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Rheumatoid arthritis (RA), the most common autoimmune disease, is characterized by
symmetrical synovial inflammation of multiple joints with the infiltration of pro-inflammatory
immune cells and increased cytokines (CKs) levels. In the past few years, numerous studies
have indicated that several factors could affect RA, such as mutations in susceptibility
genes, epigenetic modifications, age, and race. Recently, environmental factors, particularly
polycyclic aromatic hydrocarbons (PAHs), have attracted increasing attention in RA
pathogenesis. Therefore, exploring the specific mechanisms of PAHs in RA is vitally
critical. In this review, we summarize the recent progress in understanding the
mechanisms of PAHs and aryl hydrocarbon receptors (AHRs) in RA. Additionally, the
development of therapeutic drugs that target AHR is also reviewed. Finally, we discuss the
challenges and perspectives on AHR application in the future.
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HIGHLIGHTS

• We explored the close relationship between PAHs and RA and summarized previous studies.
• PAHs affect the pathogenesis of RA through the AHR pathway.
• We explored the treatment strategies for RA and current novel strategies based on the

AHR pathway.
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1 INTRODUCTION

Rheumatoid arthritis (RA) is the most common autoimmune
disease characterized by changes in the local inflammatory
environment, swollen joints and pain; eventually leads to joint
dysfunction or contributes to disability. In recent years, the
prevalence and incidence rates of autoimmune diseases such as
RA have risen rapidly worldwide (1, 2). Autoimmune diseases
are one of the most common diseases in the United States,
affecting approximately 8% of the population (3), and they are
one of the leading causes of death among young and middle-aged
women. Some of the affected individuals also have anxiety or
depression because of the failure of medication, substantially
affecting quality of life. Additionally, in the late stage of RA,
respiratory, circulatory and tumor diseases can occur, and the
probability of death is further increased. The high incidence and
serious consequences of RA have attracted extensive attention,
and the depth of research on RA has been increasing.

At present, the etiology and pathophysiology of RA are
mainly related to genetic and environmental factors; genetic
inheritance accounts for 30% of all autoimmune diseases, while
Abbreviations: RA, rheumatoid arthritis; PAHs, polycyclic aromatic
hydrocarbons; AHR, aromatic hydrocarbon receptor; AHRR, aryl hydrocarbon
receptor repressor; CKs, cytokines; IL, interleukin; TNF-a, tumor necrosis factor-
a; RF, rheumatoid factor; ACPA, anti-citrullinated protein antibody; PM,
particulate matter; ANY, acenaphthylene; FLT, fluoranthene; B[a]P, benzo [a]
pyrene; B[a]A, benzo [a] anthracene; B[b]F, benzo [b] fluoranthene; B[k]F, benzo
[k] fluoranthene; DBA, dibenzo (a,h) anthracene; IPY, indeno[1, 2, 3-cd] pyrene;
BPE, benzo [ghi] perylene; NAP, naphthalene; ANT, anthracene; PHE,
phenanthrene; PYR, pyrene; FLU, fluorene; OPG, osteoprotegerin.
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environmental factors, which account for a large proportion of
cases, are the primary factors. Genetic factors mainly include
human leukocyte antigen-DRB1 (HLA-DRB1), and the main
environmental factor is polycyclic aromatic hydrocarbons
(PAHs) (4, 5). PAHs are ubiquitous air pollutants formed by
the burning and decomposition of coal, oil, garbage, natural gas
and other substances. PAHs are closely related to various
diseases. In addition to RA, cardiovascular, cerebrovascular,
and respiratory system diseases also exist, and PAHs exposure
can also lead to metabolic diseases such as diabetes (6) and
carcinogenic effects (7).

Many studies have proven that PAHs play a crucial role in the
development of RA through various ways (4, 5), including
inducing the changes of immune cells and corresponding
cytokines (CKs). Immunoregulatory cells and CKs play a vital
role in immune homeostasis and the pathogenesis of RA. Previous
studies have shown changes in inflammatory environments, such
as the infiltration of inflammatory cells and CKs in the local joint
RA patients. Several studies have reported the number and
function of T cells and B cells, and the corresponding CKs are
closely related to RA (8). In addition to immune cells, changes in
autoantibodies are also common markers in RA, mainly including
rheumatoid factor (RF) and anti-citrullinated protein antibodies
(ACPAs) (9–11), which is mainly achieved by activating B cells.
These complex alterations are primarily caused via the action of
aromatic hydrocarbon receptor (AHR). But assessing the detailed
impact of PAHs on RA is a massive challenge because through
there are many basic studies on the relationship between PAHs
and RA, the specific mechanism of PAHs and AHR in the
pathological mechanism of RA remains unclear.
GRAPHICAL ABSTRACT |
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In this review, we mainly summarized recent developments of
PAHs in RA studies and the RA mechanism via PAHs of
environmental pollution and AHR signaling pathway.
Additionally, we discussed the therapeutic potential and
application prospects of targeting AHR in RA, providing
crucial information for discovering novel and effective
RA treatments.
2 SOURCES AND EFFECTS OF
PAHs IN RA

2.1 Environmental Pollution and PAHs
The factors causing environmental pollution mainly include two
major aspects: factors derived from human influence, such as
those derived from barbecued foods, smoking, urban traffic
pollution, the burning of oil and the random burning of
garbage, and factors derived from natural causes, such as forest
fires. Thus, mixed ambient pollutants are produced, such as
sulfur dioxide, carbon monoxide, nitrogen dioxide and
particulate matter (PM). PM is further classified into several
types according to the particle size: PM 10 (<10 mm in diameter),
PM 2.5 (<2.5 mm in diameter), PM 1.0 (<1.0 mm in diameter),
PM 0.1 (<0.1 mm in diameter) and ultrafine particles (UFPs) (in
order from largest to smallest).

