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Background: Africa is laden with a youthful population, vast mineral resources and rich
fauna. However, decades of unfortunate historical, sociocultural and leadership
challenges make the continent a hotspot for poverty, indoor and outdoor pollutants
with attendant stress factors such as violence, malnutrition, infectious outbreaks and
psychological perturbations. The burden of these stressors initiate neuroinflammatory
responses but the pattern and mechanisms of glial activation in these scenarios are yet to
be properly elucidated. Africa is therefore most vulnerable to neurological stressors when
placed against a backdrop of demographics that favor explosive childbearing, a vast
population of unemployed youths making up a projected 42% of global youth population
by 2030, repressive sociocultural policies towards women, poor access to healthcare,
malnutrition, rapid urbanization, climate change and pollution. Early life stress, whether
physical or psychological, induces neuroinflammatory response in developing nervous
system and consequently leads to the emergence of mental health problems during
adulthood. Brain inflammatory response is driven largely by inflammatory mediators
released by glial cells; namely astrocytes and microglia. These inflammatory mediators
alter the developmental trajectory of fetal and neonatal brain and results in long-lasting
maladaptive behaviors and cognitive deficits. This review seeks to highlight the patterns
and mechanisms of stressors such as poverty, developmental stress, environmental
pollutions as well as malnutrition stress on astrocytes and microglia in neuroinflammation
within the African context.
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INTRODUCTION

Astrocytes: From Physiology to
Neuroinflammation
Astrocytes are glial cells of the central nervous system (CNS) of
neuroectodermal origin. In fact, neurons, oligodendrocytes and
astrocytes derive from a common multipotent self-renewable
neural stem cell in a process that occurs with precise timing (1).
While neurogenesis takes place early during embryonic
development and is accomplished at about birth, gliogenesis
follows neurogenesis and is finalized in postnatal life (1), with
synaptogenesis and neuronal function depending on astrocyte
morphology, maturation and regional specification (1).

Astrocytes play key physiological functions in the CNS that, if
altered, may lead to or amplify tissue damage and
neuroinflammation and hamper relevant brain functions, such
as cognition and memory.

First, astrocytes contribute to the complexity of CNS
structure. Evolution has led to the relative expansion of
astrocytes, especially in the human brain where the number of
astrocytes exceeds that of neurons and astrocytes present
complex arborisation architectures (2). CNS damage triggers a
complex response in astrocytes, which become reactive and
undergo transcriptional remodelling, early upregulation of the
intermediate filament glial fibrillary acidic protein (GFAP),
morphological changes and proliferation (3). This reaction
alters physiological tissue topology and may lead to scar
formation as observed in traumatic, neuroinflammatory and
neurodegenerative CNS disorders (3, 4). By contrast, decreased
astrocyte numbers and GFAP signals have been evidenced in
mental disorders (5), underlying a distinct pattern of astrocyte
pathology. Astrocytes are involved in the control of
neuroinflammation, as conventional or inducible GFAP
deficient mice display exacerbated expression of Toxoplasma
encephalitis, Staphylococcus aureus-induced brain abscess,
spinal cord and brain injury (reviewed in 6). In the
experimental model of multiple sclerosis, the experimental
autoimmune encephalomyelitis (EAE), astrocyte depletion may
worsen or attenuate disease depending on whether depletion
occurs immediately after EAE induction or during the chronic
phase respectively (7, 8), indicating that GFAP positive cells may
display protective or detrimental functions at distinct stages
of disease.

Second, astrocytes regulate neuronal survival via release of
and/or response to crucial mediators like neurotrophins, well
known growth factors for neurons to which astrocytes may
become sensitive under pathological conditions and react with
the synthesis of neurotoxic nitric oxide (9, 10). Furthermore,
astrocytes sense neuronal activity as their fine extensions take
contact with pre- and post-synaptic neurons (forming the so-
called tripartite synapse) and bear neurotransmitter receptors
(11). They may modulate the concentration of glutamate, the
main excitatory neurotransmitter in the brain, present in the
synaptic cleft via specific transporters called glutamate/aspartate
transporter (GLAST) and Astrocytic Glutamate Transporter 1
(GLT1) (11). In vitro and in vivo evidences indicate that
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neuroinflammation is characterized by alterations in
expression of glutamate transporters and glutamate buffering
(12, 13). The accumulation of glutamate in the extracellular space
causes neuronal damage by excitotoxicity, a phenomenon observed
in neurological and psychiatric disorders (reviewed in 14).
Furthermore, astrocytes can provide metabolic precursors of
glutamate back to the neurons through monocarboxylate
transporters (MCT), thus satisfying neuronal metabolic needs
and limiting novel neurotransmitter synthesis (15, 16) Though
scarce information is available about astrocyte metabolism in
neuroinflammatory mouse models, it is known that respiration-
deficient astrocytes may survive as glycolytic cells in vivo in the
absence of tissue inflammation and damage and that inflammatory
cytokines increase glycolytic rates of astrocytes in vitro (17, 18),
suggesting sustained glycolytic proficiency of the astrocyte
in neuroinflammation. Interestingly, disruption of MCT
transporters in astrocytes in vivo causes amnesia, underlying a
key role for astrocyte-neuron metabolic coupling in long term
memory formation (19).

