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Introduction: Exposure to maternal HIV in pregnancy may be a risk factor for impaired
child neurodevelopment during the first years of life. Altered neurometabolites have been
associated with HIV exposure in older children and may help explain the mechanisms
underlying this risk. For the first time, we explored neurometabolic profiles of children who
are HIV-exposed and uninfected (CHEU) compared to children who are HIV-unexposed
(CHU) at 2-3 years of age.

Methods: The South African Drakenstein Child Health Study enrolled women during
pregnancy and is following mother-child pairs through childhood. MRI scans were
acquired on a sub-group of children at 2-3 years. We used single voxel magnetic
resonance spectroscopy to measure brain metabolite ratios to total creatine in the
parietal grey matter, and left and right parietal white matter of 83 children (36 CHEU; 47
CHU). Using factor analysis, we explored brain metabolite patterns in predefined parietal
voxels in these groups using logistic regression models. Differences in relative
concentrations of individual metabolites (n-acetyl-aspartate, myo-inositol, total choline,
and glutamate) to total creatine between CHEU and CHU groups were also examined.

Results: Factor analysis revealed four different metabolite patterns, each one
characterized by covarying ratios of a single metabolite in parietal grey and white
matter. The cross-regional pattern dominated by myo-inositol, a marker for glial
org March 2022 | Volume 13 | Article 8002731
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reactivity and inflammation, was associated with HIV exposure status (OR 1.63; 95% CI
1.11–2.50) which held after adjusting for child age, sex, and maternal alcohol use during
pregnancy (OR 1.59; 95% CI 1.07 –2.47). Additionally, higher relative concentrations of
myo-inositol to total creatine were found in left and right parietal white matter of CHEU
compared to CHU (p=0.025 and p=0.001 respectively).

Discussion: Increased ratios of myo-inositol to total creatine in parietal brain regions at
age 2-3 years in CHEU are suggestive of early and ongoing neuroinflammatory processes.
Altered relative concentrations of neurometabolites were found predominantly in the white
matter, which is sensitive to neuroinflammation, and may contribute to developmental risk
in this population. Future work on the trajectory of myo-inositol over time in CHEU,
alongside markers of neurocognitive development, and the potential for specific
neurodevelopmental interventions will be useful.
Keywords: HIV exposure, magnetic resonance spectroscopy, neuroinflammation, brain development, myo-inositol
INTRODUCTION

Human immunodeficiency virus (HIV) infection remains a
major public health concern worldwide, with 37.7 million
people reported to be living with HIV globally (1). Of these, an
estimated 25.3 million people live in sub-Saharan Africa. The
widespread roll-out of antiretroviral therapy (ART) and
expansion of ART programmes for prevention of mother-to-
child transmission (PMTCT) have led to dramatic declines in
vertical transmission rates to less than 5% during recent years
(2). Globally, the estimated number of new infections in children
aged 0 to 14 years has decreased by more than 60% since the year
2000 (3). However, progress in the eradication of paediatric HIV
infection has revealed a concern that children who are HIV-
exposed and uninfected (CHEU) remain a vulnerable population
(2, 4). Approximately 15.4 million children worldwide are
CHEU, 13.8 million of whom live in sub-Saharan Africa (1),
with the highest number of CHEU residing in South Africa (3).
Due to expanding accessibility of both ART and PMTCT
programmes this population is increasing in number, however,
the implications of HIV and ART exposure as risk factors for
long-term child health and development are less well defined
(4, 5).

Meta-analyses have found that CHEU are at a greater risk of
all-cause mortality and worse developmental outcomes within
the early years of life, compared to children who are
HIV-unexposed (CHU) (6, 7). In sub-Saharan Africa, recent
studies have described HIV exposure to be associated with
neurodevelopmental delay (8–11) in children younger than 3
years of age. However, there is inconsistency across studies and
settings, and others have reported CHEU having similar
outcomes to CHU (12, 13).

There are a number of hypothesised mechanisms by which
HIV exposure may impact paediatric brain development. As
argued in the two-hit model of early brain damage, inflammatory
intrauterine conditions may increase vulnerability of the
developing brain to postnatal adverse events (14, 15). Since
chronic inflammation can persist in HIV infection despite
org 2
ART, women living with HIV may have immune dysregulation
during pregnancy (16, 17). This may prime the developing brain
to trigger exaggerated inflammatory responses against future
insults, compromising typical neurobiological development
(18–20). Immunological studies suggest the immune system of
CHEU is altered compared to that of CHU (17, 21), some
revealing proinflammatory immune profiles from birth to 2
years of age (22, 23). Neurobiological development in CHEU
may therefore be affected by maternal immune dysregulation
during pregnancy, however, studies of early neurometabolic
development are lacking.

Exposure to ART has also been associated with potential
neurotoxicity (24). Although maternal ART and child
prophylaxis are important to prevent HIV transmission,
potential metabolic and neurological consequences have been
reported (25). Furthermore, environmental stressors are known
to influence long term neurodevelopmental outcomes during
the period from conception to 2 years of age, and psychosocial
risk factors such as maternal antenatal depression and alcohol
use in pregnancy may play a key role in child development
(26, 27). Overall, there remains a gap in understanding the
neurobiological consequences of HIV exposure in the context
of high-risk environments.