Abundant PAHs are found in barbecued foods, and cigarette
smoke also contains many PAHs. A previous study in
Bangladesh found that people who were overexposed to urban
traffic pollution were exposed to high levels of PAHs (12). This
finding suggests that in Dhaka, urban residents who are exposed
to traffic pollution are at a higher risk of exposure to carcinogenic
PAHs. Not surprisingly, excessive amounts of PAHs are also
found in waste incinerators and decomposition products of oil
burning. Generally, PAHs are the major components in
environmental particulate pollutants and have adverse health
effects (that is, they are hazardous to health). Additionally,
among the PM types, those that pose the main threat to
human health are UFPs (13), which are too small for airway
mucous cilia and alveolar macrophages to eliminate and
therefore become deposited in the lungs.

Although extensive studies have proven that an increased risk
of RA is closely related to environmental pollution (14–18), the
exact mechanism between RA and environmental pollution is
poorly clear.

2.2 PAHs and RA
2.2.1 General Overview of PAHs
PAHs are the most common pollutants in the environment and
are a group of organic compounds comprising two or more
aromatic rings in different configurations that are mainly derived
from the burning of coal and natural gas, the indiscriminate
burning of garbage and other organic compounds such as
tobacco and barbecued foods. A few PAHs are used as
pharmaceuticals and pesticides and in plastics, while others are
included in the asphalt used for road construction. More than
100 PAHs have been identified in the environment, and sixteen
Frontiers in Immunology | www.frontiersin.org 3
of them are listed as primary pollutants by the United States
Environmental Protection Agency. PAHs exist primarily as
mixtures instead of single compounds. Additionally, they tend
to become deposited in the human body and remain within the
food chain because of their lipophilic properties (19).

Halogenation of PAHs gives them metabolic and
environmental stability. Generally, PAHs are agonists of and
have a high affinity for AHR, leading to halogenation of PAHs
side rings; PAHs also show distinct affinity for and are easily
metabolized by CYP enzymes (20). However, several PAHs have
been demonstrated to inhibit the generation of CYP enzymes,
inhibiting their metabolism and that of other organic
components present in mixtures (21, 22).

Recently, the effects of PAHs on human health have been
widely studied, and many experimental studies have recently
focused on the link between PAHs and RA (4, 5). Novel studies
have demonstrated that high levels of PAHs in urine are
significantly related to a high incidence of RA, implying that
PAHs exposure may increase the incidence of RA (23, 24).

2.2.2 General Biology of AHR
AHR is a ligand-dependent transcription factor that plays a
crucial role in regulating the differentiation, activation and
apoptosis of various cells in RA. AHR is best known for its
capacities to mediate the toxicity of dioxin and is normally
present in the immune cell cytoplasm as a part of a complex of
multiple proteins, primarily comprising heat shock protein
(HSP) 90, P23, which is a scaffold protein, and activated AHR.
According to molecular cloning studies, AHR contains a basic
helix-loop-helix (bHLH) domain, which is similar to that found
in DNA-binding proteins (25, 26). Additionally, AHR contains a
PER-ARNT-SIM (PAS) homology domain, including a PAS A
and PAS B domain, similarly found in other regulators of cell and
organism responses to the environment (27, 28). Interestingly,
the binding of ligands to AHR mainly occurs via the PAS
B domain.

Activation of the AHR signaling pathway depends on the
ligands, including endogenous and exogenous ligands. These
ligands can be present in the environment or produced by
metabolism. AHR-mediated signaling pathways may be
essential for the immune regulatory response, and previous
studies have revealed that AHR signaling not only affects
innate immunity but also participates in adaptive immunity in
the development of diseases, such as RA.

Recent studies have also suggested that abnormal activation
of AHR signaling pathways may be associated with autoimmune
diseases, such as RA, multiple sclerosis (MS), systemic lupus
erythematosus (SLE), autoimmune uveitis (AU), myasthenia
gravis (MG) and Bechet’s disease (BD). Importantly, regulating
AHR’s involvement in autoimmune diseases is multidimensional
with 3-MC or other ligands, which can disrupt the balance
between immune cells, significantly shift the Th1/Th2 balance
in favor of a Th1 response, modulate the differentiation of
regulatory T (Treg) cells, and increase the proliferation and
differentiation of Th17 cells. Not surprisingly, several studies
have shown that AHR has opposite effects on Treg cell and Th17
cell differentiation (29, 30). Furthermore, AHR can regulate the
March 2022 | Volume 13 | Article 797815
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activity of dendritic cells (DCs), natural killer (NK) cells and
macrophages. These changes in immune cells eventually lead to
and exacerbate autoimmune diseases.

More novel ideas have been confirmed, in addition to Th17
cells being activated in a manner dependent on the AHR
pathway, the same is true for Th1, Th2 and Treg cells. In
recent years, AHR has been studied in various aspects of
immunology, mainly focusing on its effect and regulation of T
cell differentiation, maturation and function. AHR is highly
expressed in several CD4+ cells; the highest expression is
observed on Th17, and FoxP3+ Treg cells, followed by Th1
and Th2 cells (31, 32).

2.2.3 Signal Transduction Pathway of AHR
Numerous studies have indicated that AHR plays a critical role in
immunomodulation (33, 34). After activation of AHR,
intracellular signaling occurs through genomic and/or
nongenomic pathways (Figure 1). In this review, we mainly
discuss the activation pathway of AHR from the perspective of
genomic pathways.

