solutions (i.e., to “do more, better or
faster, with less”). As recently described, one-to-many/many-to-
one designs can estimate both synergy and pleiotropy (11, 15).

To validate any method, the first step is to demonstrate
construct validity. Construct is a concept that emerged in 1955
(16). It refers to make a judgment on something that cannot be
measured directly. To explain this challenge, authors have
mentioned the problem faced by disciplines other than Physics
‒which have physical standards, such as the one-meter-long bar
made of platinum, adopted internationally after the 1875 Metre
Convention (16)). Medicine in general and Immunology in
particular lack such “standards”: there is no objective, universal
and static standard for “health” or “immunity” (17).

Therefore, a new problem now affects infectious disease-
related immunological methods: we need to measure concepts
(always abstract, i.e., non-measurable), but, on a daily basis, we
can only measure operations [consistently observable, i.e.,
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measurable (17)]. For example, one “construct” could be that a
particular cell type functions independently from the rest of the
immune system. Consequently, measuring such cell type alone
and in a non-structured format is sufficient to predict outcomes
mediated by the immune system. An alternative construct could
be that valuable information might result from structuring the
data in ways that link two or more cell types so that multi-cellular
interactions can be evaluated.

Because constructs may not function as expected, the
assessment of construct validity is the priority of validation
studies (16). They should be followed by examinations of
internal validity, in which the influence or influences of other
variables or “local” conditions on the construct are explored,
such as co-morbidities. For instance, a construct might be
considered valid when more or novel information is extracted
from structured data than from non-structured data. However, if
no extra information is extracted from structured data when co-
morbidity is considered, then internal validity is not
documented. Only after construct and internal validity have
been documented, additional studies (conducted in other
populations/places/times) could explore external validity, i.e.,
the influence of factors that exceed the host-pathogen
interaction, such as the environment (18).

These considerations illustrate some of the numerous
challenges that validations of immunological methods face.
Other aspects to consider include: (i) differentiation between
methods and techniques, (ii) discrimination between non-
structured and structured information; (iii) implications of
bottom-up vs. top-down approaches, (iv) selection of methods
that foster discovery, invention, or both; and (v) differentiation
between statistical significance and biomedical discrimination.

While techniques are not meant to answer scientific questions
(they are just a means to an end), methods are theory-related
and, in principle, can answer scientific questions (19). To that
end, information science may be considered. While non-
structured data may be non-informative, structured data may
generate information that eventually produces knowledge which,
after further translations, can support decisions ‒the Data-
Information-Knowledge-Wisdom or DIKW pyramid (20).

Bottom-up and top-down approaches are expressions of the
methodological approach adopted. Bottom-up approaches
(referred to as upward causation) derive inferences from the
analysis of primary (non-structured, “low-level”) data. In
contrast, Complexity theory predicts that system-level
information (i.e., highly structured data) can display
“emergent” properties, which are not shown by low-level (non-
structured) primary data. While reductionist methods ignore
downward causation, non-reductionist approaches accept both
downward and upward causation (21–23).

Emergent properties differ from resultant properties (7).
While resultant properties can be predicted from the
information provided by low-level, non-structured data,
emergent properties cannot be predicted from or reduced to
primary data. Methods that explore complex (system-level)
emergent properties differ markedly from those that assume all
individuals are similar when randomly selected (24).
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Methods also differ in their consequences. Some methods
allow doing something desirable but previously impossible to be
conducted (“inventions”), while other methods (“discoveries”)
identify something pre-existing but previously unknown (25, 26).

One example of an ‘invention that discovers’ is introducing
complexity into the data (i.e., data structuring), followed by
biological validation. As Brown and Botstein stated, ‘the goal is to
discover things we neither knew nor expected, and to see
relationships and connections among the elements, whether
previously suspected or not … this process is not driven by
hypothesis and should be as model-independent as possible’ (27).

These considerations matter when the goal is not to rule in or
out a hypothesis related to an average but to make, immediately,
a medical decision. In Biomedicine, the priority is to separate
what is different and bring together what is similar (28).

Biomedical discrimination can be facilitated when the
properties of complex systems are considered, such as
circularity, spatial relativity (ambiguity), and emergence (11).
These properties are very well conserved in evolution: they are
shown by human and non-human mammals as well as avian
species (29–31). One consequence of biological complexity is
that bottom-up approaches cannot anticipate outcomes
associated with emergent properties –to that end, top-down
methods are needed (32).

If, analyzing the same data, different methods vary in the
information provided, the one eliciting emergent information
(preexisting but previously unobserved) should be prioritized
(23). New methods should also address the limitations of classic
experimental designs (9). Because co-morbidities affect most
people after 55 years of age and experimental animals are
unreliable models for predicting human reactivity to many
pathogens and drugs, trials that ignore co-morbidities or rely
on studies conducted with inbred mice are likely to be invalid
(10, 33). While randomized clinical trials may claim internal
validity, they lack external validity (24). In contrast, pattern
recognition-based designs that detect immune profiles previously
unknown may result in substantial clinical efficacy, effectiveness,
and validity (34–36).