Third, neuronal activity strongly depends on continuous
supply of oxygen and glucose through the cerebral blood flow
(15). Astrocytes cover most of the cerebral vasculature and create
neurovascular units which link synaptic activity to vessel tone,
thus regulating microcirculation (15). Further, astrocytes are key
constituents of the blood-brain barrier (BBB) and their
interaction with endothelial cells regulates BBB development
and function (20). On the one hand, astrocyte factors control
formation of tight junctions, blood flow, microvascular
permeability, cell matrix and angiogenesis; on the other hand,
endothelial signals regulate astrocyte maturation and expression
of receptor proteins and ion channels on the glial membrane
(20). Thus, for example Aquaporin-4 (AQP4) expression at
astrocytic endfeet in contact with the vasculature together with
the inward rectifying K+ channel Kir 4.1 provides local control of
water and ion homeostasis (20). Autoantibodies directed to
AQP4 are at the basis of the pathogenesis of neuromyelitis
optica (NMO), an inflammatory CNS disorder characterized
by astrocyte loss, axonal damage and demyelination (21–23),
while the occurrence of anti-Kir 4.1 antibodies in MS is
controversial (24). Further, Kir 4.1 has been reported as
downregulated in ALS and epilepsy (25, 26), while upregulated
in animal models of depression (27). Notably, mice lacking
astrocyte Kir 4.1 display ataxia and seizures and die
prematurely (28) while animals overexpressing astrocytic
Kir4.1 develop a depression-like phenotype (27).

Fourth, astrocytes can exert and control immune reactions in
the CNS (29–31). Similarly, to microglia, they bear a repertoire of
pattern recognition receptors (PRR), which allow recognition of
genome, proteins, and glycolipids of microbial origin (aka
pathogen-associated molecular patterns, PAMP) (29). PRR
include toll-like receptors, scavenger receptors and
complement factors and have been initially identified as tools
of the innate immune system to fight infections (29). However,
PRR also recognize danger signals, that are endogenous
molecules released or activated during stress or damage under
sterile conditions (and collectively called DAMP, damage-
May 2022 | Volume 13 | Article 795089
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associated molecular patterns) (32). DAMP include molecules
from the extracellular matrix (e.g. biglycan and fibrinogen),
cytosol (e.g. S100 proteins and heat shock proteins), and
nucleus (e.g. histones) (reviewed in 32) Activation of innate
immune pathways has been demonstrated in infectious,
autoimmune, neurodegenerative disorders (29, for review).
PRR engagement on glia cells activates pro-inflammatory
responses required to eliminate or, at least, to contain
infectious agents or damage. Critical is the activation of the
transcription factor NF-kB, which controls gene expression of
inflammatory cytokines, chemokines, nitric oxide synthase,
apoptosis regulators (6, 29). In fact, in vivo inhibition of NFkB
signalling in astrocytes protects from spinal cord and brain
injury, EAE and toxic demyelination (33–36).

While rare in physiology, under pathological settings reactive
astrocytes may modulate adaptive immunity in the CNS in
several ways. Reactive astrocytes may release chemokines, such
as CXCL10 and CCL2, which attract T cells from the circulation
into the CNS parenchyma (37, 38) and in vivo deletion of
astrocyte CCL2 and CXCL10 protects from EAE (39, 40).
Next, T cell-derived factors such as IFN g stimulate the
expression of MHC class II molecules on astrocyte membrane,
so that these glia cells become efficient in presentation of CNS
antigens (e.g. myelin proteins) to T cells (41, 42), thus potentially
sustaining local autoreactive adaptive immune responses. On the
other hand, IFN g can be released also by regulatory T cells and
IFN g signalling has been shown to be protective in vivo in EAE
(43–45). Astrocytes are also great producers of TGFbeta, a
known immunosuppressive mediator, and blockade of
TGFbeta synthesis in astrocytes enhances tissue pathology in
stroke and infectious CNS models (46). Further, astrocytes have
been shown to express CTLA4, CD39 and CD73 (47, 48), which
limit T cell activation, and FasL and TRAIL which trigger T cell
deletion (31, 49). Regarding the interaction with B lymphocytes,
astrocytes may release CXCL12, which promotes B cell
recruitment to the CNS (50) and BAFF, a mediator important
for B cell development, survival and function (51). Overall, these
observations indicate a key role for astrocytes in regulating
adaptive immune reactions. Activated astrocytes support B cell
survival and activation, in turn, activated B cells induce a better T
cell proliferation (52).

Microglia in Health and Disease
Microglia, a set of small glial cells within the CNS, were first
described by del Rıó Hortega (53). Several decades passed before
the importance of microglial functions in the CNS were
appreciated. In 1920s, del Rı ́o Hortega had provided
histological evidence that these cells derive from the mesoderm
and not the ectoderm; the source of all other neural cells
(oligodendrocytes, neurons and astrocytes) (53–55). It is now
accepted that these glial cells originate in the yolk sac during fetal
development and emerge at an earlier stage than tissue
macrophages (56–58). Under basal condition, microglia display
a multitude of physiological effects in such cellular processes as
neurogenesis, cerebral angiogenesis, synaptic pruning, and
oligodendrogenesis during brain development in both rodents
and primates (59–61). Indeed, microglia contribute to
Frontiers in Immunology | www.frontiersin.org 3
neurogenesis and olidendrogenesis during prenatal and
neonatal period (59, 62, 63). They emerge concomitantly with
newly-born neurons and heavily invade neurogenic niches such
as the ventricular and subventricular zones. This spatiotemporal
co-existence between microglia and newly-born neural
cells (neurons and oligodendrocytes) indicate the potential
role of microglia in the regulation of neurogenesis and
oligodendrogenesis (62, 63). For example, a subgroup of
microglia expressing CD11c play a major role in the initial
phase of myelination in developing brain (61). Through their
phagocytic activity, microglia contribute to the removal of cell
debris of dying neural cells and create optimal environment for
neuronal connectivity.