PAHs are ubiquitous pollutants and always exist in the
environment as a mixture. Overexposure to PAHs usually
activates AHR in immune cells, such as Th1 and Th17 cells,
resulting in the promotion of inflammatory CKs production and
Frontiers in Immunology | www.frontiersin.org 4
an increased RA incidence. Additionally, PAHs inhibit the
activation of AHR in Th2 and Treg cells and weaken the
ability to produce interleukin-10 (IL-10), transforming growth
factor-b (TGF-b) and IL-4 to further promote the occurrence of
RA (31, 35, 36).

Once agonists (ligands such as PAHs) reach the immunomodulatory
cell and bind to the PAS domain of AHR, a conformational change
of AHR is induced. This change alters the binding of AHR with
other chaperones and leads to the nuclear localization signal
being fully exposed. Thus, the ligand-AHR complex is
transferred to the nucleus. When the ligand-AHR complex is
disassociated from the complex containing HSP90, ARA9 and
P23, it forms a heterodimer with another protein, bHLH-PAS,
also known as AHR nuclear translocation (ARNT). In the
nucleus, the interaction between AHR and ARNT (which
forms AHR/ARNT heterodimers) increases their ability to bind
to specific sequences of enhancers near the target gene promoter,
known as dioxin response elements (DREs) (37, 38) ; this effect
leads to the changing of downstream several genes, among these
genes, the most well-studied include cytochrome P (CYP)1A1,
CYP1A2, CYP1B1, and aryl hydrocarbon receptor repressor
(AHRR), the former three of which encode a phase I enzyme,
a heme-mercaptan protein and a key adaptor to metabolic
reactions, known as CYP. CYP is involved in the metabolism
FIGURE 1 | Ligand-dependent signal transduction pathways of AHR activation. (1) The ligand diffuses into cells and binds to the AHR complex in the cytoplasm.
(2) The ligand-bound receptor complex translocates into the nucleus. (3) The heterodimerization of AHR and ARNT enhances the binding ability with DREs. (4) AHRR
binds to ARNT. (5) AHRR and ARNT dimers repress AHR transcriptional activity. (6) AHR is exported to the cytoplasm by nuclear exportation and degraded.
CYP1A1, CYP1A2, and CYP1B1 are genes encoding the phase I enzyme P450. AHR, AHRR and ARNT are basic helix-loop-helix-PER-ARNT-SIM (bHLH-PAS)
proteins, and AHRR and AHR have high sequence similarity. PAHs, polycyclic aromatic hydrocarbons; AHR, aromatic hydrocarbon receptor; hsp90, heat shock
protein 90; ARNT, aromatic hydrocarbon receptor nuclear translocation; AHRR, aryl hydrocarbon receptor repressor; DRE, dioxin response element; CYP,
cytochrome P.
March 2022 | Volume 13 | Article 797815
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of endogenous substances and exogenous substances, including
drugs and environmental compounds. Additionally, the CYP
enzyme is mainly located in the endoplasmic reticulum, where it
is responsible for catalyzing the first stage of exogenous
biological oxidation transformation (39) and regulating the
activation, differentiation, and apoptosis of various cells (40).
This biotransformation reduces the toxicity of compounds, but
intermediates can be produced in the case of PAHs (41).

In addition to positive activation of AHR, AHR is also
negatively regulated. First, with ligand-induced activation and
nuclear output (42, 43), AHR is degraded via the 26S
proteasome (44, 45). The second mechanism of reduced
activity of the AHR-ARNT complex is the upregulation of a
transcriptional repressor called AHRR (46). AHRR is also a
bHLH-PAS protein with a sequence with high similarity to the
AHR and ARNT sequences (Figure 2); specifically, AHR,
AHRR and ARNT are expressed in most cells and tissues,
and they show high similarity in their structures (Figure 2).
The three proteins are members of the bHLH-PAS family of
transcription factors. The absence of the PAS B domain in the
AHRR structure, which is vital for the ligand binding of AHR,
contributes to the negative modulation of AHR by AHRR.
Additionally, the carboxyl termini of AHR and ARNT include
transcriptional activation domains (TADs). The TADs of AHR
contain numerous independent active subdomains, while the
TAD of ARNT is simpler (Figure 2).

AHRR inhibits the transcriptional activity of AHR mainly by
binding to ARNT, and the interaction between ARNT and
AHRR inhibits the binding of compounds with DREs (46).
Under normal conditions, positive and negative feedback is
Frontiers in Immunology | www.frontiersin.org 5
balanced, however, in the event of diseases, the balance
between them is completely disturbed.

To some extent, CYP can promote the metabolism of PAHs
in vivo to alleviate the occurrence of diseases, but PAHs exposure
can inhibit the activity of CYP and worsen diseases. Several
PAHs have been revealed to inhibit the activity of CYP enzymes
to alter their own metabolism (21, 47). Specifically, the inhibitory
effect of PAHs on CYP enzymes suppresses the production of
water-soluble metabolites that is not conducive to the excretion
of PAHs. Subsequently, PAHs penetrate the intestinal epithelium
and enter the lamina propria and immunomodulatory cells,
contributing to the acceleration of autoimmune diseases like
RA (48). In recent years, the attention at PAHs has been
gradually increasing, while the attention directed at AHR has
also increased. An up-to-date summary of the changes caused by
activation of the AHR pathway on the levels of immune cells and
CKs in vivo when PAHs exposure contributes to RA will be
described below.
3 PAHs STIMULATION-INDUCED
CHANGES IN RA

The effects of PAHs in RA mainly involve the changes of
immunomodulatory cells and corresponding CKs (Figure 3).

