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Breast cancer is characterized by some types of heterogeneity, high aggressive
behaviour, and low immunotherapeutic efficiency. Detailed immune stratification is a
prerequisite for interpreting resistance to treatment and escape from immune control.
Hence, the immune landscape of breast cancer needs further understanding. We
systematically clustered breast cancer into six immune subtypes based on the mRNA
expression patterns of immune signatures and comprehensively depicted their
characteristics. The immunotherapeutic benefit score (ITBscore) was validated to be a
superior predictor of the response to immunotherapy in cohorts from various datasets. Six
distinct immune subtypes related to divergences in biological functions, signatures of
immune or stromal cells, extent of the adaptive immune response, genomic events, and
clinical prognostication were identified. These six subtypes were characterized as
immunologically quiet, chemokine dominant, lymphocyte depleted, wounding dominant,
innate immune dominant, and IFN-y dominant and exhibited features of the tumor
microenvironment (TME). The high ITBscore subgroup, characterized by a high
proportion of M1 macrophages:M2 macrophages, an activated inflammatory response,
and increased mutational burden (such as mutations in TP53, CDH1 and CENPE),
indicated better immunotherapeutic benefits. A low proportion of tumor-infiltrating
lymphocytes (TILs) and an inadequate response to immune treatment were associated
with the low [TBscore subgroup, which was also associated with poor survival. Analyses
of four cohorts treated with immune checkpoint inhibitors (ICIs) suggested that patients
with a high [TBscore received significant therapeutic advantages and clinical benefits. Our
work may facilitate the understanding of immune phenotypes in shaping different TME
landscapes and guide precision immuno-oncology and immunotherapy strategies.
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INTRODUCTION

Human breast cancer remains a threat to women’s health
worldwide and is characterized by intra-tumoral heterogeneity
with biological and clinical diverseness (1, 2). Several lines of
clinical evidence indicate that refined molecular taxonomy helps
breast cancer prognostication and therapeutic stratification (3, 4).
Some excellent studies have defined tumor subtypes using various
methods, such as histopathological classification methods (based on
ER, PR, and HER?2), gene expression-based classification methods
(PAMS50) (5), and immunogenomics methods (6), which have been
conducive to the identification of novel therapeutic targets. Different
subtypes of breast cancer present distinct tumor microenvironment
(TME) characteristics, especially adaptive immunity. Although the
properties, immunoediting ability, and diversity of the T cell
receptor (TCR) repertoire of the adaptive immune response have
been explored (6-9), the extensive immune landscape of breast
cancer has not been fully elucidated.

In the past decade, cancer immunotherapy has significantly
revolutionized the management of cancer. By utilizing the
patient’s immune system to identify and control tumors, immune
checkpoint inhibitors (ICIs) specific for PD-1, PD-L1, and CTLA-4
have successfully enhanced the outcomes of various malignancies
(10). However, recent clinical trials have demonstrated that
immunotherapies showed low efficiency in the entire population
of breast cancer patients, especially those with triple-negative breast
cancer (TNBC) (11). Except for the fact that breast cancer exhibits
similar immunologically silent properties, a low mutational burden,
and fewer tumor-infiltrating lymphocytes (TILs) than some other
cancers (12, 13), the lack of an immunogenomic approach for
appropriate patient selection and precise prognostic biomarkers
might be the mainspring for these discouraging results.

This study took the form of an integrative immunogenomic
analysis to characterize the immune TME in breast cancer and
explored what genomic events contribute to these results. With
multi-omics data from The Cancer Genome Atlas (TCGA)
database and immune gene expression signatures, we first
classified breast cancer samples into six immune subtypes that
exhibit distinct immune escape mechanisms and provide promising
therapeutic and prognostic implications for cancer treatment. We
also established a robust predictive signature to estimate the
outcomes of immune checkpoint blockade treatment.

MATERIALS AND METHODS

Human Tissue Samples Collection

All human samples used in this study were collected from 36
patients who were subjected to clinical surgery in the First
affiliated hospital of Bengbu medical college (Bengbu cohort).
Before RNA isolation and protein extraction, samples were
stored at -80°C.

Immunohistochemistry
Target tissues were cut to 4 pm thick, then deparaffinized, and
rehydrated with xylene and graded alcohols (from 100% to 70%).

After antigen retrieval with five mM citrate buffer, 3% H,0, was
used to inactivate endogenous peroxidase. The sections were
blocked with goat serum for 30 min at room temperature and
incubated with primary antibodies overnight at four°C. The
sections were washed with phosphate-buffered saline (PBS)
three times and incubated with a biotinylated secondary
antibody at room temperature for two h. Diaminobenzidine
was used as a chromogen substrate. Finally, the sections were
counterstained with hematoxylin. Antibody information was
listed in Table S9.