These considerations are here addressed while investigating
COVID-19 patients. Because it is prone to “discover”, a non-
reductionist design that explicitly captures ‘one-to-many/many-
to-one’ interactions was adopted (15). The chosen model also
meets the requirements of personalized medicine and helps
evaluate drugs and vaccinations (37). Approaches that satisfy
such needs show temporal directionality (38). While tested for
the first time in relation to COVID-19, the non-reductionist
approach has been previously explored in hantavirus infections,
sepsis, HIV, and other infections (11, 15).

This study aimed to evaluate whether a non-reductionist
method can (i) extract more information than alternatives and
prevent errors, such as confounding; (ii) predict outcomes,
such as survival or non-survival to SARS-CoV-2 infection; and
(iii) provide information that promotes personalized medicine.
The central research question was: does a method that
estimates complexity inform the same as, more, or less than
reductionist alternatives?
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MATERIALS AND METHODS

Participants – Study I
A non-interventional, observational, and retrospective cohort
study was based on hematological data collected from
laboratory-confirmed COVID-19 individuals admitted to the
Vardhman Mahavir Medical College (VMMC) and Safdarjung
Hospital of New Delhi, India. In-hospital mortality within 90
days of hospitalization was recorded. Demographic, clinical, and
outcome data were extracted from electronic medical records.
Diagnoses and treatments for novel coronavirus pneumonia
were made as described elsewhere (https://www.mohfw.gov.in).
The investigated population was composed of 19 women and 32
men (51 patients), who contributed 98 temporal observations. Of
those, 73 and 25 temporal observations corresponded to non-
survivors and survivors, respectively. This study was conducted
according to the protocol approved by the VMMC Institutional
Ethics Committee (IEC/VMMC/SJH/Project/2020-08/CC-52).

Participants – Study II
Following protocol ID:21-002778, CBCs collected from 101
COVID-19 patients (13 non-survivors, 88 survivors, who
contributed 286 temporal observations) hospitalized at Mayo
Clinic (Jacksonville, Florida, United States) were analyzed in
reference to 30-day, in-hospital mortality.

Inclusion and Exclusion Criteria
In both populations, all cases were treated at or before August
2020. Subjects older than 18 years of age, with SARS-CoV-2
positive test results conducted within 72 hours of admission,
radiographic changes consistent with COVID, and deemed to be
at risk of severe illness were enrolled. Discharge was based on
negative testing and alleviation of life-threatening conditions.
Subjects were excluded if they had a history of or were treated for
immunosuppression, malignancy, pregnancy, or had been
hospitalized for three or more weeks in the previous six
months. Supplementary Tables S1–S3 describe the demographic
and clinical features of all participants.

Study Data Collection
In population I, nasopharyngeal and oropharyngeal swabs and
blood samples were conducted at and after admission. The total
leukocyte count (TLC) and its differential percentages were
performed with a hematology analyzer (Horiba). More than
two dozen co-morbidities were investigated (Supplementary
Table S4). In population II, similar procedures were conducted
by Mayo Clinic diagnostic laboratories in accordance with
established protocols (https://www.mayocliniclabs.com/florida/).

Molecular Diagnosis
The diagnosis was based on detecting viral RNA in
nasopharyngeal and/or oropharyngeal swabs using real-time
reverse transcription-polymerase chain reaction [qRT-PCR
(39)]. Swabs were collectively pooled in a viral transport
medium (VTM; Himedia) followed by viral RNA extraction
utilizing commercial kits [Qiagen (40)]. Using a thermal cycler
February 2022 | Volume 13 | Article 794006
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(Bio-Rad, in population I; COBAS 8000 modular analyzer, in
population II), a two-step strategy for the diagnosis of COVID-
19 was followed as described elsewhere (41). The initial screening
was targeted for the E (envelope) gene. Subjects positive in the
screening test were confirmed by targeting a SARS-CoV-2
specific RdRp (RNA dependent RNA polymerase) gene and an
ORF-1b-nsp14 gene (42, 43). Individuals yielding at least one
positive result for either gene were regarded as infected with
SARS-CoV-2 (44).

Data Analysis
To capture biological complexity and, consequently, to detect
emergent patterns, pattern recognition was pursued with a
proprietary algorithm (US patent 10,429,389 B2) described
elsewhere (15, 28). The algorithm creates dimensionless
indices, which tend to reveal distinct data patterns. Such
indices are temporary guides that lack biomedical meaning
(here identified with letters in italics, e.g., AAA), whose only
purpose is to reveal distinct patterns. Once such patterns are
detected, the data are partitioned into subsets that include
patients immunologically similar within but dissimilar across
subsets. After the data are partitioned, the immunological
content of all subsets is analyzed statistically. The biomedical
significance of this method is determined by comparing its ability
to separate patient subsets that differ in outcomes (survival vs.
non-survival) with that of non-structured data (the classic CBC).
One variation of this approach is to generate three- or four-
dimensional (3D/4D) data structures that meet two criteria: (i)
elimination of data variability (noise) from all dimensions but
one, and (ii) detection of temporal changes even when
consecutive observations are conducted within a short period
and only a single patient is under evaluation. A structure that
exhibited one data point-wide line of observations (1dpwlo) was
chosen because it seems appropriate for the needs of
personalized medicine (15).