Neuroimaging studies provide a key opportunity to examine
HIV exposure-related neuropathophysiology (28), with reports
describing white matter and grey matter differences between
newborns who are HEU compared to HU (29, 30) and white
matter abnormalities in older children who are HEU (31).
Amongst the existing techniques, magnetic resonance
spectroscopy (MRS) is a powerful approach, since it provides
in vivo measurements of neurometabolites in specified brain
regions. MRS profiles of the neurotypical brain during childhood
are well characterized (32, 33), and this technique has previously
been used to describe metabolite alterations in children older
than 2 years with perinatal infection or exposure to HIV (34–36).
Only one cohort study to date has examined neurometabolic
characteristics of CHEU, reporting metabolite alterations in the
basal ganglia at age 9 years, and in the frontal grey matter (GM)
March 2022 | Volume 13 | Article 800273
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and peritrigonal white matter (WM) at age 11 years, compared to
CHU (35, 36). MRS data are suitable for dimensionality
reduction methods like factor analysis, which groups similar
variables into a smaller number of dimensions. Through the
combination of metabolite measurements across different brain
regions, this method identifies metabolic patterns that underlie
latent neurobiological processes. Factor analysis has previously
been used in MRS studies to identify metabolic patterns within
the context of HIV-related illness (36–38).

The aim of our study was to explore differences in brain
metabolites in a well-characterized cohort of CHEU and CHU
from similar sociodemographic conditions at 2-3 years of age,
using MRS and factor analysis. We hypothesised that CHEU
would have altered neurometabolic profiles compared to CHU in
GM and WM, related to factors associated with inflammation.
METHODS

Participants
TheDrakensteinChildHealth Study (DCHS) is a population-based
birth cohort study in a peri-urban area of theWestern Cape, South
Africa, focused on investigating the early-life determinants of child
health, development and illness (39–41). The local population is a
low socioeconomic community with a high prevalence of several
health risk factors including HIV infection.

The DCHS enrolled pregnant women between 2012 and 2015
during their second trimester of gestation and currently follows
the mother-child pairs into middle childhood. Inclusion criteria
for enrolment were a minimum age of 18 years, gestational
period of 20–28 weeks, planned attendance at one of the two
clinics and intention to remain in the area. All mothers gave
written informed consent.

A subset of children enrolled in the DCHS participated in a
longitudinal neuroimaging sub-study. As part of the
neuroimaging sub-study, children who had undergone
neonatal imaging (41) were invited to be scanned at 2-3 years.
In addition, children not imaged at birth were also included
selecting for risk factors (maternal HIV and alcohol use during
pregnancy) to ensure a representative sample of a high-risk
population, along with a randomly selected comparison group.
These children were currently active in the study and living in the
area. Exclusion criteria applied to children for this sub-study
were: medical comorbidities such as congenital abnormality,
genetic syndrome, or neurological disorder; low Apgar score
(<7 at 5 minutes); neonatal intensive care admission; history of
maternal use of illicit drugs during pregnancy; child HIV
infection; and MRI contra-indications including cochlear
implants (42).

Sociodemographic Data Collection
The HIV status of enrolled mothers was confirmed via routine
testing during pregnancy and re-checked every 12 weeks, in
accordance with the Western Cape PMTCT guidelines (43).
Children who were HIV-exposed were tested at age 6 weeks, 9
months, and 18 months using PCR, rapid antibody, or ELISA
Frontiers in Immunology | www.frontiersin.org 3
tests as per guidance. CHEU were confirmed to be negative for
HIV at the age of 18 months, or once the mother had stopped
breastfeeding if this lasted more than 18 months. CHU were
defined as children born to mothers without HIV infection.
Mothers living with HIV received ART according to PMTCT
guidelines at the time. CHEU were prescribed post-exposure
prophylaxis from birth (44). Maternal CD4 cell count and viral
load data during pregnancy were abstracted from clinical records
and the online National Health Laboratory Service system,
collected as part of clinical care protocols. The lowest maternal
CD4 cell count within 1 year before child’s birth and 3 months
after birth was used to maximise numbers.

Sociodemographic and maternal psychosocial data were
collected between weeks 28 and 32 of gestation, through
interviews and questionnaires adapted from the South African
Stress and Health study (39, 40). Infant birthweight and markers
of poor nutrition were also collected, in accordance with the
World Health Organization (WHO) Z-score guidelines (45).
Stunting was defined as low child height-for-age, underweight
as low child weight-for-age, and wasting as low child weight-for-
length, all calculated as Z-scores lower than -2 of theWHOChild
Growth Standards median. Maternal alcohol use during
pregnancy was assessed using the Alcohol, Smoking, and
Substance Involvement Screening Test (ASSIST), and data on
moderate-severe alcohol use in pregnancy was retrospectively
collected, forming a dichotomous measure (41). Maternal
smoking during pregnancy was determined through self-
reporting. Maternal depression was assessed with the
Edinburgh Postnatal Depression Scale.

Magnetic Resonance Spectroscopy
Protocol
Participants in the neuroimaging sub-study underwent a
multimodal magnetic resonance imaging (MRI) protocol
without sedation, performed between January 2016 and
September 2018 at Groote Schuur Hospital, University of Cape
Town, on a 3 Tesla Siemens Skyra 70cm diameter bore whole
bodyMRI scanner (Erlangen, Germany) using a 32-channel head
coil (42). Once informed consent was acquired from the mother
and the child had fallen into deep sleep, children were carried
into the scanner, positioned carefully with pillows, blankets, and
ear protection. MRS data acquisition was performed during
natural sleep, and a trained study staff member remained in
the scanner room during the entire session in case the child
woke (42).