Microglia affect cell survival/death programs of neural cells
and remodel synaptic connection between developing neurons
by secreting a variety of pro- and anti-inflammatory cytokines
(Tumor Necrosis Factor (TNFa), Interleukin 1b (IL-1b), IL-6
and IL-10) and growth factors such as insulin growth factor 1
(IGF1) and brain-derived neurotrophic factor (BDNF) (61, 64–
67). Thus, any alteration to these developmental effects of
microglial can have long-lasting impact on brain structure and
function (65, 67–69).

In addition to their homeostatic effects, microglia play a
major role in the immune response to a variety of insults
including pathogens (viral, bacterial or parasitic), trauma,
stroke, and neurodegenerative diseases (70). For their immune-
related function, microglia are referred to as the immune-
competent cells of the CNS. Under basal condition, microglia
form a network of cells characterized with small perikarya and
long thin processes. These processes dynamically “sniff” their
environment for signs of tissue damage such as high extracellular
concentrations of calcium ions or adenosine triphosphate (ATP)
(71). A damage to neural tissues triggers a cascade of cellular
events within microglia. These cells send long processes towards
the site of damage and adopt morphological changes whereby
their cell bodies become enlarged and adopt an amoeboid shape.
Their processes become short and thick. The genetic program of
activated microglia is shifted towards cell division and
phagocytosis and is characterized by the synthesis and release
of a myriad of inflammatory cytokines and trophic factors (71).
These cellular and molecular responses appear to be beneficial
during the acute phase of insult. However, a prolonged activation
of microglia can become deleterious (72, 73). While microglial
cellular response appears to be non-specific, many line of
evidence suggest that these cells exert a strong pro-
inflammatory response during the initial phase of insult
followed later by a regulatory response that consist mainly in
the production of anti-inflammatory cytokines (IL-4 and IL10)
and trophic factors (73, 74). The secondary wave of anti-
inflammatory cytokines and trophic factors contributes to the
recovery process of CNS tissue from the injury.

Astrocytes and Microglia Cross-Talk
Cell-cell interactions control CNS physiology and pathology (6,
75–84). Astrocyte-microglia interactions, for example, play
important roles in CNS development, health and disease (31,
85, 86). In 2012 Ben Barres and colleagues reported that LPS
May 2022 | Volume 13 | Article 795089
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induces a neurotoxic phenotype in astrocytes (87). Follow up
mechanistic studies stablished that LPS induces the production
of IL-1a, TNF-a, and complement component 1q (C1q) by
microglia, which act on astrocytes to induce neurotoxic activity
mediated by a lipid and additional as-yet unidentified neurotoxic
factor (79, 88). In addition, these microglia-induced neurotoxic
astrocytes display decreased phagocytic activity, and the reduced
expression of neurotrophic factors (79). Finally, the analysis of
patient samples suggest that these neurotoxic astrocytes
contribute to the pathology of multiple neurologic diseases,
including Huntington’s disease, Alzheimer’s disease, and
multiple sclerosis (MS), among others (79). Collectively, these
findings opened new avenues about the microglial regulation of
astrocyte responses, and its contribution to CNS pathology. For
instance, microglia can likely produce both positive and negative
regulators of astrocyte pathogenic responses (see 80). Several
molecules have been found to be involved in astrocyte-microglia
communication, and the control of these cell-cell interactions by
the commensal flora in specific diseases such as MS (89–96). For
instance, VEGF-B was identified as a microglial product that
boosts disease-promoting astrocyte responses. The transcription
factor aryl hydrocarbon receptor (AHR) in microglia boosts
TGFa while repressing the production of VEGF-B.
Furthermore, AHR can also be activated in the CNS by
metabolites produced by the commensal gut flora (which as a
result of their chemical structure cross the BBB) and induced by
environmental chemicals (83, 97–99). These thus contribute to
regulation of astrocyte-microglia communication and CNS
pathology (see 100).

Astrocytes can control microglia responses (100). Although
multiple mechanisms likely mediate the control of microglial
responses by astrocytes, some candidate pathways have already
been identified. For example, fate-mapping and other studies
established that astrocytes produce GM-CSF (100), 101), a
known regulator of microglial activation (84, 102, 103).
Astrocytes have been shown to modulate microglial responses
via the production of GM-CSF (8, 104). Similar observations
have been made for IL-6 (105–109). The above-mentioned
findings exemplify the important role astrocyte-microglia
interactions in CNS physiology. The recently developed
RABID-seq (Rabies Barcoding In Droplets) which uses a
library of genetically barcoded rabies virus in combination
with single-cell RNA-seq to study CNS cell-cell interactions in
vivo (110), identifying interacting cells, the mechanisms
involved, and the biologic consequences of those interactions,
has helped to highlight an important role for microglial-astrocyte
interactions mediated by EphrinB3 and EphB3 in the promotion
of CNS pathology (110) by inducing proinflammatory gene
expression in the CNS (111), potentially via the activation of
MAPK and the NLRP3 inflammasome (112, 113). In addition,
EphB3 signaling in astrocytes induces the production of D-serine
(114), which promotes synaptic damage via NMDA receptors
(115). We also found that EphB3 in astrocytes is activated by its
membrane-bound ligand EphrinB3 expressed by microglia.
Interestingly, EphrinB3 harbors an intracellular domain that
can trigger specific signaling pathways. Indeed, reverse
Frontiers in Immunology | www.frontiersin.org 4
signaling via EphrinB3 boosts the expression of NF-kB-driven
transcriptional programs in microglia that promote
inflammation and neurodegeneration (see 104, 110).