Principal Component Analysis and c2 tests were conducted
using Minitab 19 (Minitab Inc, State College, PA, USA). The
same software package was used to produce graphics.
RESULTS

The Classic Method
The analysis of CBC counts, or percentages did not distinguish
outcomes. Overlapping data distributions of the total leukocyte
count (TLC) and the percentages of neutrophils (N),
lymphocytes (L), or monocytes (M) prevented to differentiate
survivors from non-survivors (Figure 1A). Discrimination did
not improve when 3D relationships and age were considered
(Figures 1B, C). While age was marginally higher in males and
more males than females were investigated, neither age nor
gender explained outcomes (Figures 1D–G). Whether
expressed as the total number of patients or the total number
of observations, the proportions of gender-related cases did not
differ statistically (p>0.05, Chi-square test, Figures 1F, G). While
the median age differed statistically when outcomes were
Frontiers in Immunology | www.frontiersin.org 4
analyzed (p<0.01, Mann-Whitney test), substantial data
overlapping exhibited by survivors and non-survivors
prevented their differentiation (rectangle, Figure 1D). Data
overlapping remained even when the optimal cutoff was
selected –the highest point of the curve indicating the data
distribution of each outcome class. As graphically indicated by
purple bars, numerous survivors and non-survivors were
observed on both sides of the cutoff (Figures 2A–D).

The Pattern Recognition-Oriented Method
Distinct data patterns (such as perpendicular data inflections)
supported the view that outcomes were not randomly distributed
(Figures 3A–O). Such an inference was further supported when
redundant data patterns differentiated six subsets of patients
(Figures 4A–O and Supplementary Table S2).

While leukocyte data did not discriminate when each cell type
was analyzed in isolation (Figures 2A–C), the same data showed
total or quasi-total non-overlapping data intervals when immune
profile-related patterns were considered (Figure 5A).
Discrimination was not the result of any one spatial analysis but a
process that includedmany data combinations and spatial-temporal
assessments that could include many perspectives. Figures 5B, C
supported the hypothesis that discrimination cannot be
achieved with pre-established indicators: when three biologically
interpretable indices were investigated in 3D space (the lymphocyte/
monocyte [L/M], the monocyte/lymphocyte [M/L], and the
phagocyte/mononuclear cell [P/MC] ratios), five of the six patient
subsets overlapped (Figure 5B). Yet, when the same indices were
included in one complex ratio, patients were separated into two
non-overlapping groups (Figure 5C).

Applications in the Evaluation of Disease-
Related Hypotheses
Indicators that expressed distinct patterns helped evaluate earlier
claims on COVID-19, such as the double hypothesis that postulates
COVID-19 disease severity is associated with an increased M/L
ratio and lymphopenia. It was shown that increased values of the
M/L ratio do not always characterize non-survival –a subset of
non-survivors revealed very low values of the same ratio
(Figure 6A). Survivors and other non-survivors were included in
the remaining group (Figure 6B). Monocyte percentages did not
predict M/L ratios (Figure 6C). In contrast, high lymphocyte
values (even higher than those shown by the group that included
all survivors) were noticed in the low M/L non-survivor group
(Figure 6C). The hypothesis that lymphopenia always predicts
disease severity (i.e., death) was deemed invalid: five non-survivors
did not display lymphopenia (Figure 6D).

Other indicators reported to be associated with disease
severity also failed to discriminate. Both the neutrophil/
lymphocyte (N/L) ratio and the total leukocyte count (TLC)
confounded different outcomes (Figures 7A–D). However, one
particular data structure (a one data point-wide line of
observations or 1dpwlo) exhibited an orthogonal pattern that
distinguished two data subsets (here named high or low BBI,
Figure 7E). One of the data subsets was predominantly
(97.8% or 45/46) composed of non-survivors (high BBI subset,
February 2022 | Volume 13 | Article 794006
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p<0.01, c2 test, Figure 7F). The ratio between neutrophils
and mononuclear cells (N/MC) was higher in the group
predominantly composed of non-survivors (high BBI group),
which only marginally (7.7% or 4/52) overlapped with the low
BBI group of non-survivors (Figure 7G).
Frontiers in Immunology | www.frontiersin.org 5
Prognostic Applications
The proportion of survivors differed statistically among the six
patient groups (p<0.01, c2 test): 92% (23/25) of all observations
collected from survivors were clustered into the ‘D’ or ‘F’ groups
(Figure 8A). In contrast, less than one third of all non-survivors
A

B C

D E

F G

FIGURE 1 | Leukocyte-demographic summary of the New Delhi population. Survivor- and nonsurvivor-related overlapping observations were observed when the
total leukocyte counts (TLC) and relative percentages of blood neutrophils (N), monocytes (M) or lymphocytes (L) were analyzed (rectangles, (A). Three-dimensional
(3D) analysis of the data did not remove data overlapping even after age was considered (rectangles, (B, C). Age did not differ significantly between female and male
participants (D). While the median age was significantly lower in survivors than non-survivors, most observations of both outcomes displayed overlapping values (E).
Lack of statistically significant differences between the gender of participants and disease outcomes were further demonstrated when the unit of data analysis was
the individual (n=51 observations) and also when all 98 temporal data points were considered (F, G).
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were classified into the ‘D’ or ‘F’ groups. Similar proportions
were observed when patients –not observations− were the unit of
analysis: 95.5% (21/22) of all survivors were either ‘D’ or ‘F’
patients (Figure 8B).