The MRS protocol was performed by well-trained
radiographers who were blinded to the children’s HIV
exposure status. It consisted of a high-resolution T1-weighted
multi-echo magnetisation prepared rapid gradient echo
acquisition (MEMPRAGE (46); sagittal orientation, repetition
time (TR) 2530 ms, echo times (TE) = 1.69/3.54/5.39/7.24 ms,
flip angle 7.0°, voxel size 1.0 x 1.0 x 1.0 mm3, inversion time (TI)
1100 ms, field of view (FOV) 224 x 224 x 176 mm, 176 slices,
scan time 5 min 21 s) and single voxel Point RESolved
Spectroscopy (PRESS; TR 2000 ms, TE 30 ms, 128 averages,
voxel size 25 x 25 x 25 mm3, vector size 1024, spectral bandwidth
March 2022 | Volume 13 | Article 800273

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Bertran-Cobo et al. Neurometabolic Profile of HIV-Exposed Uninfected Children
1200 Hz, scan time 6 min) with Chemical Shift Selective
(CHESS) water suppression. A water reference was acquired
without using CHESS. Shimming was automatically performed
over the voxel volume (with use of the scanner’s advanced
adjustments) and manually adjusted if necessary, to reduce the
spectral linewidths reported by the scanner. Voxel 1 was targeted
at the midline parietal GM, voxels 2 and 3 were targeted at left
and right parietal WM respectively (Figure 1).

Magnetic Resonance Spectroscopy Data
Processing
MRS voxels were registered to the T1-weighted structural image
with use of MATLAB software (MATLAB. Natick,
Massachusetts: The MathWorks Inc.; 2017). Segmentation of
the structural image into GM, WM, and cerebrospinal fluid
(CSF) was performed using Statistical Parametric Mapping
(SPM12) software (www.fil.ion.ucl.ac.uk/spm) to determine
tissue composition for each voxel.
Frontiers in Immunology | www.frontiersin.org 4
LCModel software (version 6.3-1) (47) was run to fit the raw
spectral data for quantification, using the appropriate water
reference for eddy current correction. Relative concentrations
(ratios) to the reference signal, creatine and phosphocreatine
(Cr+PCr), were determined for n-acetyl-aspartate (NAA/Cr+PCr),
myo-inositol (Ins/Cr+PCr), total choline (glycerophosphocholine
and phosphocholine, GPC+PCh/Cr+PCr), and glutamate (Glu/
Cr+PCr). Quality of spectra was inspected visually and assessed in
terms of full width at half maximum (FWHM) and signal-to-noise
ratio (SNR), and Cramér-Rao lower bounds (CRLB) given by
LCModel. Spectra with FWHM values greater than 0.08, and
SNR values lower than 10 were considered of low quality and
therefore excluded.

The four metabolites considered in our study have been
characterized in terms of clinical significance in prior studies,
from birth through childhood (32, 33). N-acetyl-aspartate is
most commonly considered to be a marker for neuronal health
or density in the developing brain (32, 33). While we note that
FIGURE 1 | Voxel placements and sample spectra of median SNR and LCModel output from the 3T scanner used in our cohort of children. The following median
SNR were obtained for each voxel placement: PGM median SNR = 34, LPWM median SNR = 35, RPWM median SNR = 33. PGM, parietal grey matter; LPWM, left
parietal white matter; RPWM, right parietal white matter; SNR, signal-to-noise ratio; ppm, parts per million.
March 2022 | Volume 13 | Article 800273
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the role of n-acetyl-aspartate in mature brain remains to be fully
established and recognise that n-acetyl-aspartate may also play
additional roles, such as contributing to myelin synthesis in the
mature brain (48), the evidence for this is currently limited. Myo-
inositol is considered a marker for glial reactivity, gliosis and
neuroinflammation. Total choline is associated with myelination,
membrane synthesis and membrane maturation in the WM.
Glutamate, the main excitatory neurotransmitter in the brain, is
considered a marker for neuronal function involved in many
neurobiological and behavioural processes during brain
development (32, 33).

Statistical Analysis
Sociodemographic characteristics of the mother-child pairs were
reported as mean (± SD) for continuous data, or absolute
frequencies (%) for categorical data. Continuous data was
assessed for normality using Shapiro-Wilk tests. Comparisons
between CHEU and CHU were made using t-tests or Wilcoxon
tests for normally and non-normally distributed continuous
data, respectively, and X2 tests for categorical data.

Factorability of MRS data was assessed using Bartlett
sphericity and Kaiser-Meyer-Olkin (KMO) tests. Factor
analysis was carried out with use of a maximum likelihood
approach and varimax rotation, and Root Mean Square Errors
of Approximation (RMSEA) of less than 0.05 were considered to
indicate statistical goodness of fit of the model. As proposed by
Yiannoutsos and colleagues (38), factor scores were constructed
for MRS data using a weighted linear combination of all 12
variables (the ratios of 4 metabolites to total creatine in each of
the 3 voxels), multiplying each metabolite concentration by its
associated factor loading and summing all products to form each
of four factor scores (38).

To determine whether the brain metabolic patterns could
predict HIV exposure, the factor scores obtained from brain
metabolite ratios were included as independent variables in
logistic regression models, to estimate odds ratios (OR) and
95% confidence intervals (CI). Both unadjusted and
multivariable models were created. Potential confounders were
chosen a priori due to their reported influence in neurometabolic
or neurobehavioral outcomes in children. These included child
age (32, 33), child sex (27, 49), and maternal alcohol use during
pregnancy (50, 51).

Sensitivity analyses were performed to examine the effect of
sociodemographic characteristics that showed significant
differences (p<0.05) between CHEU and CHU, by additionally
adjusting for these variables: maternal age of delivery, and
maternal depression during pregnancy. Despite having similar
values between groups, infant birthweight was also included in
the sensitivity analysis, since its role as confounder or mediator
in the causal pathway of maternal HIV infection and child
developmental outcomes may vary across settings (52).