Early-Life Immune Challenge
In Africa, vast populations are exposed to stressors across all age
groups with early life exposures carrying the greatest
neurological burdens. These early life challenges alter the
developmental trajectory of the CNS and consequently result
in neurodevelopmental disorders (116). Epidemiological studies
have shown a correlation between early life immune challenge
and brain related diseases such as schizophrenia (117, 118),
autism spectrum disorder (119, 120) and attention deficit
hyperactivity disorder (121). It was suggested that the
emergence of these brain related diseases are linked to altered
early life function of microglia, as these cells play a pivotal role in
synaptic pruning, neuronal connectivity and removal of dying
neurons during brain development (122). Furthermore,
depletion of microglia during early life induces persistent
changes in social behavior such as reduced anxiety-like
behavior and impaired working memory (123, 124). These
effects were absent when microglial activity was inhibited
during adulthood (125).

Experimental studies have shown that early life exposure to
pathogens such as bacteria or viruses alters brain development
trajectory and consequently leads to persistent cognitive deficits
and behavioral dysfunctions. Indeed prenatal or neonatal
exposures to either viral mimetics (polyinosinic:polycytidylic
acid: PolyI:C) or bacterial active ingredient (Lipopolysaccharide:
LPS) reprograms the hypothalamic-pituitary adrenal axis and
affects brain development and plasticity that lasts into adulthood
(126–129). These long-lasting effects are not due to the pathogens
per se, but are triggered by maternal immune response to these
pathogens (130, 131). We and others have shown that maternal
immune activation alters adult brain plasticity and cognitive
functions via maternally borne mediators such as interleukin-6
(IL-6) (132–134) and transforming growth factor-b (TGF-
b) (135).

In addition to pathogens, non-infectious agents such as stress
(136–138) or exposure to air pollution (diesel exhaust particles)
can also activate maternal immune system and consequently
alters fetal brain development (139). Indeed, exposure to these
non-infectious agents induces microgliosis in the fetal brain and
leads to an enhanced reactivity of microglia later in life, which is
accompanied with cognitive dysfunction such as learning and
memory deficits (140).

Long-Lasting Impact of Maternal
Infection in Africa
The major cause of deaths in sub-Saharan Africa is infectious
diseases (69%). A significant percentage of these deaths is
associated with infection during pregnancy because pregnancy
is characterized by an immune tolerant state to prevent rejection
of the fetus (141–143). A relatively large epidemiological study
has shown that the frequency of maternal infection and its
resulting complication was higher in African low-income
May 2022 | Volume 13 | Article 795089
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countries (15 African countries), when compared to high-
income non-African countries. Indeed, obstetric infection led
to maternal mortality of about 10.7% in low-income countries
when compared to that seen in high income countries (about
4.7%). These infections include urinary tract infections,
chorioamnionitis and abortion related infections (144, 145).
While pregnancy-associated maternal death had received much
attention, data concerning the impact of maternal infection on the
brain development of children born to surviving mothers is scarce.
As discussed above, experimental evidence strongly suggest that
maternal infection can alter the developmental trajectory of fetal
brain mainly by microglia. Few epidemiological studies have
focused on pediatric patients in Africa (Gambia, Nigeria). In a
cohort of 128 children in Gambia, a sizable fraction of these
pediatric patients showed brain related delay such as learning
difficulties (55%) and speech disorder (42%) (146). A similar set of
studies in Nigeria show that children showed signs of epilepsy
(60%), intellectual disability (7.2%) (147) and cerebral palsy
(16.2%) likely due to early life events such as birth asphyxia and
infection (148). These correlative studies strongly suggest that the
prevalence of adult behavioral dysfunction and cognitive deficits in
this African population is due, at least in part, to early life exposure
to infectious pathogens.

Despite the prevalence of maternal infection, and its potential
role in the emergence of such diseases as schizophrenia and
autism spectrum disorder, few epidemiological and clinical trials
have addressed these developmental diseases in Africa (149, 150).
A recent study has shown that schizophrenic patients from South
Africa (Xhosa ethnic group) carry damaging mutations in genes
involved in synaptic function, such as receptors for glutamate
and g-amino-butyric acid (GABA) as well as postsynaptic
proteins, scaffold proteins, and cell adhesion molecules (151).
These mutations are comparable in nature to those observed in
schizophrenic patients in Sweden (152). The mutation of these
genes has been associated with intellectual disability,
schizophrenia and autism spectrum disorders (153). It appears
that the prevalence of schizophrenia is related to early life
challenges such as childhood trauma (154). Similarly, maternal
malaria has been associated with altered placental-fetal barrier by
macrophage inflammatory mediators and complement factors
(C5a), which can lead to altered fetal brain development (155).

The long term consequences of maternal infection on fetal
brain development and function in sub-Saharan Africa has
received little attention despite the overwhelming prevalence of
infection during perinatal period. There is a need for studies that
focus on the mechanistic link between perinatal infections and
adult brain plasticity and function in Africa. These studies should
take into consideration that subsaharan African mothers
frequently experience multiple infections (parasitic, viral,
bacterial) throughout pregnancy, which could be compounded
with such factors as stress and malnutrition (156).

Malnutrition and Neuroinflammation
Besides the lack or shortage of food, several sociocultural factors
e.g. poverty, poor social infrastructure, food security,
uncontrolled population explosion, land and crop degradation,
and lack of access to health services, contribute to the rising levels
Frontiers in Immunology | www.frontiersin.org 5
of malnutrition in Africa (157, 158). Others factors include
famine, limited knowledge about safe hygiene practices,
pediatric environmental enteropathy (PEE), natural disasters as
well as internal population displacements as a result of civil
(religious or ethnic) unrest leading to children staying in
unhygienic camps amongst others (159, 160). In particular, a
strong link has been established between nutrition, inflammation
and neurodevelopment from foetal life to adolescence on the
continent (161). Malnutrition can be generally defined as the
intake of insufficient, excess or disproportionate amount of
energy and/or nutrients (162, 163). In all its manifestations,
malnutrition presents as either (i) undernutrition, (ii)
micronutrient imbalance, (iii) overnutrition and, (iv) diet-
related non-communicable diseases (e.g. cardiovascular disease,
stroke, diabetes etc.) (157, 163).