Data Collection and Preprocessing

We methodically collected the molecular and clinical data of
1080 breast cancer patients from The Cancer Genome Atlas
(TCGA) database, Molecular Taxonomy of Breast Cancer
International Consortium (METABRIC) database, and Gene
Expression Omnibus (GEO) database. Patients without survival
information were excluded from further evaluation. Detailed
methods are provided in the Supplementary Methods.

Consensus Clustering Based on
Representative Inmune Signatures

The 83 signatures that are known to be associated with immune
activity in tumor tissue collected from earlier study (6). To
comprehensively illustrate the characteristics of 83 immune
signatures, we superimposed proteins within each immune
signature onto the protein-protein interaction (PPI) network
based on the STRING database (http://string-db.org/) (14). We
performed univariate Cox regression analysis to determine its
prognostic value in the TCGA-BRCA (Breast invasive
carcinoma) and METABRIC cohorts using the survminer
package in R.

Before clustering, we discovered potential representative
signatures based on weighted gene correlation network analysis
(WGCNA) (15). First, single-sample gene set enrichment
(ssGSEA) analysis (16) was performed across all 1080 BRCA
patients to generate the gene set scores of each immune
signature, as implemented in the GSVA package in R (17).
Spearman correlation coefficients were computed among each
immune signature to create a correlation matrix. Next, the
correlation matrix was subject to a specified power and clustered
using the WGCNA package in R with the following parameters:
power = 20, TOMType = “signed”, pamStage = F, and
minModuleSize = 3 (6). In every confirmed module, the “Eigen-
signature” was defined as the potential representative immune
signature, which indicated the highest connectivity in each
module. We then obtained six potential representative immune
signatures from the WGCNA that were further validated by the
strategy put forth in “cluster validation by predictive strength”
(18). The mclust package in R (19) was employed to perform
model-based clustering using finite normal mixture modelling.
This approach revealed one potential signature that lacked
robustness, and it was excluded from further analysis. Therefore,
we ultimately obtained five representative immune signatures,
each of which are represented by one of the five signature
similarity modules. The maximal Bayesian information criterion
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(BIC) was leveraged to identify subtype patterns and classify
patients by testing from 2 to 28. The number of clusters was
further validated by tSNE (20) to measure the robustness. Finally,
we classified TCGA-BRCA patients into six clusters based on the
final five representative immune signatures for further analyses.

Establishment of the Immune Biological
Signature

To explore the immune-associated patterns of specific tumors,
we established a scoring system, termed the immune biological
signature, to assess the immunopatterns of individual patients
with breast cancer. The composition of the immune biological
signature was investigated as follows.

Supervised analysis was performed to identify the subtype-
specific genes that were differentially expressed among the
established immune subtypes. To evaluate the predictive power
of the differentially expressed genes, we randomly classified
TCGA-BRCA samples into training and testing sets at a ratio
of 7 to 3. Three well-established machine learning algorithms
adapted from Yuan et al. (21), logistic regression (LR), support
vector machine (SVM) (22) and random forest (RF) (23), were
used to predict the subtypes (as a binary variable) using the least
absolute shrinkage and selection operator (LASSO) penalty (24)
to filter the informative genomic features. The performance of
distinct classifiers was assessed using the fivefold cross-validation
method: each training set was randomly divided into five
sections. LASSO and model selection were applied based on 4/
5 of the training set, and model prediction was applied based on
1/5 of the training set. The predictions of five iterations were
registered and visualized with receiver operating characteristic
(ROC) curves. Since the AUC score of the RF algorithm
surpassed that of the two other algorithms, we performed
LASSO and model selection on the whole training set using
RF. We evaluated its predictive power across the entire testing
set. The biological value of all subtype-specific genes was
analyzed using a univariate Cox regression model. We then
performed principal component analysis (PCA) to generate an
immune biological signature and scored the signature using
principal component 1 (PC1). The advantage of this method is
that the score is concentrated on the set with the well correlated
(or anticorrelated) gene block while reducing the weight of the
contribution of genes that were not associated with other set
members. Finally, we defined the immunotherapeutic benefit
(ITBscore) of each patient using the method adapted from GGI
and the TMEscore (25, 26):

[TBscore = X PC1; - £ PCJ;

where i is the gene whose Cox coefficient is positive and j is the
gene whose Cox coeficient is negative.

Statistical Analysis

Student’s t-test and the Wilcoxon rank-sum test were utilized to
compare normally distributed variables and non-normally
distributed variables, respectively. For comparisons of more
than two groups, the Kruskal-Wallis test was used. Two-sided
Fisher exact tests were used to analyse contingency tables.

Correlations were assessed with Spearman or Pearson
correlation analyses as stated in the text. Survival analysis was
conducted using the Kaplan-Meier method with the log-rank
test; each set’s cut-off point was evaluated using the survminer
package in R. ROC curves were generated using the pROC
package (27) and used to assess the predictive ability of TMB,
the ITBscore, and their combination. The likelihood ratio test
was applied to compare the AUCs using the Imtest package in R.
All heatmaps were generated using the ComplexHeatmap
package in R (28). The p values were two-sided and adjusted
according to the Benjamini-Hochberg approach (BH) to control
for the false discovery rate (FDR). Genes with an FDR < 0.05
were considered significant. All analyses and images were
conducted and generated using R programming language (29)
unless indicated.