Region-specific analyses were run for each metabolite ratio, to
explore differences between CHEU and CHU. Comparisons
between groups were made using unadjusted and adjusted
linear regression analyses with robust standard errors. Child
age, child sex, and maternal alcohol use during pregnancy were
included as covariates. To account for the presence of GM in
Frontiers in Immunology | www.frontiersin.org 5
voxels targeted at parietal WM, GM percentage was included as a
confounder in sensitivity analyses.

Lastly, we planned to examine the association of each child
metabolite pattern identified from factor analysis, with maternal
immune status during pregnancy and time of maternal ART
initiation, using multinomial logistic regression to estimate
relative risk ratios. For maternal immune status during
pregnancy, a categorical variable was created with the following
levels: lowest maternal CD4 cell count during pregnancy ≤500 cells/
mm3 versus >500 cells/mm3 in CHEU. Similarly, for maternal ART
initiation, a categorical variable was created examining maternal
ART initiation before pregnancy versus during pregnancy. CHU
was used as the reference in both models. A Cramér’s V test was
run to check for multicollinearity between the categorical variables.

Statistical analyses were performed in R with RStudio
software (version 1.2.5033) (53). P values of less than 0.05
(two-tailed) were considered statistically significant.
RESULTS

Cohort and Demographic Characteristics
A total of 1143 mother-child pairs were enrolled in the DCHS. A
subset of 156 children had MRS imaging at age 2-3 years. Of
these, 143 had a successful MRS acquisition from the parietal
grey matter voxel (first voxel in the data acquisition protocol),
134 from the left parietal WM voxel (acquired second), and 92
from the right parietal WM voxel (acquired third and last). A
total of 9 participants were excluded from the study after
inspection of obtained MRS data due to low quality of spectra
in at least one of the three voxels. Our final complete-case cohort
included 83 children (36 CHEU, 47 CHU) who had usable
metabolite data for all three voxels (i.e., GM, left and right
WM) and complete covariate data (Figure 2).

Socioeconomic characteristics of the complete-case cohort of
children were comparable between groups. Mothers living with
and without HIV had similar household incomes, education,
employment status, marital status, hospitalization rates and
smoking or alcohol use during pregnancy (Table 1). However,
mothers living with HIV were older at delivery and, among those
with available data (N=28 CHEU, N=42 CHU), there were lower
rates of depression compared to their uninfected counterparts.
Weight at birth was similar for CHEU and CHU. Exclusive
breastfeeding duration was comparable between groups, as was
the proportion of children with WHO markers for poor
nutrition. All mothers living with HIV received first-line three-
drug ART regimens, whereas post-exposure prophylaxis for
CHEU included nevirapine (77.7%) or nevirapine and
zidovudine (22.3%). The complete-case cohort and the original
subset of 156 children were similar in terms of sociodemographic
characteristics (Supplementary Table 1).
Metabolite Patterns of CHEU and CHU
Fractional tissue composition in each of the three voxels of the
complete-case cohort did not differ between groups. The
percentage of GM in the voxel targeted at parietal GM was
March 2022 | Volume 13 | Article 800273
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≈77% for both CHEU and CHU, while the voxels targeted at left
and right parietal WM contained ≈52% of WM in both groups
(Table 2). For all spectral fits the CRLB for NAA/Cr+PCr were
≤7%, for Ins/Cr+PCr ≤6%, for GPC+PCh/Cr+PCr ≤6%, and for
Glu/Cr+PCr ≤8%.

Bartlett sphericity and KMO tests confirmed the factorability of
our data. Subsequent factor analysis identified four factors (RMSEA
< 0.05), which accounted for 69% of data variability (Table 3). Each
factor is a metabolic pattern composed of loadings associated with
eachof themetabolite ratios (/Cr+PCr),where a large loading (>0.6)
indicates a strong contribution of a certain metabolite ratio to the
factor. Factor 1 was composed of large loadings of NAA/Cr+PCr
across all three brain regions and a strong contribution of Glu/Cr
+PCr in the voxel targeted at parietal GM. Factor 2 was dominated
by large loadings of Ins/Cr+PCr across brain regions. Factor 3 was
composed of large loadings of GPC+PCh/Cr+PCr in the voxels
targeted at left and right parietal WM, and a medium contribution
(0.552) of the samemetabolite in the voxel targeted at parietal GM.
Factor 4 was characterized by large loadings of Glu/Cr+PCr in the
voxel targeted at right parietal WM and a medium contribution
(0.530) of the same metabolite ratio in the voxel targeted at left
parietal WM.
Frontiers in Immunology | www.frontiersin.org 6
In both unadjusted and adjusted logistic regression models,
HIV exposure was significantly predicted by factor 2 (dominated
by Ins/Cr+PCr across regions), with an OR estimate of 1.63 (95%
CI 1.11 - 2.50) and adjusted OR 1.59 (95% CI 1.07 - 2.47),
respectively (Table 4). None of the remaining three factors
predicted HIV exposure. Sensitivity analyses revealed similar
results when separately adjusting for maternal age at delivery,
maternal depression during pregnancy and infant birthweight,
with HIV exposure being significantly predicted by factor 2
(Supplementary Table 2).

Region-Specific Relative Concentrations
of Metabolites to Total Creatine in CHEU
and CHU
Unadjusted analyses for each individual metabolite relative
concentration to total creatine and brain region revealed
significantly higher ratios of Ins/Cr+PCr in left (p = 0.025) and
right parietal WM (p = 0.001) of CHEU, compared to their
unexposed peers. Levels of Glu/Cr+PCr in the right parietal WM
of CHEU were also significantly higher than those of CHU (p =
0.034) (Figure 3 and Supplementary Table 3).