Scope of the Problem
The statistics of numbers and people group affected by
malnutrition creates a wide scope of problems in Africa. As a
major global public health burden, the greatest concern is among
infants, children, adolescents and women (particularly pregnant
women) representing the most vulnerable category at greater risk
of malnutrition (164–166). Globally in 2014, about 462 million
adults worldwide were underweight, while 1.9 billion were either
overweight or obese. An epidemiological study performed in
2016 showed that approximately about 155 million children
under the age of 5 years were suffering from stunting, whereas
41 million were overweight or obese. In 2020, 40% of 149 million
(59.6 million) stunted children under 5, 27% of 45 million (12.2
million) estimated to be wasted, and 24% out of 38.9 million
estimated to be overweight or obese were from Africa (167; 163).
The complicating fact however is that while there is a global
decline in malnutrition, Africa has continued to record an
increase in all forms of malnutrition, and for the most part,
cases of undernutrition (168). This trend remains a serious
concern as one of the leading cause of early child morbidity
and mortality (157, 164).

The most common form of malnutrition recorded in
developing countries most especially in Africa is undernutrition.
Key indicators of undernutrition are wasting (low weight-for-
height), stunting (low height-for-age) and underweight (low
weight-for-age) (169, 170). Children under the age of five are
the most severely affected of these vulnerable groups, with an
estimated 45% of deaths attributed to undernutrition in this age
group, mostly in low- and middle-income countries (170–172).
Malnutrition is also responsible for significant abnormalities in
physical and mental development with undernourished children
usually having cognitive performance deficits and serious learning
challenges (167, 173).

The continuous exposure of children and vulnerable groups
to infectious agents under poor sanitary and unhygienic
environment is of particular interest and has been shown to
permanently weaken the immune systems and also cause a
chronic inflammation of the intestine referred to as pediatric
environmental enteropathy (PEE) in children (174–179). This
gut disorder is as a result of both structural and functional
changes in the intestinal mucosa characterized by intestinal villi
May 2022 | Volume 13 | Article 795089
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atrophy, malabsorption, disruption of the intestinal gut barrier
and an increased permeability (180, 181). This then makes it
easier for microbes to translocate through the altered intestinal
barrier. Over 75% of children in developing countries have been
reported to affected by PEE (182).

Maternal Malnutrition
Gressens et al. (183) noted a reduction on cortical astrogenesis in
mice pups fed with low protein diet during the first fourteen days of
gestation. Although the effect of malnutrition on the permeability of
the blood-barrier (BBB) is not yet fully understood, alterations in
astrocyte development might affect BBB formation (184, 185).
Malnutrition during pregnancy causes a reduction on GFAP
expression on rat hypothalamus (186) and hippocampus (187),
and mice cerebellum (188). While several studies have reported a
reduction on synaptic contacts after a period of malnutrition (189),
recent data suggests that microglia dysfunction in their ability to
respond to environmental stimuli during gestation and lactation
affects synaptic plasticity via epigenetic regulatory mechanisms (67).
In the adult brain, synaptic plasticity and basal neurotransmission
has been found to be affected by certain soluble factors (e.g. BNDF)
released by microglia (185).

In general, early‐life malnutrition in the form of overnutrition
or undernutrition can have a lasting impact on astrocytes. Abbink
et al. (190) posited that both overnutrition and undernutrition
present with a very similar phenotype, specifically increased GFAP
expression and glucose transporters. It is worthy of note that in the
case of overnutrition, although energy levels remain high, a lack in
nutrients might still occur. This could suggest that the observed
changes are associated with alterations or shortages in circulating
nutrients, changes in the metabolic profile, or just general energy
imbalance, rather than it being a specific effect of either a lack or
excess of energy. In a recent study conducted by Kogel et al. (191)
on the effect of long-term semi-starvation on primary cortical rat
astrocytes using an undernutrition model, authors provided
morphological and genetic evidence for pro-inflammatory
astrocyte subtype-induction suggesting that inflammatory
processes are a relevant factor in undernutrition. This response
is characterized by elevated pro-inflammatory cytokines and genes
associated with starvation. Furthermore, a shift toward the pro-
inflammatory A1-like phenotype and an altered morphology
suggest an increased astrocytic reactivity.

Crosstalk Between Malnutrition, Maternal
Immune Activation and Neuroinflammation
Maternal immune activation (MIA) occurs when the measured
levels of inflammatory markers in the dam exceeds normal range
(192). It is usually a result of triggering of the maternal immune
system by either infectious or non-infectious (malnutrition in
this context) stimuli (193). This often leads to the release of
inflammatory cytokines and immunologic alterations, and their
transmission via innate placental immune activation to the
developing foetus leading to adverse phenotypes particularly in
the central nervous system (193–195).

There are strong emerging data from both animal and human
studies that malnutrition-induced MIA results in foetal brain
programming and modifications of their immune and metabolic
Frontiers in Immunology | www.frontiersin.org 6
genes through inflammatory and epigenetic mechanisms during
critical periods of CNS astrocytes, microglial and immune system
development (190, 194–197). Indeed, malnutrition during in utero
and early life, notably due to undernutrition in the mothers, can
affect the children’s growth, metabolism, immune function, brain,
and cognitive development (198–200). Interestingly,
neuroinflammation has recently been revealed as one of the key
underlying mechanism responsible for deleterious consequences
of diet-induced MIA on offspring neurodevelopment.