3.1 Cell Changes
PAHs are currently recognized as the main environmental
pollutants causing RA. The pathogenesis of PAHs exposure-
induced RAmainly involves regulating immune cells, and studies
FIGURE 2 | Sequence comparison of AHR, ARNT and AHRR. bHLH, basic helix-loop-helix; PAS, PER-ARNT-SIM; TAD, transcriptional activation domain; AHR,
aromatic hydrocarbon receptor; ARNT, aromatic hydrocarbon receptor nuclear translocation; AHRR, aryl hydrocarbon receptor repressor.
March 2022 | Volume 13 | Article 797815
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have found that PAHs exposure changes the distribution of T cell
subtypes. The balance of immune cells is disordered, mainly
represented by an increase in pro-inflammatory T cells and a
decrease in Treg cells (49, 50). Eventually, the changes in
downstream CKs corresponding to these cells are affected, such
as promoting an increased number of pro-inflammatory cells
and related CKs, inhibiting the production of anti-inflammatory
cells and CKs.

Considering that PAHs are diverse, one experiment exposed
mice to the 16 most common PAHs. Acenaphthylene (ANY),
fluoranthene (FLT), benzo [a] pyrene (B[a]P), benzo [a]
anthracene (B[a]A), benzo [b] fluoranthene (B[b]F), benzo [k]
fluoranthene (B[k]F), dibenzo (a,h) anthracene (DBA), indeno
[1,2,3-cd] pyrene (IPY), and benzo [ghi] perylene (BPE)
significantly promoted the differentiation of Th17 and Th1
cells and B[a]P, B[a]A, B[b]F, and B[k]F induced more
obvious inhibition of Treg cell differentiation; however,
naphthalene (NAP), anthracene (ANT), phenanthrene (PHE),
fluorene (FLU) and diphenyl had no significant effect on the
differentiation of Th1, Th2, Th17 and Treg cells; interestingly,
Frontiers in Immunology | www.frontiersin.org 6
when AHR is activated by 1-pyrene (PYR), fluorene (FLU) plays
a protective role in RA (24). It is speculated that different PAHs
show different mechanism.

In addition to the CD4 T cells mentioned above, PAHs also
affect the differentiation and maturation of B cells, DCs,
macrophages, NK cells, osteoclasts (OCs) and osteoblasts (OBs).

3.1.1 Th1 and Th2 Cells
Both Th1 and Th2 cells are CD4+ T cell subsets that participate
in the development of autoimmune diseases but their
mechanisms are different, the Th1 is pro-inflammatory cells,
while Th2 is anti-inflammatory cells (51). Interferon-g (IFN-g) is
the major CKs secreted by Th1 cells and can promote the
differentiation and maturation of CD8+ cytotoxic T
lymphocytes (CTLs), improving the phagocytosis ability of
macrophages to kill parasitic pathogens in target cells and
playing a role in cellular immunity. In contrast to the
mechanism of Th1 cells, Th2 cells secrete IL-4, which mainly
stimulates the proliferation and differentiation of B lymphocytes,
producing antibodies such as IgE to clear extracellular pathogens
March 2022 | Volume 13 | Article 797815
FIGURE 3 | Different cells and their cytokines CKs play a key role in the development of RA through the AHR signaling pathway. The articular cavity is infiltrated by
many inflammatory cells, which produce a mass of inflammatory mediators and induce an inflammatory cascade. These inflammatory cells include cells of the innate
immune system, such as macrophages, dendritic cells, and natural killer cells, as well as T cells and B cells of the adaptive immune system. Additionally, reduced
osteoblasts and increased osteoclasts lead to the destruction of subchondral bone, leading to the degeneration of articular cartilage. CKs, cytokines; RA, rheumatoid
arthritis; AHR, aromatic hydrocarbon receptor; IFN-g, interferon-g; IL, interleukin; TGF-b: transforming growth factor-b; RF, rheumatoid factor; ACPA, anti-citrullinated
protein antibody; TNF-a: tumor necrosis factor-a; NK, natural killer; OC, osteoclast; RANKL, receptor activator of NF-kB ligand; OB, osteoblast; RANK, receptor
activator of NF-kB.
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within the normal range and mainly playing a role in humoral
immunity. However, excessive IgE production can lead to
immune hypersensitivity, as observed in asthma. Therefore, the
balance between Th1 and Th2 cells plays a key role in the
immune response, and imbalance of these cells leads to
immune diseases (52), such as RA. A significant imbalance
between Th1 and Th2 cells has been reported in collagen-
induced arthritis (CIA) mice and RA patients (53).

As the receptor of PAHs, AHR normally exists within the
cytoplasm in Th1 and Th2 cells (36). A study confirmed that
when PAHs (3-MC) activate AHR, oxidative stress significantly
activates nuclear factor kappaB (NF-kB), which stimulates the
airway production of Th1 cells; thus, the balance between Th1
and Th2 cells is biased toward Th1 cells, while Th2 cell
production and CKs secretion are inhibited (36), functions that
are associated with decreased expression of GATA-3, a critical
factor in Th2 cell differentiation, this study suggests that
exposure to PAHs results in an imbalance of Th1/Th2 cells
and the occurrence of RA and that the intermediary involvement
of AHR is even more important. Another RA mouse model
showed that the lack of AHR in T cells inhibited the development
of arthritis (35).

3.1.2 Th17 Cells
Th17 cells are a relatively newly discovered subset of CD4+ T
cells. ROR-CT, a transcription factor expressed on the surface of
Th17 cells (54), plays a crucial role in the control of extracellular
pathogens and plays a critical role in human autoimmunity.
Th17 cells secrete key pro-inflammatory CKs, such as IL-17A,
IL-17F, and IL-22 (55). Studies have revealed that the
upregulation of Th17 cells and relevant pro-inflammatory CKs
is closely related to the formation and severity of RA (55).