The adjusted analyses did not substantially modify the results
obtained for Ins/Cr+PCr (p = 0.004) and Glu/Cr+PCr (p =
0.015) in the right parietal WM, while group differences in Ins/
Cr+PCr (p = 0.066) in the left parietal WM fell short of our
selected threshold for statistical significance. Results remained
similar for all metabolite ratios after accounting for the
percentage of GM in WM voxels (data not shown).

Association of Maternal Immune Status
and ART Initiation With Child Metabolite
Patterns
Maternal immune status and ART initiation variables were
found to be co-linear in this sub-group (correlation coefficient
>0.7, Cramér’s V test). Further, given only 72% mothers of
CHEU children in this sample had CD4 cell counts taken
during pregnancy, we were unable to run multinomial logistic
regression using these variables as due to small sample size and
missing data we recognized that our ability to draw valid
conclusions from this analysis would be limited.
DISCUSSION

Our study is the first to describe the impact of HIV exposure
without infection on brain metabolites at 2-3 years of age in a
well-characterised cohort of children living in a LMIC setting. By
combining MRS data from parietal grey and white matter regions
using a factor analysis approach, we demonstrate a
neurometabolite pattern of elevated Ins/Cr+PCr in the parietal
brain regions of CHEU; this elevation is suggestive of
neuroinflammatory processes.

Factor analysis identified four metabolic patterns in the
parietal brain regions of our young cohort. Although all factors
represent a weighted combination of all metabolite ratios to total
creatine in each region, each factor was characterized by large
FIGURE 2 | DCHS flowchart for MRS sub-study. Exclusion criteria for the
MRS nested sub-study are described in the methodology section.
March 2022 | Volume 13 | Article 800273
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contributions from a certain metabolite ratio grouped across
brain regions with generally small contributions from the other
metabolite ratios. Based on prior studies of paediatric MRS (32,
33), we proposed the following interpretations: Factor 1 was
Frontiers in Immunology | www.frontiersin.org 7
interpreted as a metabolic pattern for neuronal health or
integrity, due to high loadings of NAA/Cr+PCr across brain
regions. It also contained a strong contribution from Glu/Cr
+PCr in parietal grey matter, suggesting that glutamate may
TABLE 1 | Sociodemographic characteristics of children included in the MRS complete-case analysis, according to HIV exposure.

CHEU (N = 36) CHU (N = 47) p value

Mean (±SD) or n/N (%) Mean (SD) or n/N (%)

Child age at scan (in months) 33.78 (±1.83) 34.15 (±1.75) 0.35
Sex 0.14
Male 25/36 (69.44%) 24/47 (51.06%)
Female 11/36 (30.55%) 23/47 (48.93%)
Monthly household income (in ZAR) 0.49
< 1000 12/36 (33.33%) 17/47 (37.17%)
1000 - 5000 23/36 (63.88%) 26/47 (55.31%)
> 5000 1/36 (2.77%) 4/47 (8.51%)
Maternal education 0.82
Primary 3/36 (8.33%) 3/47 (6.38%)
Some secondary 22/36 (61.11%) 26/47 (55.31%)
Completed secondary 10/36 (27.77%) 15/47 (31.91%)
Tertiary 1/36 (2.77%) 3/47 (6.38%)
Employed mother 9/36 (25%) 9/47 (19.14%) 0.70
Maternal relationship status (partnered) 19/35 (54.28%) 17/47 (36.17%) 0.22
Maternal age at delivery (in years) 29.89 (±4.37) 25.65 (±5.06) 0.0001*
Gestational age at delivery (in weeks) 38.61 (±2.27) 38.85 (±2.86) 0.67
Premature birth (< 37 weeks’ gestation) 5/36 (13.88%) 6/47 (12.76%) 1.00
Birthweight (in g) 3030 (±501.76) 3132 (±622.48) 0.40
Nutritional status at 2 years old
Stunting (height-for-age Z-score < -2) 5/31 (16.13%) 5/41 (12.19%) 0.89
Underweight (weight-for-age Z-score < -2) 2/31 (6.45%) 1/41 (2.44%) 0.80
Wasting (weight-for-length Z-score < -2) 0/31 (0%) 0/41 (0%) –

Maternal hospitalization during pregnancy 3/36 (8.33%) 4/47 (8.51%) 1.00
Maternal smoking during pregnancy 7/36 (19.44) 11/46 (23.91) 0.67
Maternal alcohol use during pregnancy 3/35 (8.57%) 10/46 (21.74%) 0.20
Maternal depression during pregnancy 1/28 (3.57%) 11/42 (26.19%) 0.032*
Exclusive breastfeeding duration (in months) 1.919 (±2.25) 2.180 (±1.47) 0.54
Maternal HIV diagnosis timepoint
Before pregnancy 26/36 (72.22%)
During pregnancy 10/36 (27.77%)
Maternal lowest CD4 cell count§

during pregnancy
≤ 500 cells/mm3 12/26 (46.15%)
> 500 cells/mm3 14/26 (53.85%)
Highest maternal viral load during pregnancy
(undetectable) < 40 copies/ml 25/29 (86.20%)
40 - 1000 copies/ml 2/29 (6.90%)
>1000 copies/ml 2/29 (6.90%)
Antiretroviral therapy initiation
Before pregnancy 20/36 (55.55%)
During pregnancy 16/36 (44.44%)
First-line antiretroviral therapy during pregnancy
Fixed dose combination
(Efavirenz+ Emtricitabine + Tenofovir)