Microglial priming has been proposed as a major
consequence of MIA, representing a vital connexion in a causal
chain that leads to the wide spectrum of neuronal dysfunctions
and behavioural phenotypes observed in the juvenile, adult or
aged offspring. (201). In a study conducted by Ozaki et al. (202),
authors observed maternal immune activation in mid-pregnancy
led to an increase in IL-6 expression in embryonic microglia, but
did not cause any marked changes in their morphologies either at
E18 or after birth. However, they observed a sustained alteration
in the microglial process motility pattern and deficits in
behaviour when MIA was induced earlier (at E12).

These observations further strengthen the notion of the
existence of a connecting link between maternal immune
activation during pregnancy, and neuroinflammation and
neurodevelopment disorders in the offspring. A significantly
programmed imbalance in the expression of inflammatory
mediators such as interleukin 6 (IL-6), IL-1 a, IL-10, tumor
necrosis factor-a (TNFa), C-reactive protein or the complement
system has been insinuated to play a role (118, 131, 134, 203–205).

Together, malnutrition-induced MIA induces the release of
damage-associated molecular patterns (DAMPs), which then
activates Toll-like receptors on maternal innate immune system
and placental cells to produce pro-inflammatory cytokines (206–
208). Following this, placental innate immune activation occurs
and by means of passive transport as well as active placental
production, cytokines across the placenta barrier with resultant
interaction and activation of transplacental metabolic,
hypothalamic–pituitary–adrenal (stress) and neuroendocrine
signaling pathways (209). This consequently leads to foetal
microglial priming, activation and neuroinflammation in the
developing brain and also, the induction of immunological
memory on the foetal microglia and the peripheral immune
cells (194, 197). The resultant outcome is the occurrence of a
dynamic crosstalk between the CNS immune cells (microglia) and
peripheral immune cells (monocytes) (210). Second “hits” or wave
of stress after birth (for instance by malnutrition) usually results in
exaggerated responses and chronic inflammation in both the brain
and periphery, manifesting as lifelong neurobehavioural deficits
and may perpetuate a continuous cycle (194, 201, 211; Figure 1).

The Vicious Tripartite Cycle of
Malnutrition, Poverty and
Neuroinflammation
The relationships between nutrition, inflammation and
neurodevelopment has been noted to be reciprocal; this further
supports the concept of the vicious cycle posed by malnutrition
(161, 163, 196). Poverty amplifies the risk of, and risks from,
malnutrition. People who are poor are more likely to be affected
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by different forms of malnutrition. Also, malnutrition increases
health care costs, reduces productivity, and slows economic
growth, which can perpetuate a cycle of poverty and ill-health
(161, 212; Figure 2). This portends significant risk for the
African population viz neuroinflammation.

Pollution-Induced Neuroinflammation
in Africa
Africa is home to major stressors of the CNS that are known to
alter the microglia-astrocyte physiology. This section reviews
existing knowledge on glia interaction in the face of pollutants
Frontiers in Immunology | www.frontiersin.org 7
(metals, pesticides and contaminated air. Other than infectious
diseases which are not fully addressed in the review, these
pollutants pose as predisposing factors to CNS disorders in
Africa, owing to the immense exponential rise in use and
impact of chemicals in health, economic growth and
sustainability especially in sectors of agriculture, mining,
education and several other industrial processes. This has come
with grave complications on communities of both users and non-
users when exposed to these pollutants with bio-accumulation in
the soil, water and in the air (213, 214). In a twist of tales, Africa is
neither a major producer nor a consumer of chemicals in global
FIGURE 2 | Vicious cycle of Malnutrition, Poverty and Neuroinflammation.
FIGURE 1 | Malnutrition and Maternal immune activation, Neuroinflammation Crosstalk. HPA, Hypothalamic-Pituitary-Adrenal Axis.
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terms, but has the highest levels of pollution because of non-
existent or poorly implemented government environmental laws
and waste disposal policies, poorly regulated mining sector, fossil
fuel burning and wrong agriculture practices in the
pharmaceutical, beverage, and food industries (215–217 and
214). From the lead (Pb) and cadmium (Cd) rich electronic
dumpsite of Agbobloshie in Ghana, vanadium (V) rich crude oil
and gas flares in Nigeria’s Niger-Delta, illegal mining in Congo
and several other African countries, communities release multiple
neurotoxic factors daily with the young and women being most
vulnerable (218). Since early life stress produces altered
neurobehavioural deficits in adult life (128). Many of these
stress factors directly or indirectly easily cross the placenta, and
the blood–brain barrier (which is not fully developed in in
humans until about 6 months post-partum) and may lead to
congenital malformations and risk of neonatal neurotoxicity
(219–221). These pollutants exist in the form of several sulfides,
sulfates, hydroxides, phosphates, silicates oxides, and organic
compounds (222, 223) and may also cause acute or chronic
effects on the CNS in the general population (216, 224, 225).

Neuroinflammatory Mechanisms
of Pollutants
Increasing evidence shows that astrocytes-microglia interplay
may determine the phenotypic outcomes of the innate immune
cells in disease conditions of the CNS. Glial activation can either
aggravate tissue injury or promotes brain repair, most likely due
to the nature of stress factors like the pollutant, dose and time
course of exposure, and precise interplay of signals from the
environment (226). Chemical pollutants include metals such as
selenium, cadmium, arsenic, nickel, mercury, chromium, lead,
zinc, and cobalt which are of paramount attention due to their
potential role in toxicity when in trace amounts as well as other
toxic pollutants such vanadium, tin oxide, copper etc. (227, 228).
Other chemical pollutants include pesticides and air pollutants.