In addition to emergence, other properties typical of complex
systems were observed, such as data circularity. At least two
temporal loops of data circularity were deduced because one data
cluster included observations from two periods (between 1 and 3,
and between 8 and 12 days post-admission), while two additional
clusters only included data reported between 3 and 7 days
(Figure 9A). Data circularity was not a random event: two
clusters only included observations generated by non-surviving
patients (Figure 9B).

Additional temporal patterns were observed: regardless of age,
non-survivors remained hospitalized six days or less (Figures 10A,
B). Corroborating data circularity, day-1 post-admission
observations differed from later (day 2-7) observations. Two
subsets of later observations were detected, which only included
non-survivors (Figures 10C, D). These two groups of non-
survivors ‒predicted as such between 2 and 7 days post-
admission‒ were identified as groups ‘B’ or ‘C’ (Figure 10E).
Frontiers in Immunology | www.frontiersin.org 6
Unlike multi-cellular indicators, neither isolated variables
(such as the TLC and the percentages of lymphocytes,
neutrophils, and monocytes) nor dimension-reducing
approaches (Principal Component Analysis or PCA) separated
non-survivors from survivors (Figure 11A). While the PCA only
distinguished two groups of co-morbidities (Figure 11B), the
non-reductionist method identified four sets of co-morbidities
(Figures 11C–E).

Applications in Personalized Medicine
Personalized analyses were facilitated by one data point-wide line
of observations (1dpwlo). These data structures were designed to
remove data variability from all dimensions except one (along
the line) and express temporal data directionality (arrows that
indicate where the data came from). These structures
distinguished patients with a travel history and those who
experienced hypertension (Figures 12A–F).

Reproducibility and Statistical Validity
External validity (generalizability) was explored together with
statistical validity. To that end, a similar research design was
A B

C D

FIGURE 2 | Continuous distributions of New Delhi leukocyte data. Overlapping data distributions were also observed when data points ‒which, inherently, are
discrete or discontinuous‒ were assumed to be continuous (A–D). Considering that the highest value of each line represents the cutoff that separates survivors from
non-survivors and projecting these lines over a histogram, non-survivor observations are depicted as dark pink bars and survivor observations are displayed as sky
blue bars. Assuming that survivors are “positive” results and non-survivors are “negative” results, purple bars display the magnitude of false-negative and false-
positive results, i.e., survivors that show observations within the non-survivor side of the plot (“false-positives”) and non-survivors that show observations within the
survivor side of the plot (“false-negatives”). It is shown that misclassifications (purple bars) cover a substantial if not the whole range of the data.
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applied to a group of 101 COVID-19 patients treated in
Jacksonville, Florida, United States. Because several CBCs were
collected from each patient, 286 temporal observations were
available for analysis.

The analyses demonstrated that, in both populations,
biological discrimination might occur without statistical
significance and vice versa (Figures 13A–H). Temporal trends
also revealed similarities between the two populations
(Figures 14A–F). Yet, demographic features differed between
Frontiers in Immunology | www.frontiersin.org 7
these populations: the median age of New Delhi patients was 19
years younger than the median age of Jacksonville patients
(p<0.01, Mann-Whitney test, Figure 14G).

Recognition of data patterns facilitated applications. For
example, in the New Delhi dataset, 72.7% (16/22) of all survivors
were identified, at day 1, outside the cluster where non-survivors
predominated (Supplementary Figure S1A). In the Jacksonville
population. the same indicators discriminated, at hospitalization
day 1, 36.4% (32/88) of all survivors (Supplementary Figure S1B).
A B C

D E F

G H I

J K L

M N O

FIGURE 3 | Three-dimensional pattern recognition of the New Delhi leukocyte data. Fifteen 3D data structures derived from the blood leukocyte data were explored
for the presence of distinct (non-random) patterns. Each axis of each plot describes hypothetical and dimensionless indicators designed to express multi-cellular
relationships, which are identified with two or three letters in italics (A–O). By reporting outcomes, this construct can simultaneously (i) show distinct patterns, if they
exist (e.g., a perpendicular data inflection) and (ii) reveal whether one (or both) outcome(s) is/are clustered. To prevent artifacts, this process depends on redundancy:
inferences are based on, at least, two separate data structures. This set of figures includes data structures showing: (i) a single (and perpendicular) data inflection (A);
(ii) a data bifurcation (B); (iii) a perpendicular data inflection with some survivors clustered in one data segment (C); (iv) a rendundant expression (D); (v) a perpendicular
data inflection with most survivors clustered in one data segment (E); (vi) a data bifurcation with a cluster that includes most survivors (F); (vii) a perpendicular data
inflection that includes a data segment only composed of survivors (G); (viii-xi) four structures that reveal three data segments, perpendicular to one another (H–K);
(xii) a partially redundant structure (spatially similar to B), which shows a cluster of survivors (L); (xiii) three perpendicular data inflections that include two data segments
only composed of non-survivors (M); (xiv) a partially redundant structure (spatially similar to G), which differs in two aspects: it identifies a data segment only composed
by non-survivors, which is perpendicular to the remaining observations (N); and (xv) a partially redundant structure (similar to N) which provides an additional indicator
that separates non-survivors (high values of the verticql axis) from survivors and displays very low values in the vertical axis (O).
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When a different data structure was considered, 37.5% (34/88)
of all Jacksonville survivors were identified at day 1 and, in
addition, two subsets of survivors (‘A’ and ‘B’) were
distinguished, which displayed non-overlapping distributions of
the MC/N ratio (Supplementary Figure S1C, D). Unlike the New
Delhi group (where the values of 5 of 22 non-survivors overlapped
Frontiers in Immunology | www.frontiersin.org 8
with survivors), the identification of Jacksonville survivors was
100% sensitive: no observation collected from a non-survivor was
found within survivor subsets ‘A’ and ‘B’ (Supplementary Figure
S1C). Also, 16 additional non-survivors were detected in the
Jacksonville dataset when a third data structure was measured.
Therefore, 54.5% (48/88) of all survivors were distinguished when
A B C