33/36 (91.66%)

Lamivudine + Zidovudine + Nevirapine 2/36 (5.55%)
Lamivudine + Zidovudine + Efavirenz 1/36 (2.77%)
Infant prophylaxis
Nevirapine alone 28/36 (77.77%)
Nevirapine and zidovudine 8/36 (22.22%)
March 2022 | Volume 13 | Article
Data are mean (±SD) or n/N (%). *p<0.05. Percentages calculated out of available data. Continuous data was assessed for normality using Shapiro-Wilk tests. Comparisons between
CHEU and CHU were made using t-tests or Wilcoxon tests for normally and non-normally distributed continuous data, respectively, and X2 tests with Yates correction for categorical data.
Missing data: maternal relationship status (N = 1 in the CHEU group); nutritional conditions at 2 years old (N = 5 in the CHEU group, N = 6 in the CHU group); maternal smoking during
pregnancy (N = 1 in the CHU group); maternal alcohol use during pregnancy (N = 1 in the CHEU group, N = 1 in the CHU group); maternal depression during pregnancy (N = 8 in the CHEU
group, 5 in the CHU group); maternal CD4 cell count in pregnancy (N = 10); highest maternal viral load during pregnancy (N = 7). §The lowest maternal CD4 cell count within 1 year before
birth and 3 months after birth was used to maximise numbers. CHEU, children who are HIV-exposed and uninfected; CHU, children who are HIV-unexposed; ZAR, South African Rand;
WHO, World Health Organization.
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covary with n-acetyl-aspartate in certain regions and therefore
with number or density of neurons. Factor 2 (dominated by Ins/
Cr+PCr loadings across all regions) was considered an
inflammatory pattern for neuroinflammation or gliosis; and
Factor 3 (characterized by GPC+PCh/Cr+PCr across brain
regions) was interpreted as a pattern for membrane maturation
(32, 33). Factor 4 was dominated by Glu/Cr+PCr across WM
regions. This made it challenging to assign an interpretation
Frontiers in Immunology | www.frontiersin.org 8
distinct from that of Factor 1. However, given the role of
glutamate in neurocognitive processes including memory,
sensory and motor processing (see Blüml et al. and references)
(33), Factor 4 was broadly interpreted as a pattern for
neuronal function.

We found the inflammatory pattern was associated with HIV
exposure, both in the unadjusted and adjusted logistic regression
models. In the neurotypical brain, levels of the glial marker Ins/
TABLE 4 | Logistic regression analysis of factor scores as predictors for HIV exposure.

Mean factor score Unadjusted logistic regression Adjusted logistic regression*

CHEU(N = 36) CHU(N = 47) OR Confidence interval (95%) P value OR Confidence interval (95%) P value

Factor 1
(NAA)

-0.182 0.139 0.72 0.45 – 1.12 0.14 0.72 0.44 – 1.50 0.18

Factor 2
(Ins)

0.368 -0.282 1.63 1.11 – 2.50 0.017 1.59 1.07 – 2.47 0.029

Factor 3
(GPC+PCh)

-0.030 0.023 0.91 0.51 – 1.59 0.80 0.82 0.42 – 1.55 0.54

Factor 4
(Glu)

0.097 -0.074 1.28 0.76 – 2.21 0.35 1.41 0.81 – 2.56 0.23
M
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Odds ratios (OR) greater than 1 indicate an increased likelihood of association between a certain metabolite pattern and HIV exposure. Bold data represents statistically significant
associations. *Adjusted for child age, child sex, and maternal alcohol use during pregnancy.
NAA, metabolite pattern dominated by n-acetyl-aspartate ratios; Ins, metabolite pattern dominated by myo-inositol ratios; GPC+PCh, metabolite pattern dominated by total choline
(glycerophosphocholine + phosphocholine) ratios; Glu, metabolite pattern dominated by glutamate ratios; CHEU, children who are HIV-exposed and uninfected; CHU, children who are
HIV-unexposed.
TABLE 2 | Fractional tissue composition in each defined MRS voxel, according to HIV exposure.

Voxel CHEU (N = 36) CHU (N = 47)

% Grey matter % White Matter % CSF % Grey matter % White Matter % CSF

Parietal grey matter 77.9 (±4.2) 12.9 (±2.8) 9.2 (±3.2) 77.2 (±4.5) 14.1 (±2.8) 8.7 (±2.9)
Left parietal white matter 45.2 (±8.8) 52.1 (±8.9) 2.7 (±1.6) 46.8 (±7.0) 51.1 (±7.5) 2.1 (±1.2)
Right parietal white matter 46.2 (±8.7) 51.9 (±9.2) 1.9 (±1.3) 46.1 (±6.6) 52.5 (±7.0) 1.4 (±0.8)
Data is displayed as mean (±SD) percentages. Bold percentages indicate targeted tissue in each voxel. Data was assessed for normality using Shapiro-Wilk tests. Comparisons between
CHEU and CHU were made using t-tests or Wilcoxon tests for normally and non-normally distributed data, respectively. All p values were greater than 0.05 (data not shown). CHEU,
children who are HIV-exposed and uninfected; CHU, children who are HIV-unexposed; CSF, cerebrospinal fluid.
TABLE 3 | Factor loadings.