PAHs are common exogenous AHR ligands, continuous
overexposure to PAHs causes a series of pro-inflammatory
changes in humans. Adequate experiments have shown that
AHR plays a crucial role in the activation and proliferation of
Th17 cells (31, 56). Additionally, PAHs in PM act directly on T
cells through AHR-dependent and CYP-dependent pathways to
promote Th17 cell differentiation and the immune response (49).
AHR is expressed in the cytoplasm of Th17 cells (31); and
when it is activated by PAHs in PM, the proliferation and
differentiation of Th17 cells and their ability to produce
pro-inflammatory CKs are enhanced during the development
of RA (56). Notably, AHR is not involved in the initial stage
of Th17 cell differentiation; instead, it is important for
terminal differentiation.

Consistent with this view, the production of IL-17 by Th17
cells is significantly reduced and the IL-22 production is
completely inhibited when AHR dificiency (57). Published
results recently showed that exposure to PM enhanced the
differentiation of naïve T cells into a Th17-like phenotype
through an AHR-dependent mechanism (49, 58), contributing
to the formation RA. However, the diversity of ligands may lead
to different effects on Th17 when AHR activated, when other
kinds of ligands, such as, tetrachlorodibenzo-p-dioxin (TCDD),
stimulates AHR, it can inhibit Th17 differentiation (59).
Therefore, it is speculated that AHR on the initial T cells is a
Frontiers in Immunology | www.frontiersin.org 7
target to prevent the transformation into Th17 cells or that
targeting AHR on Th17 cells to control RA has promising
therapeutic prospects.

3.1.3 Treg Cells
Treg cells, like Th17 cells, are also a novel type of CD4+ T cell;
however, in contrast to Th17 cells, Treg cells secrete anti-
inflammatory CKs, such as IL-10 and transforming growth
factor-b (TGF-b), which inhibit the progression of
autoimmune diseases (53). Treg cells are mainly characterized
by cell surface expression of the FoxP3 transcription factor (51).
Foxp3 encodes a transcription factor that participates in
inflammatory and autoimmune diseases in mice and humans
and is specifically expressed in CD4+ Treg cells. Furthermore,
retrovirus transfer of the Foxp3 gene induced increased
differentiation of naïve T cells into Treg cells. Thus, Foxp3 is a
crucial regulatory gene for Treg cell differentiation; in other
words, the differentiation, maturation and function of Treg cells
are induced by Foxp3 (60). An increasing number of studies have
shown that a decreased frequency of FoxP3 T cells (Treg cells) is
closely associated with increased disease activity in RA (61).
Several studies have shown that Treg cells are significantly
reduced in RA patients and CIA model mice (53).

Relationships exist between impairments of Treg and PAHs
exposure. A study found substantial increases in PAHs exposure
specifically in winter, which was significantly related to the ability
and function of Treg cells (62), but the specific mechanism has
not been fully characterized.

As receptor of PAHs, AHR is a transcription factor in the
cytoplasm of Treg cells and is ligand-dependent (63). In contrast
to the low levels of endogenous AHR in naïve T cells, AHR
expression was increased in CD4+FoxP3+ cells (63). Recent
studies have demonstrated a clear link between Treg cell
differentiation and the signaling pathway of AHR, providing a
possible mechanism for TCDD mediated immune suppression
(30). In support of this conjecture, when AHR was activated with
TCDD, Treg cell differentiation was accordingly improved (30).
Research has demonstrated a link between Foxp3 and AHR;
surprisingly, AHR was found to directly control Foxp3
expression (30) and play a role in Treg cell differentiation.
Consistent with this idea, AHR activation by TCDD increased
the binding of AHR to the Fox3P promoter and upregulated the
expression of the FoxP3 gene to increase the differentiation of
Treg cells involved in immunity (30). Conversely, when the mice
were exposed to PAHs, Treg cell differentiation was significantly
reduced by inhibiting the binding of AHR and the Fox3P
promoter to induce the RA (30).

The balance of Treg/Th17 cells is maintained under normal
conditions; however, when RA occurs, the balance is broken (53).
Experiments have found that AHR affects the differentiation of
Th17 cells and Treg cells in opposite ways (30). Although
inhibition of Treg cell function and/or hyperfunction of Th17
cells are considered important causes of RA, the specific
physiological pathways is known about poorly. Nothing more
than, the ability of AHR to selectively modulate the
differentiation of Treg cells versus Th17 cells can be exploited,
making it a unique target to treat immune diseases.
March 2022 | Volume 13 | Article 797815
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3.1.4 B Cells
B cells are the only cell type to express immunoglobulin (Ig) on
their surface and secrete antibodies after activation. These cells
mainly function in humoral immunity, and the humoral
response plays a crucial role in the pathogenesis of RA (64,
65). Thus, the activation of B cells plays a key role in the
pathogenesis of RA (64). And many studies have shown that
the number and activity of B cells are significantly increased in
patients with RA (64, 66). One of the main characteristics of RA
is the activation of B cells that produce RF and ACPAs.
Additionally, some studies have shown that continuous
expression of RF increases the activation of B cells and
monocytes (65) to aggravate RA. ACPAs enhance NF-kB
activity and tumor necrosis factor-a (TNF-a) production by
binding to citrullinated Grp78 expressed on macrophages (67).
Grp78 protein (72 kD) is a homologous antigen of ACPA, but the
mechanism by which the tolerance of B cells is broken remains
incompletely understood.

AHR is expressed in B cells cytoplasm in the absence of a
ligand (68), which are known targets of PAHs. A study showed
that AHR-deficient B cells are less proliferative and less likely to
enter the S stage of the cell cycle and remain in the G0/G1 phase
of the cell cycle (69), this finding suggests that AHR activated by
PAHs might indirectly promote B cell proliferation and
activation, aggravating RA and other immune diseases, but
enough evidence is needed to support this conjecture.
Targeting AHR on B cells also will be a promising treatment
in RA.