In metal pollution, microglia and astrocytes are known to
express endogenous pattern recognition receptors (PRRs) in
response to signals released by necrotic neurons or other
pathologic products produced during disease including oxidized
proteins and lipids (229), messenger ribonucleic acid (mRNA),
fibronectin, hyaluronic acid, heat shock proteins, amyloid-beta,
neuromelanin, and alpha-synuclein (230, 231). These are capable
of responding to a variety of damage-associated molecular
patterns (DAMPs) and in turn activate inflammation and
neurodegeneration promoting molecular signaling events (232).
The production of inflammatory mediators is further increased by
activated glia, leading to a feed-forward cycle of inflammation and
further release of neurotoxic mediators of tissue injury. The
activated glia release diverse inflammatory factors including
cytokines, chemokines, reactive oxygen species (ROS), and nitric
oxide (NO) that are toxic to neurons (233). Cytokines such as
tumor necrosis factor-alpha (TNFa) and interleukin-6 (IL-6) are
often upregulated very quickly in activated glial cells and can
directly amplify inflammation through recruitment of both innate
and adaptive immune cells, leading to neuronal apoptosis (231).

When exposed to pollutants, microglia and astrocytes typically
increase the production and release of inflammatory cytokines
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which enhance (ROS) generation, impede antioxidant activity, and
result in neuronal injury or neuronal loss in the brain or other
parts of the CNS (234). While the precise mechanisms are not yet
fully understood, microglia have been shown as the first line of
action and they respond in a dose-dependent fashion, while
astrocytes are known to accumulate more toxic elements and
express cytokines much later. Exposure to metals such Lead (Pb),
Methyl mercury (MeHg), Vanadium (V), Tin Oxide (TO) results
in gliosis by activating Toll-like receptor 4 (TLR4) -myeloid
differentiation primary response 88 (MyD88) -nuclear factor
(NF)-kB signaling cascade, increasing receptor phosphorylation
and the activation of Mitogen-activated protein kinase (MAPK)
cascades with subsequent initiation of signal transduction some of
which are responsible for the production of pro-inflammatory
cytokines (218, 234–236). This exposure is associated with
upregulated activation of nuclear factor erythroid 2–related
factor 2 (Nrf2) which acts against electrophiles and oxidants in
the detoxification of ROS to maintain homeostasis (237). When
exposed to ROS, Nrf2 acts by separating from the cytoplasmic
repressor protein - Kelch-like ECH-associated protein 1 (Keap1),
transferring to the nucleus, and activating the expression of
antioxidant response elements (ARE)-dependent genes,
including the phase II detoxifying/antioxidant enzyme HO-1
and NQO1 (238). The activation of the apoptotic caspase-3
pathway, which results in neuronal damage neurons is also
suggested (239). This mechanism induces primary microglial
toxicity and may be the pathological basis of metal pollution
induced neurological dysfunction.

Mercury
MeHg pollution inhibits the astrocytic uptake of cysteine; an
essential precursor for glutathione (GSH) synthesis. Implying
that MeHg pollution induces neuronal oxidative damage (240).
Part of the inhibitory mechanisms of MeHg include astrocytic
glutamate uptake inhibition and glutamate efflux (241). This
results in excessive glutamate in the synaptic cleft and,
consequently leads to neuronal excitotoxicity. In vivo, mercury
has been shown to induce microglial production and secretion of
lysosomal proteases, leading to neuronal toxicity while
astrocytes, when co-cultured with neurons, increase neuronal
resistance to the damaging effect of MeHg (242, 243). Astrocytes
and microglia therefore mediate protective effects against MeHg-
induced neuronal toxicity. Microglia increase interleukin-6
(IL-6) production and release (244).

In organotins however, In-vitro studies have shown increased
expression of IL-1b, tumor necrosis factor (TNF-a), IL-6, and
nitric oxide synthase (iNOS) in the cultured astrocytes and
microglia (245, 246).

Manganese (Mn)
Molecular mechanisms involved in Mn-induced neurotoxicity
involve direct damage to the substantia nigra, globus pallidus,
basal ganglia, striatum, and various other cellular components of
the nervous system. Mn accumulates in the mitochondria of
various cellular components in the brain, causing F0/F1 synthase
and succinate dehydrogenase abnormality, leading to reduced
ATP production (247). Diminishing ATP levels increase
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intracellular calcium levels and induce severe oxidative stress,
forming ROS. Manganese was also shown to oxidize dopamine
into reactive quinone species and disruption of antioxidant
enzymes via binding to their thiol and hydroxyl groups (248).
Glia activation has however been shown to occur in astrocytes
and microglia in manganism (249) as it potentiates the effects of
LPS and cytokines on activation of both microglia and astrocytes
leading to increased production of TNFa, IL-1b, ROS, and NOS2
expression that can cause neuronal injury (250).

Manganese activates NF-kB and mitogen-activated protein
kinase (MAPK) in microglia resulting in inflammatory gene
expression and production of inflammatory mediators (251). The
inflammatory effects are tightly regulated both at the level of IKK
activation as well as by nuclear proteins that modulate
transcriptional activity of inflammatory genes- NR4A1 (Nurr1)
(252). Microglia then release neuroinflammatory mediators and
pro-inflammatory cytokines, as well as reactive oxygen and
nitrogen species (ROS and RNS), all of which can act on
astrocytes to amplify inflammatory responses in the CNS (250).

In astrocytes, higher levels of accumulation of Mn occur than
in neurons. This makes them target cells for transport of Mn into
the brain as well as for initiating inflammatory signaling during
neuronal stress and injury. Since astrocytes are a heterogeneous
population of cells with different morphological and
physiological characteristics depending on their location with
the brain (253), they invariably serve as the major homeostatic
regulator and storage site for Mn in the brain and a prominent
contributor to Mn-stimulated nitric oxide (NO) production
through NOS2 (254, 255). The regulation of astrocyte
activation is under the control of many factors including
cytokines IL-6, IFNg, tumor necrosis factor-alpha (TNFa), toll-
like receptor activators, neurotransmitters, ATP, reactive oxygen
species, hypoxia, glucose deprivation, ammonia, and protein
aggregates (256). Frequently, these activators are by-products
of already injured neurons or factors released by activated
microglia which indicate that astrocyte activation is often later
in disease progression (257).