Voxel Metabolite Factor Loading

Factor 1 Factor 2 Factor 3 Factor 4

PGM Glu/Cr+PCr 0.745 -0.044 0.036 0.314
Ins/Cr+PCr -0.111 0.767 0.062 -0.208
NAA/Cr+PCr 0.911 -0.145 -0.052 0.025
GPC+PCh/Cr+PCr -0.264 0.211 0.552 0.007

LPWM Glu/Cr+PCr 0.439 -0.034 0.100 0.530
Ins/Cr+PCr -0.182 0.906 0.015 0.003
NAA/Cr+PCr 0.889 -0.116 0.053 0.159
GPC+PCh/Cr+PCr 0.113 -0.086 0.821 0.131

RPWM Glu/Cr+PCr 0.151 0.008 -0.043 0.883
Ins/Cr+PCr -0.111 0.823 0.001 0.168
NAA/Cr+PCr 0.692 -0.208 -0.029 0.072
GPC+PCh/Cr+PCr 0.104 -0.005 0.862 -0.115
Bartlett sphericity and Kaiser-Meyer-Olkin tests were performed and confirmed that a factor analysis approach was suitable for our data. Factor analysis identified four main metabolic
patterns (RMSEA < 0.05), which accounted for 69% of data variability and are displayed in this table. Factor loadings in bold represent the main components of each metabolic pattern.
PGM, parietal grey matter; LPWM, left parietal grey matter; RPWM, right parietal white matter; NAA, n-acetyl-aspartate; Ins, myo-inositol; GPC+PCh, total choline (glycerophosphocholine +
phosphocholine); Glu, glutamate;/Cr+PCr, relative to creatine + phosphocreatine.
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FIGURE 3 | Individual metabolite relative concentrations. Raincloud plots (54) showing individual metabolite relative concentrations to total creatine in the parietal
grey matter (PGM), left parietal white matter (LPWM) and right parietal white matter (RPWM) in our complete-case cohort, according to HIV exposure. *p<0.05; **p<0.01.
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Cr+PCr reach final, stable values within the first year of life (32).
Therefore, a pattern of covarying Ins/Cr+PCr across brain
regions at 2-3 years of age suggests neurometabolic
development in CHEU may be influenced by underlying
neuroinflammatory processes. Of note, maternal alcohol use
during pregnancy did not substantially modify the results of
the unadjusted analysis, despite its described association with
lower glutamate concentrations in the parietal WM in
neonates (50).

While there are no previous MRS reports of CHEU at this age,
neurometabolic differences in this population have been reported
in older children. Low absolute concentrations of creatine and
phosphocreatine, n-acetyl-aspartate, total choline, and glutamate
were found in the basal ganglia of a South African cohort of
CHEU at age 9 years, compared to their unexposed peers,
indicating possible neuronal damage (35). A longitudinal
analysis of the same cohort found no interactions between age
and HIV exposure when exploring neurometabolic development
from 5 to 10 years of age (34). Further, at age 11 years, lower
absolute concentrations of n-acetyl-aspartate were observed in
frontal GM and peritrigonal WM of CHEU, suggesting possible
axonal damage (36). Taken together, these results reflect the
dynamic nature of neurometabolic development across child
ages and brain regions, and the importance of analysing
neurometabolites at different ages. However, children at older
ages may have been exposed to additional sociodemographic
and psychosocial risk factors that may impact their brain
development adding a layer of complexity to the interpretation
of results. Our study has the advantage of exploring
neurometabolic development at a younger age, minimising the
influence of socioenvironmental confounders.

Ins/Cr+PCr was significantly higher in left and right parietal
WM of CHEU in our unadjusted analysis, and right parietal WM
differences remained significant after adjusting for child age,
child sex, and maternal alcohol use during pregnancy. WM may
therefore be particularly sensitive to neuroinflammation from
HIV exposure. Altered WM microstructural development has
previously been reported in the right posterior corona radiata
and the corticospinal tract of CHEU at age 7 years compared to
CHU (31), and in neonates from the DCHS in the middle
cerebellar peduncles (29) supporting our findings.

In addition to our main finding of higher parietal Ins/Cr+PCr
in CHEU, we found differences in other metabolite ratios
between groups. Glu/Cr+PCr levels were higher in the right
parietal WM of CHEU in both unadjusted and adjusted analyses,
compared to CHU. While covarying levels of Glu/Cr+PCr in
WM were considered a pattern for neuronal function in our
factor analysis, in the context of HIV exposure and
neuroinflammation glial cells are primed and may fail to
regulate glutamate. This has been demonstrated in patients
with brain injuries or neuropsychiatric disorders, resulting in
an unusual increase of this neurotransmitter in the extracellular
space (55–57), which may also explain our results here. No
results were modified after adjusting for GM percentage in voxels
targeted at parietal WM in our sensitivity analyses, despite the
presence of this confounder in the composition of such voxels.
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Overall, our findings of increased Ins/Cr+PCr in the WM of
CHEU add to the literature that HIV exposure may impact on
WM development by affecting underlying neuroinflammatory
processes. Animal model studies suggest that maternal immune
activation induces exaggerated neuroinflammatory processes in
offspring (19, 20). One of the main reported effects is microglial
priming, where microglial cells become prone to produce an
exaggerated response against second hits (18). Therefore,
postnatal threats such as infections or environmental stressors,
may elicit a neuroinflammatory overreaction in the young brain
with long-term consequences (18–20). In utero priming of the
immune system may take place in CHEU (21–23), and of note,
inflammatory metabolite patterns of myo-inositol and total
choline have been associated with cognitive impairment in
adults (37, 38, 58) and children (35, 59) living with HIV.