3.1.5 DCs
DCs are specialized antigen-presenting cells (APCs) that link
innate and adaptive immune responses and promote the
activation and differentiation of naïve T cells into effector T cells.

DCs are mainly divided into two key distinct functional
subsets (conventional myeloid dendritic cells (cDCs) and
plasmacytoid dendritic cells (pDCs), induce initial effector
differentiation of CD4+ T cells, activate CD8+ T cells, and
promote B cell antibody responses, suggesting that DCs may
play a crucial role in the initiation of joint inflammation. The
interaction between pDCs and T cells (pDCs induce T cell
differentiation) induces the autoimmune response in RA, DCs
and secreted inflammatory CKs are significantly increased in
arthritis model mice (70), and the number of DCs in synovial
joint tissues is dramatically increased in RA patients (71). And
there was study have shown that DCs are increased in the
articular cavity of RA patients (72).

PAHs in the environmental pollutants promote the
maturation and differentiation of DCs in an AHR-dependent
manner (49). These results imply that PAHs in environmental
pollution can induce RA in an AHR-dependent manner by
affecting DCs (73).

Additionally, AHR regulates the production of tolerance-
related metabolites in a subset of DCs, regulatory DCs
(DCregs). This signaling induces the expression of enzymes
responsible for tryptophan metabolism, such as indoleamine
2,3-dioxygenases (IDO1 and IDO2). Both IDO1 and IDO2 are
immunosuppressive enzymes that participate in kynurenine
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metabolism to induce the production of Treg cells, which
regulate the role of immune suppression by activating AHR
(74). Kynurenine inhibits the ability of DCs to initiate T cell
responses (73) and contributes to the apoptosis of Th cells,
particularly Th1 cells (75). Under normal circumstances, the
immune inflammatory and immune tolerance effects of AHR in
DCs are balanced; however, in RA patients, a significant bias
exists toward the immune inflammatory effect. Currently,
strategies targeting immune inflammatory DCs for RA
treatment have attracted extensive attention (70), and DCreg
therapy for RA is gradually becoming common (76).

3.1.6 Macrophages
Macrophages are also central inflammatory immune cells that play a
crucial role in the innate immune function involved in RA and
become polarized into different cell phenotypes to mediate
inflammatory/immune responses. Studies on the role of
macrophages in inflammation have identified two different states of
polarization (77), after stimulation, macrophages can mainly become
polarized into M1 and M2 macrophages. M1 are pro-inflammatory
macrophages, and M2 are anti-inflammatory macrophages.
Classically activated macrophages (M1, CD68+CD192+) lead to
joint damage with the production of pro-inflammatory CKs, such
as TNF-a and IL-1b. Alternatively activated macrophages (M2,
CX3CR1+CD163+) produce anti-inflammatory CKs (mainly IL-10
and TGF-b), contributing to tissue remodeling and repair. Recent
studies have found that destruction of the balance between M1 and
M2 macrophages—that is, a bias toward M1 macrophages, is one of
the main reasons for RA (78, 79). The levels of M1 macrophages in
RA inflammatory and synovial tissue are increased compared with
healthy joints (80).

PAHs are involved in the formation of RA by affecting the
maturation and differentiation of macrophages through AHR,
which is expressed in both M1 and M2 macrophages cytoplasm,
and the expression of AHR is upregulated by PAHs in M1
macrophages, however, down-regulated in M2 macrophages,
contributing the increased pro-inflammatory CKs and decreased
anti-inflammatory CKs to promote osteoclastogenesis to induce
RA (81). Therefore, targeting AHR on different types of
macrophages can be developed as a treatment for RA.

3.1.7 NK cells
NK cells also play a crucial role in the pathogenesis of
autoimmune diseases (82), they are generally defined by the
expression of CD56 and lack of CD3 expression (CD56+CD3-),
and CD56- is another NK cell subtype. These two subtypes differ
in maturity, function, and distribution. The main type related to
immunoregulatory effects is the CD56+ subtype (83), which can
p roduce many CKs a f t e r s t imu l a t i on and exe r t
immunomodulatory functions. Some reports suggest that NK
cells markedly expand in the joints and blood of RA patients
(82, 84).

Similar to other immune cells, NK cells also have AHR (85),
particularly immature CD56+ cells (83). After exposure to PAHs,
AHR signal pathway is activated, inflammation may occur, and
the number of NK cells in inflammatory joints increases (82, 83).
AHR activation by PAHs significantly upregulates the expression
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of the CYP1A1 enzyme (83, 86) in CD56+ NK cells, and CYP1A1
promotes the metabolism of PAHs and alleviates the occurrence
of disease. However, PAHs inhibit the function of CYP1A1,
leading to the accumulation of PAHs in vivo and aggravation of
joint inflammation. Therefore, regulation of AHR-targeted CYP1
enzyme activity may be a potential treatment for RA in
the future.

3.1.8 OCs
OCs are multinucleated bone cells and responsible for the bone
erosion of RA synovial joints, it is the only bone-resorptive cell
type (86). OCs are also indispensable for physiological bone
remodeling; however, excessive local OCs activity leads to
periarticular bone destruction, which is a typical symptom of
patients with RA. OCs are mainly derived from mononuclear
precursor cells via receptor activator of NF-kB ligand (RANKL)
and macrophage colony-stimulating factor (M-CSF) signaling.
Both RANKL and M-CSF are expressed on NK cells, and NK
cells and mononuclear cells are abundant in the inflammatory
joints of RA patients. When synovial NK and mononuclear cells
are cocultured in vitro, mononuclear cells are triggered to
differentiate into OCs, and the process relies on RANKL and
M-CSF (84). A study found that the number of OCs was
increased in RA patients (86).