D E F

G H I

J K L

M N O

FIGURE 4 | Data partitioning (labeling) of the New Delhi leukocyte data. After a substantial number of distinct patterns was observed (Figure 3), the patient identity
of each data segment was identified. When at least two data structures identified the same group of patients, each patient group is identified with a unique identifier.
This process identified six data groups (identified as ‘A, B,…F’). For instance, group ‘C’ included observations that were easily identified: they were a separate (non-
overlapping) cluster, recognized by, at least, four data structures (A–D). Two other patient groups (‘D’ and ‘E’) were also identified by the spatial patterns shown by
five data structures (E–I). A third patient group (‘B’) was unambiguously detected by five data structures (J–N). The two remaining patient groups (‘A’ and ‘F’) were
differentiated by a double process: (i) from one another, they were distinguished by a perpendicular data inflection (H, J) and (ii) from the remaining patient groups,
by default. Patient group ‘E’ was also identified by the data structure (O).
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three data structures were considered (Supplementary Figure
S1E). With a fourth data structure, 5 more survivors were detected
in the Jacksonville group, resulting in a cumulative detection of
Frontiers in Immunology | www.frontiersin.org 9
60.2% (53/88) of all survivors being identified at day 1
(Supplementary Figure S1F).

Other potential applications included the detection of subsets
of a given outcome, which may be found in different proportions
across populations. For instance, in the New Delhi population,
68% (15/22) of all non-survivor observations were located within
a distinct data subset, in which non-survivors represented 93.8
(15/16) of all data points. In contrast, only 23% (5/22) of all
Jacksonville non-survivor observations were found in the same
data range (Supplementary Figures S1 G, H).

Because some data patterns were shared by both populations
and some patterns were only displayed by one population,
this methodology showed to be both robust and discriminant
(Figures 15A, B). This approach also estimated temporal stages of
the disease progression process. As depicted in Figures 15C, D,
tentative temporal labels (early vs. late inflammation) can be
generated by integrating chronological information (days after
admission) with spatial data patterns. These tentative labels
were consistent with the immuno-pathological literature: the
double ([MC/N]/[P/L]) ratio is expected to be higher in the later
or resolution phase of non-complicated inflammations than in
earlier stages (Figure 15E).
DISCUSSION

Overview
This study conducted the first evaluation of a non-reductionist
methodology that explores system-level and dynamic properties
of biological complexity in COVID-19 patients. While typical
proofs-of-concept are limited to construct validity, this report
explored the four fundamental threats to cognitive inferences:
(i) construct, (ii) internal, (iii) external (generalizability or
reproducibility), and (iv) statistical validity.

To estimate construct validity (16), CBC data helped compare
the informative ability of the novel and the classic approach. The
inclusion of patients with various co-morbidities investigated
internal validity (18). The assessment of two populations affected
by SARS-CoV-2 explored external validity (18). Statistical
validity was estimated by considering both biomedical
discrimination and statistical significance (28).

The reason for such a comprehensive analysis was the
combinatorial and multi-level nature of the method
investigated. An approach potentially influenced by many
biological factors may require simultaneous investigations that
involve numerous perspectives ‒not consecutive explorations in
which only a few aspects interact.

Methodological Rigor and Implications
In addition to several types of validity, methodological rigor was
emphasized. While no consensus exists on the meaning of
methodological rigor; some authors suggest that rigor reflects
the reasoning employed behind the design, i.e., a process that
includes grounds (empirical data), claims (theoretical
conclusions derived from the data), and warrants, i.e., rules of
reasoning applied to the data to make inferences (45).
A

B

C

FIGURE 5 | Immunological content of patient groups. Non-overlapping
percentages of lymphocytes and neutrophils distinguished two data groups
('C' and 'E') from all the remaining patient groups, while non-overlapping
intervals of at least one cell type differentiated group ‘B’ from four of the five
remaining groups (A). A complex ratio that captured five multi-cellular
relationships (L/M, M/L, [L/M/M/L], P/MC, and [[L/M/M/L]/P/MC]) differentiated,
with non-overlapping data intervals, patient groups ‘A’, ‘D’, and ‘F’ from one
another (B). Discrimination was not due to any one (single or complex) variable
but to interactions: when the three constitutive elements displayed in (B) were
analyzed individually (the L/M, M/L and P/MC ratios), confounding was
observed: five of the six immune profiles were mixed. This means that the
emergent information that discriminates only occurs when the most complex
(system-level) interaction is assembled in 3D space (C). L, lymphocytes; N,
neutrophils; M, monocytes; P, phagocytes (N and M); MC, mononuclear cells
(L and M).
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Accordingly, rigor was here conceptualized by nine domains that
were categorized into three groups:

A. Data That Support and/or Discriminate

(i) individual-related (personalized) inferences,

(ii) population-related inferences,

(iii) time-related inferences (e.g., those that may distinguish early
vs. late inflammation),

(iv) prognostic inferences (e.g., those that may distinguish late
inflammation that leads to recovery from late inflammation
that leads to chronicity),

(v) inferences on the validity of classic methodological concepts,
including stat ist ical s ignificance and biomedical
discrimination; and

(vi) subtypes within the same outcome (e.g., two or more types of
survivors, as defined by immune profiles);
B. Designs of Data Structures That Estimate
or Prevent

(vii) complexity (e.g., two or more levels of complexity, such as
complex and straightforward ratios),
Frontiers in Immunology | www.frontiersin.org 10
(viii) omissions (e.g., two or more data structures or redundant
analysis), and/or

(ix) waste of time and other resources; and
C. Data Reports That Promote

(x) reproducibility of critical results by independent investigators
and/or clinical applications.

This strategy translated as 103 plots described in 16
composite figures. While this emphasis on methodological
rigor is uncommon in the literature, it is suggested it was
necessary because this study is the first one that, within the
context of COVID-19, explores not only a method but also a
theory that considers the complexity of multi-level/multi-cellular
and dynamic immunological interactions.

By exploring several co-morbidities reported in populations
located in different continents, the analysis of complex and
dynamic multi-cellular interactions revealed a language both
flexible and robust, which could express both similarities and
differences, as Figures 15A, B demonstrate. While binary
methods are self-limiting (46), the one evaluated was not: it
demonstrated it could distinguish three or more patient-
related patterns.
A B

C D

FIGURE 6 | Evaluation of hypotheses and discovery (I). A subset of non-survivors showed very low values of the M/L ratio (A). This finding seemed to disprove the
hypothesis that only high M/L values are associated with disease severity. Instead, at least two subtypes of non-survivors were discovered, which displayed high and
low M/L values, respectively. Because another data subset included other non-survivors and all survivors, three subtypes of non-survivors were found (B). The
monocyte percentage did not distinguish high from low M/L non-survivors (box, (C). Discrimination of these two subtypes of non-survivors was due to a lower
percentage of lymphocytes, which are observed in the high M/L groups (horizontal lines, C). The hypothesis that lymphopenia is always associated with disease
severity was not supported: five non-survivors did not show lymphopenia (D).
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While other technologies were not considered because this
study prioritized rapid turnaround time and operational
simplicity, the pattern recognition-oriented method was
compatible with other technologies. For instance, when flow
cytometry is used, a sub-cellular/cellular/supra-cellular
integrated analysis is generated (47, 48).
Frontiers in Immunology | www.frontiersin.org 11
It is suggested that the combinatorial nature of a method
designed to capture both one-to-many and many-to-one
relationships may lead to a new type of research publications.
A single or few (reductionist) question(s) may be replaced by a
large number of visualizations that, without pre-established
cutoffs, attempt to uncover distinct data patterns that,
A B

C D

E

G

F

FIGURE 7 | Evaluation of hypotheses and discovery (II). The hypotheses that claim high values of the neutrophil/lymphocyte (N/L) ratio or the total leukocycte count
(TLC) are associated with disease severity were also tested. Neither hypothesis was supported: both the N/L ratio and the TLC confounded different outcomes and
immune profile-defined patient groups (A–D). However, when two dimensionless indicators (named ‘BBI’ and ‘BBK’) were explored, a one data point-wide line of
observations (1dpwlo) exhibited a perpendicular inflection that distinguished two data subsets (E). One of the data subsets (named ‘high BBI’) was predominantly
(97.8% or 45/46) composed by non-survivors (p<0.01, c2 test, (F). Most high BBI non-survivors displayed a higher ratio of neutrophils over mononuclear cells
(N/MC ratio) than most non-survivors (G). Therefore, the analysis of complex but hypothetical immunological relationships discovered a prognosticator: high values of
the N/MC ratio may predict non-survival.
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immediately, can be biologically validated and converted into
research and/or clinically actionable knowledge (20, 49).
Major Findings
Despite demographic differences among patients, the analysis of
complex multi-cellular indicators seemed applicable across
populations. Specifically, the data supported ten inferences:
(i) Data structuring (e.g., creation of new metrics that capture
multi-cellular interactions) is essential ‒the same data, non-
structured, may lack meaning;

(ii) Biomedical discrimination (non-overlapping data distributions
of biologically distinct outcomes, e.g., survivors and survivors)
may differ from statistical significance;

(iii) Biologically grounded prognosis may be generated early,

(iv) Pattern recognition fosters non-binary detection (three or
more entities, including two or more types of survivors and
non-survivors, can be discriminated);

(v) Error prevention: emergent properties (e.g., data circularity)
may reveal clusters that ameliorate spatial relativity (data
ambiguity);

(vi) Disease stage (inflammatory phase) may be estimated in real
time;

(vii) Without population-related averages, one data point-wide
lines of temporal observations promote personalized
information;