RESULTS

The Landscape of Immune Subtypes in
Breast Cancer

To depict immune response characteristics unique to breast
cancer, explore the rationality of immune phenotypes, and
estimate the impact from the tumor microenvironment (TME),
we performed a comprehensive immunogenomic analysis using
the multi-omics profile of 1080 TCGA-BRCA samples. To better
illustrate the features of 83 immune-associated signatures utilized
to distinguish the immune phenotypes, we constructed a protein-
protein interaction (PPI) network based on the STRING database
(Figures S1A, B) and evaluated its prognostic value (Figure S1C
and Table S1). By scoring 83 signatures and applying the cluster
method, we identified five representative immune signatures
(Figure 1A): “Module3_IFN_score”, representing the IFN-
gamma response (abbreviated “IFN-Y” in the text and figures)
(30), STAT1_19272155, illustrating chemokine signalling
(abbreviated “Chemokine” in the text and figures) (31),
G_SIGLECY, representing myeloid cell activation involved in
immune responses (abbreviated “Myeloid” the in text and
figures) (32), HER2_Immune_PCA_18006808, representing the
regulation of lymphocyte activation (abbreviated “Lymphocyte” in
the text and figures) (33), and Troester_WoundSig 19887484,
representing the negative regulation of angiogenesis (abbreviated
“Wounding” in the text and figures) (34). Thus, we classified
breast cancer patients into six clusters, termed immune subtypes
(Figures S1D, E): IS1-1S6 (160, 305, 129, 246, 194, and 46 patients,
respectively). The clusters were further validated using t-
distributed stochastic neighbor embedding (tSNE), which
assured the accuracy of consensus clustering (Figure 1B).

IS1 (defined as immunologically quiet) was characterized by a
low proportion of TILs within the TME, low M1/M2
macrophage polarization, a high proliferation rate (Figure
S1F). IS2 was characterized by chemokine dominant and had
the highest proportion of TILs, indicating the highest adaptive
immune response and lowest innate immune response. IS2 was
dominated by M1 macrophages and had the highest proliferation
rate, with the highest homologous recombination deficiency
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FIGURE 1 | Landscape of immune subtypes in breast cancer. (A) Module distribution and cluster results. Top: Spearman correlation coefficients of 83 immune gene
signatures. Boxes display five modules with shared associations. Middle: Six immune subtypes clustered by five representative signatures. Bottom: Distributions of
signature scores within the six subtypes, with a dashed line indicating the median. (B) t-SNE plot showing the different immune subtypes. (C) Survival analysis
grouped by immune subtype. (D) Distribution of immune subtypes and TCGA subtypes. (E) Summary of crucial characteristics by immune subtype.

(HRD) (Figure S1F). IS3 (described as lymphocyte depleted) was
characterized by an extreme lack of lymphocytes in the TME and
exhibited the lowest adaptive immune response and highest
innate immune response contrary to IS2 (Figure S1F); it was
dominated by M2 macrophages and mainly consisted of breast
invasive carcinoma luminal A rather than luminal B (Figure 1C).
IS4 (wounding dominant) was defined by the lowest expression
levels of wound healing signatures, suggesting weak proliferation

ability, elevated TILs, high M1/M2 macrophage polarization, few
macrophages/lymphocytes (Figure S1F), and a strong TGF-3
signal. IS4, along with IS2, displayed better survival benefits than
other subtypes (Figure 1D). IS5 (innate immune dominant)
showed a dominant natural immune response signature, high
proliferation rate, heterogeneity (Figure S1F), and the highest
proportion of the basal subtype (Figure 1C), with a high M2
response. 1S6 (IFN-y dominant) displayed a high proportion of
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macrophages and dendritic cells, and a low proportion of TILs
with an even distribution of CD4 and CD8 T cells (Figure S1F
and Figure 3A). Finally, the distinct TME and principal features
of tumor samples over the six immune subtypes were
summarized (Figure 1E and Figure S1F; Table S2).

Transcriptomic Characteristics of Immune
Subtypes in Breast Cancer

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analyses highlighted the
transcriptomic characteristics of immune subtypes, and a total
of 115 significantly (Kruskal-Wallis test, BH-adjusted p < 0.05)
enriched pathways (Table §3) and six GO categories (Figure S2)
were identified. A Circos plot was used to display the KEGG
pathway landscape and dominant functional categories
(Figure 2A). The DIDS package in R was utilized to calculate
the differential abundance of a specific subtype against the
remainder of the samples (Figure 2A, left), and all significant
pathways of each subtype (Wilcoxon test, BH-adjusted p < 0.05)
were aggregated to KEGG orthology (KO) functional categories
(Figure 2A, right). From the graph above, we can see that the
“Genetic information processing” and “Metabolism” functional
categories were enriched in all subtypes except for IS5, which
showed a faint distinction compared with the others. Moreover,
the chemokine signalling pathway (ko04062) in the immune
system was the most significantly enriched (BH-adjusted p <
1.0 x 107%) among the six subtypes. In summary, their roles in
the anti-tumor immune response within the TME are worthy of
further research.