After stimulation by PAHs, AHR activition plays a crucial
role in bone remodeling by altering the interaction between OBs
and OCs, and. AHR is expressed in osteocytes, including OBs
and OCs (87, 88) There was a study demonstrated that the
activation of AHR by B[a]P-mediated (a type of PAHs)
stimulates RANKL-induced OCs generation and OCs function
in wild-type mice (89) by CYP1A1 enzyme to lead to the
formation of arthritis (86, 89).

These findings imply that the AHR, RANKL and CYP1
enzymes may play critical roles in OCs formation. And in the
future treatment of RA, AHR-RANKL-CYP1-OCs will be used as
an effective therapeutic axis.

3.1.9 OBs
OBs also play an important role in bone remodeling and are
involved in bone formation. B cells play a crucial role in OBs
dysfunction. In CIA mice, B cells are enriched in subchondral
bone marrow and express high levels of genes encoding possible
OBs inhibitors such as CCL3 (also called macrophage
inflammatory protein 1-a) and TNF-a, which can inhibit OBs
differentiation by activating the ERK and NF-kB pathways,
CCL3 activates the ERK signaling pathway (90) and TNF-a
activates the NF-kB signaling pathway (91). TNF-a is a crucial
Frontiers in Immunology | www.frontiersin.org 9
inflammatory CKs in RA; it not only inhibits OBs bone
formation but also triggers OCs bone erosion through the
RANK-RANKL pathway by inducing overexpression of
Dickkopf-related protein 1 (DKK1), a strong inhibitor of the
Wnt signaling pathway for bone synthesis. The regulation of
typical Wnt pathways is mainly driven by the production of
receptor inhibitors such as DKK1 (92). Additionally, the Wnt
pathway plays an important role in the formation of OBs, and
increased Wnt signaling pathway activation may lead to
decreased OCs formation and bone resorption (93) through
upregulating osteoprotegerin (OPG) expression of OBs. The
differentiation of OBs is significantly reduced in RA
patients (91).

Similar to OCs, AHR also exists in OBs cytoplasm (88), and
AHR stimulation has a dose-dependent effect on OBs:
overactivation and under-activation inhibit and promote bone
formation, respectively. When stimulated by extensive PAHs in
the environment, AHR is activated in OBs, causing a series of
changes, such as transcriptional activation of CYP1A1 and
CYP1B1 (88). CYP1A1 and CYP1B1 polymorphisms alter
bone mineral density (BMD) (94, 95) to induce RA disease. A
study suggested that women carrying the CYP1B1 gene had
increased estrogen catabolism and showed higher urinary
estrogen metabolites, the effect may result in relatively low
levels of estrogen and low BMD in the lumbar spine and
femoral neck of these women (94).

Therefore, for OBs, AHR is the target to regulate the
generation of downstream gene CYP1, so as to reduce the
catabolism of estrogen to upregulate BMD, which can be a
prospective treatment for RA.
4 AHR AS A POSSIBLE THERAPEUTIC
TARGET IN RA

AHR is considered an essential factor in immune responses, and
many AHR-induced immune mechanisms have been identified,
enhancing the understanding of the pathogenesis of immunological
inflammatory diseases, including RA, at the molecular level.

Targeting AHR is considered a novel therapeutic target in RA,
because it can avoid the long-term use of previous compounds
contributing to serious side effects, such as high embryonic
mortality (96), recurrent hepatotoxicity (97) and carcinogenicity
(98). AHR ligands with fewer side effects and other novel drugs
have regarded as potential candidates to treat RA and other
autoimmune diseases (Table 1). Recently, novel drugs targeting
AHR are widely used to treat immune-related diseases, however,
TABLE 1 | Novel agents in RA treatment targeting AHR.

Drugs Mechanisms of action Reference

Tetrandrine promotes the expression of the AHR target gene cytochrome P4501A1(CYP1A1) (99)
Norisoboldine upregulates the nuclear translocation of AHR and CYP1A1 expression (100)
Sinomenine induces the expression of the AHR-targeted gene CYP1A1, and promotes AHR/Hsp90 dissociation and

AHR nuclear translocation
(101)

Human umbilical mesenchymal stem cells
(HUMSCs)

increases AHR-target gene and corresponding protein expression (34)
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AHR ligands have yet to be developed for clinical use. Therefore,
we should study the treatment of RA with AHR ligand overall in
order to make this therapy more practical in the future.

4.1 Traditional Chinese Medicine
Monomer Therapy
4.1.1 Tetrandrine
Tetrandrine is a dibenzyl isoquinoline alkaloid isolated from
tetrandrine roots and is clinically used to relieve rheumatic pain
and joint pain. As an agonist of AHR, tetrandrine ameliorates
CIA in mice by inhibiting Th17 cell differentiation and inducing
Treg cell formation to restore the balance between Th17 cells and
Treg cells, and the primary mechanism of the effect occurs by
promoting the expression of the AHR target gene cytochrome
P4501A1 (CYP1A1) (99).

4.1.2 Norisoboldine
Norisoboldine (NOR) is the main isoquinoline alkaloid
component of polylindera roots that attenuates OCs
differentiation to alleviate RA. As an AHR agonist, NOR can
stably bind to AHR, upregulate the nuclear translocation of
AHR, and enhance the accumulation of the AHR-ARNT
complex and AHR-mediated CYP1A1 expression (100) to
exert antiarthritic effects. NOR also attenuates the OCs
differentiation and bone erosion through activation of AHR
and subsequent inhibition of NF-kB pathway and hypoxia-
inducible factor (HIF) pathways (100).