Cell culture models of glia cross talk in managanism indicate
that removal of microglia or use of antioxidants has shown to
reduce neuronal loss indicating microglial activation may serve as
a critical step in mediating neuronal injury during Mn exposure
and that microglia also likely directly promote activation of
astrocytes that then amplify neuronal damage (258). However,
astrogliosis is often more persistent than microgliosis and is
believed to be important in amplifying inflammatory processes
and thereby inducing greater damage (259).

Pesticides
Over 45% of neurotoxic chemicals are pesticides. Exposure to
toxic doses of these chemicals activates the CNS immune system
by reducing Nrf2 activation, activating the NF-kB pathway, or
the opening of voltage gated calcium channels in neurons. These
lead to increased oxidative stress, neuroinflammation, neuronal
apoptosis, activation of p38MAPks, nucleotide-binding domain,
leucine-rich repeat (NLR) family pyrin domain containing 3
(NLRP3) inflammasome, and reduced serotonin. Examples
include the organophosphates which primarily cause
Frontiers in Immunology | www.frontiersin.org 9
accumulation of acetylcholine at cholinergic synapses, resulting
in muscarinic and nicotinic receptor over-stimulation leading to
oxidative stress, lipid peroxidation (260). Organophosphates can
also alter the cyclic-AMP-protein kinase A signaling pathway of
which affects the expression and function of several nuclear
transcription factors such as c-fos, p53, AP-1, Sp1 and CREB
(Ca2+/cAMP response element binding protein) involved in the
switch from proliferation to differentiation of neural cells (260).

Dieldrin is an organochlorine extensively used as pesticides
for corn, cotton, and citrus crops has been reported to induce
severe alteration in the function of dopaminergic neurons and
GABAA receptor (261) with evidence of significant oxidative
stress, mitochondrial dysfunctions, and generation of pro-
apoptotic proteins such as caspase-3 and Bcl-2 in the
dopaminergic neurons (262). Endosulfan is an off-patent
organochlorine insecticide and acaricide. It has been used
globally as a pesticide since the 1950s to control a variety of
insects including whiteflies, aphids, leafhoppers, Colorado potato
beetles, and cabbage worms applied extensively to coffee, tea, and
cotton crops, among others (263). It induces severe oxidative
stress, induces the expression of pro-apoptotic proteins and
inflammatory cytokines, and activation of glial cells (264).
Pyrethroids are synthetic insecticides, which are used for the
controlling insect pests in agriculture, public health, and animal
health. They mediate prolongation of the kinetics of voltage-
gated sodium channels, which are responsible for generation of
the inward sodium current that produces the action potential in
excitable cells leading to a hyperexcitable state, damage BBB and
cause induction of severe endoplasmic reticulum stress, neuronal
apoptosis, microglial activation, and neuroinflammation
(265, 266).

Rotenone and pyridaben are two mitochondrial complex I
inhibitors and are highly lipophilic. They easily cross BBB and
produce ROS, Ca2+-mediated hyperexcitation, nuclear
translocation of NF-kB, activation of p38 MAPKS, the
formation of NLRP3 inflammasome, and mitochondrial
dysfunctions (267–270).

Traffic Related Air Pollutants
TRAP exposure induces oxidative stress products, such as
malondialdehydes (MDA), thiobarbituric acid reactive
substances (TBARs) as well as ROS such as H2O2. (Nrf2),
superoxide dismutase (SOD), glutathione (GSH), heme
oxygenase 1 (HO-1), and catalase (CAT) are commonly
elevated in the central nervous system, indicating need for
detoxification. This induction activates glia response with
astrocytic activation usually occurring either concomitantly
with, or immediately after microglia stimulation, thus
contributing to the release of oxidant species and pro-
inflammatory cytokines (222, 271, 272).

Diesel Exhaust (DE): has been shown to induce oxidative
stress, to activate microglia and to enhance levels of several pro-
inflammatory cytokines (IL-1a, IL-1b, IL-3, IL-6, TNF-a) in the
olfactory bulb and the hippocampus and microglia activation
resulting in decreased adult neurogenesis in the hippocampal
subgranular zone (SGZ) and the subventricular zone (SVZ)
[Reviewed in (222, 273)].
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CONCLUSION

In summary, multiple factors not limited to those discussed in this
review may modulate neuroinflammation within the African
context. These stressors assault the CNS through several cellular
and molecular pathways to modulate neuroinflammatory
responses that can be traced back to early development, with
possible persistence into adult life and risk of mortality (274,
275). The most usually implicated pathways have oxidative stress,
cerebral vascular damage, neurodegeneration and infiltrating
systemic inflammation or nanoparticles as major route to
damage. Microglia and astroglia respond to these stressors via
multiple mechanisms that are still a subject of intense
investigations. With the continent being home to over 1.3 billion
people with myriads of stressors, the increasing burden of
neurological disorders may be a ticking time bomb for
neurological disorders (276). Therefore, further research in
collaboration with Africans on epidemiological and mechanistic
studies into the association of stressors and neuroinflammation will
go a long way in understanding pathways that may be beneficial in
treating or managing cases. Such studies will help to determine the
neurological disease burden and to what extent these stressors
contribute to neurological disease progression, co-morbidities with
other neurodegenerative diseases and mortalities, by looking at the
Frontiers in Immunology | www.frontiersin.org 10
genetic and molecular adaptations and or vulnerabilities that exist
in the African space compare to their Western cohorts.
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