Next, we estimated some specific functional signatures across
the immune subtypes. As expected, the immune signatures were
strongly associated with the immune subtypes (Figure 2B). IS1 and
1S3 were characterized by a lower immune signature score, whereas
IS2 was characterized by a higher adaptive immune response score
(Figures 1D and Figure 2B). IS3 and IS4 were characterized by
elevated B-catenin and invasion signatures, indicating increased
metastasis ability (Figure 2C). It is worth mentioning that IS5 was
not significantly correlated with breast cancer signatures or
oncogenic signalling pathways (Figures 2C, D). Analogously,
NRE2 signalling pathways showed no change across immune
subtypes (Figure 2D). In summary, breast cancers with different
immune subtypes displayed different mRNA signatures.

Extrinsic Immune Escape Mechanisms of
Breast Cancer

To dissect the molecular mechanisms and explore the distinct
characteristics of immune escape in different immune subtypes,
we comprehensively investigated the relevant factors from the
TME. In light of the immunoediting theory (35), extrinsic escape
mechanisms may arise from a lack of innate immune sensing
(such as activation of the WNT-B-catenin signalling pathway
and inhibition of the cGAS-STING pathway) (36), inhibited
infiltration of immune cells (such as Batf3-expressing dendritic
cells (DCs) and CD8" T cells) (37, 38), formation of an
immunosuppressive state (such as recruiting Tregs and
myeloid-derived suppressor cells (MDSCs), production of the

immunosuppressive cytokines VEGF and TGF-B) (39), and
other alterations in the TME (36, 40).

We compared the approximate proportions of different
immune cells over six subtypes in the TME (Figure 3A). The
interaction network displayed the connections between tumor-
infiltrating immune cells and their prognostic value in breast
cancer patients’ overall survival (OS) (Figure S3A). IS2
possessed the largest fraction of Tregs and MDSCs (Figure 3B),
which might lead to a strong immunosuppressive effect even
though it had more lymphocytes (Figure 3C) (35). IS3 acquired
more innate immune cells than others, suggesting the ability of
cancer immunosurveillance. The expression of STING
(Figure 3B), which is critical for the spontaneous initiation of
innate immunity, and other proteins potentially related to natural
innate immunity among the six subtypes also supported this
hypothesis (Figure S$3B). In addition to immune cells, stromal
cells also play an essential role in the tumor immune response.
There were more stromal cells, such as fibroblasts, endothelial
cells, and chondrocytes, in IS4 than in the other subgroups (Figure
S3C). Fibroblasts, specifically cancer-associated fibroblasts
(CAFs), can inhibit the infiltration of immune cells, especially
CD8" T cells and natural killer (NK) cells, into the TME and
suppress their functions within the tumor (41, 42). Moreover, the
low leukocyte fraction (LF)/stromal fraction (SF) ratio in IS3 and
IS4 may result in increased tumor proliferation and cancer
stemness and promote invasion and metastasis (Figure 3D) (42).

Finally, we explored the gene expression of chemokines, ECM
proteins, interleukins (ILs), IFNs, and other vital cytokines and
their receptors (Figure 3E), conceivably indicative of their
functions in shaping the TME, across each subtype. Cytokines
with the most variation between subtypes included CXCL10 and
PDGFRB (Figures S3D-F). The DNA methylation of some
cytokine genes, such as TNF and LTA, negatively correlates
with gene expression, indicating epigenetic silencing (Figure
$3G). One hundred seventy-one miRNAs were identified as
potential extrinsic cytokine regulators within the TME (Figure
S3H). In general, the observed difference in each subtype in the
TME might have implications in regulating immune escape and
highlight the biological importance of breast cancer.

Intrinsic Immune Escape Mechanisms of
Breast Cancer

In addition to the influence of the TME, tumor cells can also
evade the anti-tumor immune response through intrinsic
variations. The innate mechanisms of immune escape are
associated with reduced immunogenicity (36), increased
resistance to the cytotoxic effects of immunity, and alterations
in the expression of immune checkpoint proteins (35).