Psychosocial variables may also play a key role in the
neurometabolic development of CHEU. In LMICs studies,
maternal depression and alcohol use during pregnancy have
separately been associated with poorer cognitive outcomes in this
population (8, 60). A recent US study linked maternal depression
with decreased creatine and phosphocreatine, n-acetyl-aspartate,
and total choline levels in the developing brain of HIV-
unexposed foetuses (61) suggesting maternal immune
activation may play a role (62). We found the impact of HIV
exposure on Ins/Cr+PCr was independent of maternal
depression and alcohol use in pregnancy. However, whether
the neurobiological mechanisms underpinning these factors
overlap with those derived from HIV exposure needs to be
determined in larger samples. Separately, infant birthweight
has been associated with maternal HIV infection (63).
Although, studies are heterogeneous, suggesting the
relationship between maternal HIV status and infant
birthweight may vary across settings (51). Given birthweight
may be influenced by maternal immune activation during
pregnancy (64) and has been reported to impact children’s
performance in developmental assessments at 2 years of age
(8), we examined infant birthweight in sensitivity analyses and
found this did not modify our results.

HIV-specific factors have also been found to impact CHEU
outcomes, including maternal CD4 and ART. In a sub-study of
CHEU from the South African CHER cohort, lower CD4/CD8
ratio in infancy correlated to lower basal ganglia n-acetyl-
aspartate and total choline levels at 5 years (65), lower total
choline levels at 7 years, and lower myo-inositol levels at 9 years
of age (35). The results suggest that an altered immune status in
infancy may be associated with poorer neuronal and glial cell
density in childhood. Since long-term ART exposure has been
linked to mitochondrial toxicity in the brain (24, 66), MRS could
also be used in CHEU to measure mitochondrial markers, such
as lactate (32, 33). Although we were limited in our ability to
examine maternal CD4 and ART in this sample, future studies
may examine the relationship between these variables and
neurometabolites in CHEU.

The strengths of our study include the use of a robust approach
to study the effect of HIV exposure on neurometabolic
development at 2-3 years of age, comparing a well-characterized
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sample of CHEU to an appropriate control group with similar
sociodemographic characteristics from a LMIC setting. Overall,
our findings provide novel information about the neurobiological
profile of young CHEU in a sub-Saharan African setting. We
performed robust sensitivity analyses which did not substantially
modify the results obtained in the adjusted logistic regression
model. Furthermore, our cohort had a high prevalence of
sociodemographic and psychosocial risk factors, comparable to
other LMICs, and, all mothers living with HIV in our cohort
received first-line triple ART, the majority with a fixed dose
combination of efavirenz, emtricitabine, and tenofovir, implying
our cohort may have generalisability for other CHEU populations
across sub-Saharan Africa.

This study has some limitations to consider in the
interpretation of our findings. First, MRS in very young
paediatric subjects is technically challenging, since lack of
motion is essential for successful data acquisition. As some
data were lost due to children motion, the size of our
complete-case cohort for analysis was substantially reduced,
resulting in potential for underpowering of our analysis.
However, sociodemographic characteristics were similar
between the complete-case cohort and the full neuroimaging
cohort, minimizing the likelihood of selection bias. This
reduction in sample size meant we were unable to explore the
association of maternal CD4 cell counts during pregnancy with
child metabolite patterns, which needs to be investigated in
future work. Second, our study design only included voxels
placed in the parietal regions of the developing brain, so we
are unable to draw conclusions about the presence of an
inflammatory pattern in other brain areas of CHEU. Third,
since WM is still under maturation in the developing brain
(67), the tissue composition of voxels targeted at parietal WM
may have included a proportion of GM. Hence, we cannot claim
metabolite ratios obtained from these voxels purely belong to
WM tissue. To mitigate this limitation, we ran sensitivity
analyses for region-specific comparisons of individual
metabolite ratios between groups, adjusting for GM percentage
in voxels targeted at parietal WM, and found our results held.
Fourth, although total creatine is well characterized and stable in
the neurotypical brain during the first years of life (32, 33), low
levels of this reference have been described in the peritrigonal
WM in children living with HIV (36), compared to CHEU and
CHU, and in subcortical brain regions in CHEU, compared to
CHU (35). In contrast, higher creatine levels have been described
in the parietal WM in adult subjects living with HIV, compared
to uninfected peers (37). Therefore, although relative
concentrations are commonly reported as they have the
advantage of being less dependent on correction for relaxation
and partial volume effects compared to absolute concentrations,
the use of creatine and phosphocreatine as a reference in CHEU
studies complicated interpretation as findings may reflect a
change in the numerator or denominator. Similarly, the roles
of metabolites in the developing brain, particularly n-acetyl-
aspartate, remain to be fully established and Factor
interpretations should be viewed with some caution. Lastly, we
did not correct for multiple comparisons in our analyses, given
Frontiers in Immunology | www.frontiersin.org 11
the exploratorynature ofour studyandouruseoffactor analysis as a
dimensionality-reduction method to reduce comparisons. Further
work will be needed in larger sample sizes to replicate results.

In conclusion, our study presents the first results of the
neurometabolic impact of HIV exposure in children from a
LMIC setting during their first 2-3 years of life. We report
differences in brain metabolite patterns between CHEU and
CHU, showing an association of HIV exposure with an
inflammatory pattern of elevated Ins/Cr+PCr in parietal brain
regions. Our results are suggestive of neuroinflammatory
processes in the developing brain of CHEU at this early age,
which may be especially relevant in the parietal WM; whether
this represents a potential target for specific neurodevelopmental
interventions remains to be determined. Future work is needed
to assess the longitudinal trajectories of neurometabolites in the
population of CHEU, and to investigate associations with
neurocognitive development and mechanisms underlying the
inflammatory profile.
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