(viii) Data patterns can identify departures from generic
assumptions (e.g., “lymphopenia is a hallmark of disease
severity”) and discover actionable information;

(ix) Rapid and translational (clinician-friendly) information is
generated, which does not require novel specialized training
or time-consuming technology; and

(x) Population-specific information may also be identified.
Frontiers in Immunology | www.frontiersin.org 12
Many, if not all, of these findings relate to a major construct
used in Biomedicine since 1947: the “contingency or 2 x 2 table”
A B

FIGURE 8 | Population-level prognosis. The proportion of survivor-related observations differed statistically among the six immunological groups (p<0.01, c2 test).
Most (92% or 23 out of 25) survivor-related observations were clustered into the ‘D’ or ‘F’ patient groups; in contrast, 68.5% (50 out of 73) nonsurvivor-related
observations were found within the remaining four groups (A). Similar proportions were observed when patients –not observations− were the unit of analysis: 95.5%
(21 out of 22) survivors were classified as either ‘D’ or ‘F’ patients, while 68.9% (20 out of 29) non-survivors were clustered within the remaining groups (B).
A

B

FIGURE 9 | Assessment of potential errors patterns and additional discovery
The data collected in the New Delhi study exhibited circular patterns. Data
circularity was deduced because: (i) the same data cluster included observations
from two periods (between 1 and 3, and 8 and 12 days post-admission), and
(ii) two clusters only included data reported between 3 and 7 days (A). While
such expressions might suggest ambiguity ‒and, consequently, lack of
discrimination‒, pattern recognition detected actionable information: two of
the three clusters only included non-survivors (B).
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paradigm (50, 51). This model lacks validity and promotes
confounding. Because it is inherently binary (it only accepts
two alternatives, such as “disease-negative” and “disease-
positive”), it ignores and/or confounds three or more
biologically distinct situations (46). Because it assumes that
disease prevalence is constant, the sensitivity and specificity
estimates generated by the “2 x 2 table” model are not valid
when disease prevalence differs. As the COVID-19 pandemic has
abundantly illustrated, disease prevalence may change very
rapidly, and it may grow or diminish following a quasi-
exponential function (50, 52).
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The “2 x 2 table” paradigm operates together with cutoff-
based models, which assume that continuous data can be
converted into discontinuous entities (53). Figures 2A–D
illustrate the errors induced by the “2 x 2 table” model when it
is applied with thresholds. If the highest value of each data
distribution was hypothesized to be the limit that separates
survivors from non-survivors, the evidence refutes such a
hypothesis: a simple histogram will show a high number of
misclassified observations (Figures 2A–D). While cutoff-based,
binary models do not apply to infectious diseases in which three
or more biological conditions may occur and disease prevalence
A B

C D

E

FIGURE 10 | Temporal patterns. No survivor was reported in the Indian population after six in-hospital days (A, B). Day-1 post-admission observations differed from
later observations: two subsets of later observations were detected, which only involved non-survivors (C, D). Patient groups were predominantly explained by
temporal patterns, e.g., one pattern was only explained by group ‘C’ and a second pattern was mainly explained by group ‘B’ (E).
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differ across populations (and, over time, within the same
population), the non-reductionist approach appears to be
an alternative.

An additional problem to be prevented involves spatial
relativity (54). This term refers to the apparent lack of
relationship between space and time, which results in a large
Frontiers in Immunology | www.frontiersin.org 14
portion of the space being occupied by observations collected
within a short period of time and vice versa. As observed in
Figure 9A, data points collected over 4 days occupied a larger
area of the plot than those reported over 12 days. This feature
could lead to errors if predictions were based on linear models.
However, when data circularity (an emergent property) and
A B

D E

C

FIGURE 11 | Reductionist and non-reductionist analysis of co-morbidities. A method meant to reduce dimensions (Principal Component Analysis or PCA) was applied
to explore outcomes and co-morbidities. The PCA did not distinguish survivors from non-survivors (A). While the PCA discriminated two sets of co-morbidities (namely,
(i) pneumonitis (B/L pneu), acute renal distress syndrome (ARDS) and septic shock (SS) (green squares) as well as (ii) B/L pneu, ARDS and diabetes mellitus type 1 (DM)
(blue circles, B), such sets were also detected by the non-reductionist method, which, in addition, differentiated (iii) travel history (purple triangles) and (iv) two subsets of
sepsis (red diamonds and yellow triangles, C–E).
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pattern recognition are considered, some clusters of data points
are prognostic: observations collected at days 3 to 7 were only
composed of non-survivors (Figure 9B).

These examples suggest thatmethods that capturewell conserved
features expressed by many vertebrate species may be more
informative than reductionist analyses (15, 29, 55). In addition, the
analysis of dynamic complexitymay complement statistical analysis:
Frontiers in Immunology | www.frontiersin.org 15
when statistical significance was not reached, pattern recognition
identified a substantial percentage of observations only associated
with one outcome (Figures 13B, D, F, H).