We investigated not only the potential elements associated with
tumor antigens, such as aneuploidy, homologous recombination
deficiency (HRD), neoantigens, and intratumoral heterogeneity
(ITH) (Figure S4A), but also the relationship between DNA
damage and immune infiltrates (Figure 4A and Figure S4B). LF
showed a positive correlation with HRD, aneuploidy, and ITH,
with the strongest correlation observed in IS6 and IS2, and a
negative correlation with mutation load, particularly in IS2, IS4
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and IS5. These results suggest a differential effect of multiple
smaller, focal copy number events versus more significant immune
infiltration events in specific immune subtypes. We further
explored the genomic alterations associated with subtypes
(Figure 4B and Table S4). IS1, IS3, IS4, and IS5 were mainly
enriched in mutations in PIK3CA (25%, 35%, 46%, and 33%,
respectively), one of the most mutated genes in solid cancers (43).
IS6 was mainly distinguished by an enrichment of mutations in
GATA3, which disrupts epithelial-to-mesenchymal transition
(EMT) and inhibits the tumor-initiating ability of luminal

progenitor cells and metastasis in breast cancer (44). In IS2, 59%
of samples had a mutation in TP53, which affected the expression
of STAT3 and BCL2 (Figure 4C and Figure S4C), and
participated in resistance to cytotoxic effects by inducing anti-
apoptotic mechanisms. Because of the higher TP53 mutation rate
and TMB in IS2 (Figure S4D), we explored the mutational
signature of IS2 by performing Bayesian non-negative matrix
factorization (Bayesian NMF) analysis (45) of the mutations
stratified by 96 trinucleotide contexts. Bayesian NMF analysis
revealed four distinct patterns of mutagenesis operating among
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33251 single nucleotide variants (SNVs) in IS2 (Figure S4E). The
four mutation signatures were “APOBEC”, “DNA MMR
deficiency”, “BRCA1/2 mutations” and “Pol € mutations”
(31.69% SNVs, 20.39% SNVs, 27.56% SNVs and 20.34% SNV,
respectively). We finally examined the 11 DNA repair signalling
pathways curated by the Wood laboratory (46) to monitor the
ability to protect the integrity of the genome (Figure 4D). Overall,
these analyses showed distinct characteristics of genomic
variations according to the immune subtype.

Immune checkpoint molecules are critical for immune escape
and cancer immunotherapy. To advance these studies, we
surveyed the expression patterns of immunomodulators at the
mRNA, methylation, and somatic copy number alteration
(SCNA) levels. Active immune checkpoint molecules are

referred to as co-stimulatory and co-inhibitory molecules
(https://www.rndsystems.com/cn/research-area/co-stimulatory-
and-co-inhibitory-molecules) and may be indicative of their role
in shaping the TME. As shown in Figure S4F, the expression of
immunomodulators was lower in IS1 than in the other subtypes.
The immunomodulators with the most remarkable variations
between subtypes included SLMF6 (BH-p adjusted < 1.0 x 107?)
and CTLA4 (BH-p adjusted < 1.0 x 107"), both of which were
highly expressed in IS5 and weakly expressed in IS1. Specifically,
the median transcript per millions (TPMs) of 24 inhibitory and
37 stimulatory immunomodulators were similar between
subgroups IS1, IS3, IS4, and IS5 and significantly lower than
IS2 but higher than IS6 (Figure 4E). Moreover, we calculated the
Spearman correlation coefficients between immunomodulators
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and aneuploidy, neoantigens, TMB, HRD, TILs, and ITH. The
results indicated that the expression levels of most
immunomodulators showed positive correlations, whereas
aneuploidy did not seem to be associated with BTN3Al,
BTN3A2 and CD40 (Figure 4F).

Clinical Characteristics and Biological
Traits of the Immune Biological Signature
As shown by the above results, distinct immune subtypes present
different immune and biological characteristics. The differential
transcriptome of each immune subtype contributed to these
consequences used to construct the immune biological
signature. To broadly evaluate the patterns of immune
subtypes in shaping different TME landscapes and genomic
states, we established a scoring system to quantify the immune
biological signature by applying a rigorous machine learning
method (Figure S5A) termed the ITBscore. We also assessed the
power of differentially expressed genes (DEGs) in classifying
distinct immune subtypes (Figure 5A). Next, we explored the
immune biological signature’s molecular mechanism and
questioned whether the ITBscore could predict a patient’s
outcome to immunotherapy. The 1080 patients in the TCGA-
BRCA cohort were assigned to high and low ITBscore subgroups
according to the cut-off value acquired using the survminer
package in R. Patients in the high ITBscore group displayed a
significant survival benefit compared with those in the low
ITBscore group, and the 10-year survival rates were 80.7% and
41.2%, respectively (Figure 5C). The trait changes in each patient
according to the clusters were visualized using an alluvial
diagram (Figure 5D).

Furthermore, we performed univariate Cox regression
analysis to determine whether the ITBscore could be an
independent prognostic biomarker for breast cancer. To this
end, the ITBscore and other characteristics of breast cancer
patients, including age, clinical stage, TNM status, histological
type, Her2 status and TP53 status, were examined. As shown in
Figure 5E, the results indicated that the ITBscore is a robust and
independent prognostic biomarker for estimating breast cancer
patient outcomes (HR: 0.656, 95% CIL: 0.591-0.727), and the
correlation between the molecular subtype and ITBscore was
significant (Figure 5F). The basal and Her2 subtypes, which are
associated with more favorable prognoses in response to
immunotherapy (47), presented notably higher ITBscores than
the other three subtypes (Kruskal-Wallis, p = 7.4 x 107").