4.1.3 Sinomenine
Sinomenine (SIN) is an alkaloid isolated from the root of
sinomenine acutum that has been used to treat RA for decades
(102). It alleviates arthritis by promoting the production and
function of Treg cells in an AHR-dependent manner, inducing
the expression of the AHR-targeted gene CYP1A1, and
promoting AHR/Hsp90 dissociation and AHR nuclear
translocation (101).

4.2 Biological Therapy
Our previous studies have shown that human umbilical
mesenchymal stem cells (HUMSCs) play a therapeutic role in
CIA rats by mediating the interaction between host immunity
and gut microbiota through AHR, and this specific mechanism
mainly involves increasing AHR target gene and corresponding
protein expression (24).

4.3 Other Therapeutic Drugs
Various types of dietary phytochemicals, the most typical of
which are dietary flavonoids such as quercetin and indigo, may
be promising drugs to treat nonalcoholic fatty liver disease
(NAFLD) (103) because they inhibit hepatic CD38 and affect
AHR (104). Considering its effect on AHR, it can be used as a
possible drug to treat RA.

Dietary flavonoids control joint inflammation and reduce
arthritis symptoms in both RA patients and CIA animal.
Although these substances have powerful anti-inflammatory
effects, they are associated with few clinical applications and
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little scientific evidence regarding their mechanism of action in
RA has been reported. Therefore, we should strengthen the
research in the area so that the treatment is likely to be
promising therapeutic agents for RA in the future.

Although many significant advances have been made in the
molecular understanding of biological responses and AHR
activation, several crucial questions persist. As Sulire and
Kaminski pointed out in their paper, most of the literature on
AHR to date has investigated mouse AHR (105). Although mouse
and human AHR are interchangeable in most in vitro systems, a
dramatic difference exists in the binding affinity between the two
AHRs to ligands in vivo: the mouse AHR binding affinity is 10-fold
higher than that of human AHR (106). Thus, the applicability of
the results from mouse AHR experiments in human immunity is
unclear. A current challenge is that most effects observed in mouse
models have yet to be demonstrated in human cells.
5 DISCUSSION AND PROSPECTS

RA is a chronic autoimmune disease characterized by immune
disorder, inflammatory infiltration, articular cartilage damage
and joint deformity. The inflammatory infiltration is mainly
caused by the increased secretion of inflammatory cells, such as,
Th1 (53), Th17 (55), B cells (64, 66), DCs (72), M1 (80), NK cells
(82, 84), OCs (86), and corresponding inflammatory CKs, such
as, IFN-g, IL-17, IL-22, TNF-a. Additionly, the decreased Th2
(53), Tregs (53), M2 (79), OBs (91) and IL-10, TGF-b further
aggravate the formation of RA.

PAHs in environmental exposure plays a crucial role in the
pathogenesis of RA, primarily by influencing the changes in
diversity cells and corresponding downstream CKs, and the main
pathway of these effects is through the AHR signaling pathway.
Interestingly, in these cells, the effects of AHR activation showed
an opposite trend. For example, in Th1, Th17, B cells, DCs, M1,
NK, and OCs cells, AHR activation had a pathogenic effect on
RA (35, 49, 69, 81, 86, 89), however, the activation of Th2 (35),
Treg cells (30), DCreg (76), M2 (81) and OBs (88) cells is
protective. And the number of these protective cells decreases,
the pathogenic effected cells increase, further promoting the
occurrence of RA. But, the different types or doses of PAHs
mentioned above may produce diverse results in RA. In
conclusion, the activation of AHR in RA patients may be
either a pathogenic factor or a therapeutic effect, and the
specific effect after AHR activation may be related to the type
and even the dose of ligands (24).

Although substantial progress has been achieved in the
treatment of RA, the current clinical treatment mainly includes
nonsteroidal anti-inflammatory drugs, corticosteroids, and
disease-modifying antirheumatic drugs (DMARDs). The former
two drug classes have an anti-inflammatory analgesic effect soon
after administration but do not fundamentally treat RA. DMARDs
such as leflunomide (LEF) work slowly but can continuously
alleviate disease activity in patients to suppress progressive joint
damage and delay the development of RA. Because of their
outstanding advantages, DMARDs (particularly new drugs that
March 2022 | Volume 13 | Article 79781
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target AHR) are the main treatments for RA, and their importance
is self-evident. In our review, we found that Tetrandrine, NOR,
and SIN could play a therapeutic role in RA by targeting AHR.
Tetrandrine is to regulate the ratio between Th17 and Treg cells by
inhibiting the differentiation of Th17 and promoting the
generation of Treg cells through the AHR pathway (99); NOR
relieves the differentiation of OCs and erosion of bone by
activating AHR (100); SIN mainly plays a role in the treatment
of RA by promoting the generation of Treg cells (101). In addition,
HUMSCs therapy for RA targets AHR is also a potential treatment
(24). Furthermore, the dietary flavonoid in the treatment of liver
disease have been reported to relieve joint inflammation and
control arthritis symptoms in RA patients and CIA animal
models. However, scientific evidence about their mechanism in
RA has been poorly studied. The relevant experiments should be
carried out and this kind of drugs are likely to be promising
therapeutic prescription for RA in the future.

The main purpose of this review was to summarize the
possible factors affecting RA and the pathogenesis of RA based
on AHR and AHR-targeted drugs for RA treatment, as well as
propose novel therapeutic drugs. Although many basic studies
have been carried out on PAHs-AHR-RA, clinic studies on
influencing the mechanism in RA via the AHR signaling
pathway are insufficient currently, and further investigations
are needed. The development of novel drugs from the
Frontiers in Immunology | www.frontiersin.org 11
laboratory to the clinic through convincing studies are
promising probably.
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