Hypothesis Generation
Two considerations emerged, which induced a question. Given
that (1) the same viral variant infected both survivors and non-
A B

C D

E F

FIGURE 12 | Personalized, directionality-based prognostics. Data structures designed to remove data variability from all dimensions except one facilitated
personalized assessments (A–F). For example, the data of 13 patients that reported a travel history displayed a one data point-wide line of observations (1dpwlo,
(A, B). This data structure removes variability from all dimensions except one (along the line). Consequently, temporal changes can only occur along the line, and
they will be detected even with a single observation (inferences are based on the directionality shown by arrows, not numerical values). Panel (C) shows the temporal
data patterns generated by three patients, which expressed both a top-down flow (two individuals) and a bottom-up temporal directionality (one individual, (C).
Applications of temporal 1dpwlo are depicted in panels (D, E) they describe one 1dpwlo with different outcomes clustered at each end of the line of data (D). When
time is considered, non-survival is predicted when, over time, observations move from the right to the left (D, E). Therefore, a single change in temporal data
directionality (an arrow that changes directions) is sufficient to predict, at a personalized level. For instance, patient #16 was showing a left-to-right, top-down
temporal flow between day 1 and 4 (a survival prediction, panel (F). However, by day 5 the directionality of the data reversed, which predicted non-survival (F). Panel
(D) confirms such a prediction.
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G H

FIGURE 13 | Statistical significance and biomedical discrimination across populations. Some complex and dimensionless indicators (named BBF, AAT, and BBT)
were explored at the first hospitalization day, both in the Indian dataset and in data collected from patients treated in Jacksonville, Florida, United States (A–F). To
validate these indicators, the mononuclear cell/neutrophil ratio was used (G, H). Supporting the hypothesis that the dimensionless indicators were biologically valid,
both populations reported similar findings: the dimensionless indicators and the M/CN ratio approached statistical significance when survivors and non-survivors
were compared or were statistically significantly higher in survivors than in non-survivors. While differences between non-survivors and survivors reached statistical
significance in the New Delhi population, they displayed overlapping data distributions that did not facilitate discrimination. In contrast, the Jacksonville population
approached (but did not reach) statistical significance and many survivors displayed a substantial number of observations clearly above the upper limit of non-
survivors (rectangles, (B, D, F, H). Consequently, two inferences were supported by the data: (1) the non-reductionist method appears to possess external validity (it
is robust to population-related variability), and (2) statistical significance is not synonymous with biomedical discrimination ‒one may occur without the other.
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survivors in both populations investigated, and (2) since
hospitalization day 1, patients that eventually survived differed
immunologically from patients that died while hospitalized, can
the virus be the only reason for the immunological difference, or
could patients differ immunologically before the infection took
place? The fact that survivors and non-survivors shared the
pathogen does not support the hypothesis of viral led only
pathogenesis. Instead, the possibility that patients who did not
survive might have a different immune profile before the
infection took place cannot be ruled out. Addressing such a
hypothesis or any hypothesis with a method that tends to extract
more information from the same data than alternatives may
rapidly foster new research initiatives.

Reproducibility
Readers can co-validate the basic concepts of the method. The
validity of the construct (comparing the information generated
by the classic and the alternative approach) can be demonstrated:
Frontiers in Immunology | www.frontiersin.org 17
the analysis of leukocyte counts or percentages of survivors and
non-survivors (facilitated by Supplementary Tables S2, S4) can
reproduce the overlapping distributions shown in Figures 1, 2, 7.
Similarly, the Principal Component analysis reported in
Figure 11 can be recreated. By making three-dimensional
plots of the complex indicators reported in Supplementary
Table S2, readers can confirm that data structuring leads
to more interpretable and usable information than non-
structured data.

Caveats and Conclusions
Because numerous biological differences exist within and
between individuals (including disease stages when patients are
hospitalized, demographic, co-morbidity- and population-
related differences), several data structures (redundant analysis)
should be explored, and inferences should not depend on
any one data structure. To promote validity, redundancy
is essential.
A B C
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F

FIGURE 14 | Survivor- and nonsurvivor-related temporal immunological trends. When time was considered, the three complex indicators reported in Figure 13
displayed similar magnitudes in both populations (A–F). The ratio between survivors (S) and non-survivors (NS) was higher than 1 at all time points. Immunological
differences between survivors and non-survivors were not explained by demographic factors: the median age was much lower in the New Delhi than in the
Jacksonville group (G). Note I: given the few temporal data points available in the Indian dataset, all observations collected at day 2 or later were merged; i.e., day-2
values for the Jacksonville dataset do not necessarily correspond to day-2 values of the New Delhi dataset. Note II: while a total of 152 patients were investigated
(51 from New Delhi and 101 from Jacksonville), day 1 observations only included 145 of such individuals. The difference is due to 6 N. Delhi patients whose first test
was not conducted on hospitalization day 1.
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FIGURE 15 | Temporal and population-specific patterns. Supporting both the generalizability and the informative potential of the non-reductionist approach, both
similar and different inferences were found across populations (A, B). Integration of immuno-pathology with pattern recognition and temporal assessments was also
documented. For instance, two distinct data clusters observed when chronological data (hospitalization days) were observed (C) could be postulated to represent
early or late inflammation (D). The presumptive inflammatory phase was biologically supported when a biologically explicit (although complex) ratio was analyzed:
early inflammatory processes are consistent with increased phagocyte/lymphocyte ratios and late or recovery processes tend to be characterized by higher
mononuclear cell/neutrophil ratios, that is, lower values of the [MC/N]/[P/L] complex ratio are expected in early inflammation and higher values of the same indicator
may be found in later stages (E).
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