One factor associated with a good prognosis in the high
ITBscore group might be the relatively high proportion of TILs.
Patients with a high ITBscore had significantly larger proportion of
T helper cells, CD8 T cells, and activated/resting CD4 memory T
cells, with considerably fewer M2 macrophages and mast cells than
patients with a low I'TBscore (Figure 5B). The correlations of TILs
in the high and low ITBscore groups are shown in Figure S5B. The
next section of the study focused on molecular traits and genomic
alterations. By employing gene set enrichment analysis (GSEA) of
the whole transcriptome between the two groups, we discovered
that immune response-associated gene sets, such as the
inflammatory response, IL6-JAK-STAT3 signalling, and

interferon o/y response, were active in the high ITBscore group.
However, some gene sets, including adipogenesis, fatty acid
metabolism, and oxidative phosphorylation, were inhibited in
the low ITBscore group (Figures S5C, D), consistent with the
findings that patients from the high ITBscore group demonstrated
better survival than those from the low ITBscore group. Therefore,
the clinical benefits of the high ITBscore group might be associated
with the enhanced G2/M checkpoint. We further explored the
association between the ITBscore and mutation patterns using a
random forest algorithm with two thousand iterations in the
Boruta package in R and confirmed 14 significantly variant
genes (Figures S5E, F). Preclinical (48) and clinical (49) studies
have reported the influence of altered genes on immune
checkpoint blockade. Only a few of these genes are associated
with sensitivity or resistance in BRCA, such as TP53 and CDHI.
These results show that an immune biological signature could be
employed to estimate patients’ clinical characteristics and provide
an original perspective for investigating immune-associated
somatic mutations that shape the TME and function in immune
checkpoint blockade therapy.

Immune Biological Signature Predicts
Immunotherapeutic Benefits

To further assess the accuracy of the ITBscore model, we
exercised 12 independent breast cancer cohorts using the
immune biological signature established with the TCGA-BRCA
cohort to evaluate its clinical value (Figure 6A and Figure S6A).
The value of the signature to predict OS up to ten years in the
high and low I'TBscore groups of all breast cancer datasets except
for GSE1456 (HR: 2.37, 95% CI: 0.93 — 6.05) and GSE20685 (HR:
2.08, 95% CI: 0.84 — 5.14) was determined, as shown in Table S5.
Furthermore, we performed a pan-cancer analysis of the
prognostic value of the ITBscore in 32 independent TCGA
cohorts involving 10140 patients (Figure S6B, detailed in
Table S6). The ITBscore was identified as a robustly favorable
prognostic biomarker in ten TCGA cohorts, albeit its value was
heterogeneous in some cancers, such as adrenocortical
carcinoma, colon adenocarcinoma, lower-grade glioma, and
stomach adenocarcinoma.

Immune checkpoint inhibitors (ICIs), such as atezolizumab and
avelumab, which target PD-L1, pembrolizumab and nivolumab,
which target PD-1, and tremelimumab, which targets CTLA-4, have
been applied as cancer immunotherapy during the past few decades
(50-54). However, some of them were proven in solid tumors,
including breast cancer, with finite efficacy (50). Next, we evaluated
the predictive value of the ITBscore in response to immune
checkpoint blockade. We first predicted the potency of
immunotherapy for patients in the TCGA-BRCA cohort with
high and low ITBscores using the TIDE and SubMap algorithms.
We found that patients with a high ITBscore were more likely to
respond to immune checkpoint blockade with anti-PD-1
(Bonferroni corrected p = 0.008), anti-PD-L1 (Bonferroni
corrected p = 0.016), and anti-MAGE-A3 (Bonferroni corrected
p = 0.003) drugs (Figure 6B). We further explored the predictive
value of the ITBscore in the IMvigor210 (anti-PD-L1) (51) and
GSE78220 (anti-PD-1) (52) cohorts. In both immunotherapy
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cohorts, patients in the high ITBscore group presented remarkably
better survival and clinical benefits than those in the low ITBscore
group (HR: 0.66, 95% CI: 0.51 — 0.85, IMvigor210, Figure 6C; HR:
0.30, 95% CI: 0.09 — 1.04, GSE78220, Figure 6G). The predictive
value of the ITBscore was further investigated to determine the
acquisition of therapeutic advantages for patients in the IMvigor210
(Figures 6D-F) and GSE78220 (Figures 6H-K) cohorts with a
high ITBscore. Since a higher somatic tumor mutational burden
(TMB) is correlated with better OS and improved survival in
response to ICI immunotherapy in several cancers (55), we
estimated the difference between TMB and the ITBscore in the

IMvigor210 cohort using receiver operating characteristic (ROC)
curve analysis (27). The ITBscore presented a greater predictive
advantage than TMB (likelihood ratio test, p < 0.001, Figure 6F),
and the combination of TMB and the ITBscore enhanced the
predictive ability compared with TMB or the ITBscore alone
(likelihood ratio test, combination versus ITBscore, p = 0.007;
combination versus TMB, p < 0.001; Figure 6F). After we
assessed the predictive value of the ITBscore for immunotherapy
with anti-PD-1 (GSE78220) and anti-PD-L1 (IMvigor210), we
analyzed the anti-MAGE-A3 (GSE35640, Figures S6C, D) (53)
and anti-CTLA-4 (GSE63557, Figures S6E, F) (54) immunotherapy
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cohorts using the same ITBscore model. Patients with higher
ITBscores obtained clinical benefits from ICIs (the ITBscores of
patients treated with ICIs are summarized in Table S7). In addition,
patients with low ITBscores demonstrated significantly higher
expression of PD-1, which suggested a potential response to anti-
PD-1/L1 immunotherapy (Figure 6L).

Since chemotherapy is the standard treatment against cancer,
we assessed the response to anticancer drugs, such as cisplatin,
gemcitabine, paclitaxel, and docetaxel, which are frequently used

as first-line treatments in breast cancer, using the ITBscore. The
predictive model was generated using the GDSC dataset (56) via
Ridge regression with 10-fold cross-validation. We compared the
ICs values of four chemotherapeutic drugs between patients
from the high and low ITBscore groups and observed that
patients with higher ITBscores were more sensitive to
chemotherapy than those with low ITBscores (p < 0.001 for
cisplatin, gemcitabine, paclitaxel, and docetaxel) (Figure 6M).
The survival advantage of patients in the TCGA-STAD cohort

Frontiers in Immunology | www.frontiersin.org

January 2022 | Volume 13 | Article 805184


https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles

Wang et al.

Immune Landscape of Breast Cancer

subjected to chemotherapy, regardless of the ITBscore, was
higher than that of patients not subjected to chemotherapy
(log-rank test, p < 0.001, Figure S6G). Finally, the distribution
of the ITBscore among molecular subtypes and histologic grades
was assessed (Figures S6H, I). We found that the ITBsocre of
CIN > MSI > GS > EBV existed such that, and the reduced
ITBscore in the TNM stage. In summary, these results show that
the ITBscore model generated from the immune biological
signature is a robust biomarker and can predict an excellent
response to immunotherapy in breast cancer patients.

DISCUSSION

Since it became clear that the expression of tumor-specific and
tumor-selective antigens is affected by genetic alterations and
epigenetic dysregulation in cancer cells, the feasibility of utilizing
the immune response to anti-tumor therapy has been gradually
acknowledged. Currently, antibody-mediated blockade of the
PD-1/CTLA-4 pathways is an effective way to establish
sustained immune responses and treat multiple cancers,
including breast cancer, in clinical practice and ongoing trials
(52, 53). However, the clinical response and survival benefits are
usually restricted to a subset of patients. A complete
understanding of the TME and an effective stratification
approach are necessary. In the present study, we clustered
patients with breast cancer into six immune subtypes inspired
by the excellent work of Vesteinn Thorsson et al. (6). We detailed
the immune content of patients in the TCGA-BRCA cohort
using multiple methods. These analyses covered functional
enrichment, potential extrinsic immune escape mechanisms
(e.g., the accurate estimation of tumor-infiltrating lymphocytes
(TILs) composition from the deconvolution of gene expression),
and the intrinsic regulation of genomic homeostasis (e.g., an
association between DNA damage and somatic alterations with
immune infiltrates). All immune contents were compared among
the six immune subtypes. Finally, we established a scoring system to
predict the response of breast cancer patients to immunotherapy.
A different pattern of immune activation presents unique
survival benefits. The IS3 and IS6 subtypes conferred the most
adverse outcomes and displayed an immunosuppressed TME
dominated by macrophages, lower lymphocytic infiltrates (high
macrophages: lymphocytes) and a higher M2 macrophage content.
By comparison, patients in the IS2 and 1S4 subgroups had the most
favorable prognosis, which may be associated with the role of the
adaptive immune response in prevention of cancer progression (57).
Furthermore, IS2 and IS4 were associated with higher M1
macrophage and lower M2 macrophage contents than IS3 and
IS6, in agreement with several studies confirming that tumor-
associated macrophages (TAMs) play intricate roles in tumor
development (M1 phenotype for tumor prevention and M2
phenotype for tumor promotion) (58). IS2 was chemokine
dominant and showed a more favorable survival benefit (likely by
possessing the highest content of lymphocyte infiltrates and M1
content, indicating a vigorous anti-tumor immune response).
However, IS2 also showed the most striking signatures of Tregs

and MDSCs, two dominant immunosuppressive leukocytes that
prohibit host defense anti-tumor responses. This inconsistency may
be due to the difference of tumor aggressive behaviour between 152
and other subtypes. Both the proliferation signature and ITH were
the highest in the IS2 subtype, resulting in a relatively high growth
rate beyond the control of the immune response. Another possible
explanation for this finding is that tumor cells in IS2 have been
remodeled by existing robust type I infiltrates that elude immune
recognition. Although interferon-mediated viral sensing and
antigen genes are actively engaged in survival benefits, interferon
signatures without elevated antigen presentation exhibit an inverse
relationship. Cancer cells that have been immune edited are
characterized by the lack of genes related to antigen processing
and production. In contrast to IS2, which is most likely controlled
by immune editing, IS4 is most likely controlled immunologically,
that is, via immune equilibrium. Chemokine signalling is involved
in the differentiation of immune cells and may be a resistance
mechanism to checkpoint inhibitors (59). For example, some
studies have proven that some chemokines, especially CXCL9,
CXCL10, CXCL11 and CXCR3, may improve chemotherapy by
activating the paracrine axis and inhibiting the autocrine axis (59).
Compounds that enhance the expression of CXCL9, CXCL10 or
CXCL11 and decrease the expression of CXCR3 on tumor cells have
displayed anti-tumor activity (60-62). Hence, drugs that target
chemokine signalling may be practical to patients with the IS3
and IS5 subtypes rather than those with other subtypes. Production
of IFN-v is pivotal in determining the effectiveness of the immune
response to pathogens (63). Previous research has focused on the
production of IFN-y by T cells and natural killer (NK) cells, but
some data has observed the production of IFN-y by antigen-
presenting cells (APCs), such as macrophages and dendritic cells
(64, 65). Adding to our results that IS6 is IFN-y dominant with a
high proportion of macrophages and dendritic cells but displayed a
low proportion of TIL, these results exhibited the special properties
of IS6 for the APCs-derived IFN-.

Cellular DNA sustains incessant invasion from internal
mutagenesis and environmental agents. The fact that somatic
mutations may influence the immune response was considered.
Genome instability generated by the most diverse DNA-damaging
agents would provoke an immune response if it were not for the
DNA repair pathway. For example, most DNA repair pathways
were enriched in IS2 and IS4 but not in IS1 and IS3, implying that
DNA repair may promote the innate and adaptive immune
responses. Cardinal DNA repair items may make a vast difference
in confining chronic inflammatory signalling (66). Driver mutations
such as those in TP53 and PIK3CA may reshape the immune
landscape via the generation of neoantigens by promoting
chromosomal imbalance (49). Wild-type TP53 signalling has been
correlated with the recruitment and activation of immune cells (34)
and recruitment of NK cells (especially resting NK cells) into the
TME (67). Further studies that take these factors into account will
need to be conducted.

Despite the extensive use of immunotherapeutic strategies for
cancer patients, the efficacy and accuracy of routine biomarkers
are limited. Some studies have proven that the expression of
PD1/PD-L1 and CTLA-4, microsatellite instability (MSI) status,
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and mutation load are not effective for predicting the immune
response in different types of cancer (68-70). Here, the ITBscore
was established from the immune biological signature to support
some computational algorithms and designed to evaluate
survival benefits and improve the predictive response of
immune checkpoint treatments. Comprehensive analyses
showed that the ITBscore was a prognostic biomarker in breast
cancer and was higher in patients with aggressive molecular
subtypes (basal and HER2+) and characterized by a high tumor
grade and poor OS. Basal-like breast cancer (TNBC) has
increased immunogenicity compared with other molecular
subtypes, indicating immunotherapeutic preference (71). In
addition, recent evidence has shown relatively high levels of
TILs and PD-L1 expression in the majority of HER2+ breast
cancer patients. These characteristics may contribute to the
application of immunotherapeutic treatments in this subset of
patients (72). These results further illustrated that our
methodological analyses to assess the TME are a promising
predictive biomarker to advance precision immunotherapy in
breast cancer patients. We also determined that the ITBscore was
correlated with gene mutations, especially TP53 mutations,
which is in line with a previous study showing that patients
with TP53 mutations displayed clinical benefits from ICIs (49).
These findings might raise the possibility that the ITBscore can
improve the accuracy of immunotherapy and encourage the use
of the combined strategy of both immunotherapy and gene
mutations. In brief, for clinical applications, the ITBscore could
be employed to comprehensively assess the immune content and
associated TME cell infiltration characteristics in individual
patients, define the tumor immunophenotype and direct more
effective medical practice. Therefore, we conclude that the
ITBscore could be an independent biomarker to predict the
response to adjuvant chemotherapy and different immune
checkpoint blockades.

Taken together, this study set out to explore the
characteristics of the TME infiltration patterns in breast cancer
and provides several original insights into the anti-tumor
immune response, which may facilitate the development of
cancer immunotherapy strategies.
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