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Immunoglobulin gene heterogeneity reflects the diversity and focus of the humoral
immune response towards different infections, enabling inference of B cell development
processes. Detailed compositional and lineage analysis of long read IGH repertoire
sequencing, combining examples of pandemic, epidemic and endemic viral infections
with control and vaccination samples, demonstrates general responses including
increased use of IGHV4-39 in both Zaire Ebolavirus (EBOV) and COVID-19 patient
cohorts. We also show unique characteristics absent in Respiratory Syncytial Virus or
yellow fever vaccine samples: EBOV survivors show unprecedented high levels of class
switching events while COVID-19 repertoires from acute disease appear underdeveloped.
Despite the high levels of clonal expansion in COVID-19 IgG1 repertoires there is a striking
lack of evidence of germinal centre mutation and selection. Given the differences in
COVID-19 morbidity and mortality with age, it is also pertinent that we find significant
differences in repertoire characteristics between young and old patients. Our data
supports the hypothesis that a primary viral challenge can result in a strong but
immature humoral response where failures in selection of the repertoire risk off-
target effects.
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INTRODUCTION

The emergence of SARS-CoV-2 in 2019, the ensuing pandemic
and evolution of novel variants continues to make COVID-19 a
matter of global public health significance. The recent SARS,
MERS, Zika and Ebola outbreaks have also highlighted a need to
better understand how the human immune system responds to
novel infections, develop better treatments and control their
emergence and spread. Initial reports from the COVID-19
pandemic, relying heavily on serum antibody titres, saw rapid
declines in SARS-CoV-2 specific antibodies (1) that raised
concerns over the nature and duration of B cell memory.
While total antibody titres decrease the persistent presence of
SARS-CoV-2-specific memory responses some months after
infection mitigates these concerns (2, 3).

Immunoglobulins (Ig), both as secreted antibodies and as B
Cell Receptors (BCRs), mediate immunity against multiple
pathogens through their vast variability in antigen binding.
This variability is produced by V-D-J recombination (4), where
V, D and J genes are recombined from a pool of diverse genes. B
cells with Ig genes encoding disease-specific antibodies are
expanded upon challenge, causing a skewing of the repertoire
towards greater use of antigen-specific genes associated with the
challenge in question. Furthermore, the imprecise joining of gene
segments, together with the action of terminal deoxynucleotidyl
transferase (TdT) creates a highly diverse complementarity
determining region (CDR)3, which is important for antigen
binding, and can be used to identify “clones” of B cells within
a repertoire. These clonal assignments allow us to track lineages
and follow the progress of the post-activation diversification
events of somatic hypermutation (SHM) and Class Switch
Recombination (CSR) as the B cell response develops. Thus,
repertoire analyses can help to characterise changes in the
memory/effector B cell compartments and identify individual
genes of interest for possible antibody therapeutics.

Both SHM and CSR are mediated by the enzyme Activation-
Induced cytidine Deaminase (AID) and have traditionally been
associated with germinal centre events in secondary lymphoid
tissue, involving T cell help (5–7). There is, however, also
evidence that CSR may occur outside of the germinal centre
environment (8–11) and may not require direct T cell help. The
ability of a B cell to mount a directed effector response prior to
the formation of a germinal centre allows a more rapid immune
response but with lower affinity.

Immune responses are often impaired in older people, which
has been of particular concern in COVID-19 patients. The older
immune system has shown reduced responses to vaccination,
frequently with higher numbers of autoreactive antibodies and
inflammatory cytokines (12–14). In B cells we, and others, have
shown that particular subsets of B cells are altered with age: IgM
memory cells (CD19+CD27+IgD+) are decreased in older people
while the Double Negative (CD19+CD27-IgD-) are increased
(15, 16). Since IgM memory cells are often associated with a T-
independent response, the decrease in IgM memory in older
people could have severe consequences in infections where a
rapid extrafollicular response is required (17, 18). It has also
been shown that the B cell repertoire is skewed towards
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sequences with longer, more hydrophobic CDR3 regions as we
age (16, 19). As an immune response can result in a shift towards
lower, less hydrophobic CDR3 regions (14, 20), and higher
hydrophobicity has previously been correlated with increased
polyspecificity (21–23), the older immune repertoire seems to be
disadvantaged in this respect.

In this study we took a long-read repertoire amplification
approach that allowed us to track the V-D-J clonal lineages in
the context of antibody subclass to better understand, compare
and contrast B cell responses to emerging or endemic viruses.
Samples were taken from COVID-19 patients during and after
infection, Ebola virus disease (EBOV) survivors from West Africa
and the UK, volunteers challenged with Respiratory Syncytial
Virus and compared with samples from healthy donors. We
report the variation of repertoire between disease states in novel
virus infection, with a focus on elderly who are known to respond
less well to infection, particularly in SARS-CoV-2.
METHODS

Sample Collection
Whole blood samples (RSV, COVID-19, Healthy) were collected
into Tempus™ Blood RNA tubes, kept at 4°C, and frozen down
to -20°C within 12 hours. Ebola samples were cone filters from
plasmapheresis, dissolved in Tri reagent. RNA was extracted
using Tempus™ kits according to instructions. Healthy samples
taken after SARS-CoV-2 emergence were all confirmed negative
for anti-SARS-CoV-2 antibodies by SureScreen lateral flow test
and by ELISA (24). Ebola RNA blood samples were collected
from convalescent patients with viral RNA negative PCR tests in
the 2014-2016 West African outbreak, three patients were
Caucasian treated in the UK, and the remaining were
convalescent plasma donor participants from a trial in Sierra
Leone (25) (consented under the Sierra Leone Ethics and
Scientific Review Committee ISRCTN13990511 and
PACTR201602001355272 and authorised by Pharmacy Board
of Sierra Leone, #PBSL/CTAN/MOHS-CST001). COVID-19
samples were collected from SARS-CoV-2 positive patients at
Frimley and Wexham Park hospitals during 2020 (consented
under UK London REC 14/LO/1221). Each participant was
attributed a “severity score” in relation to their fitness
observations at the time of hospital admission using the
metadata collected. This score used the “mortality scoring”
approach of SR Knight et al. (26) adapted to disregard age, sex
at birth and comorbidities, and ranged from 0 to 6; patients
scoring 0 to 3 were attributed low severity and patients scoring 4
to 6 were attributed high severity (25). Convalescent COVID-19
patients, from hospital sampling, were contacted for further
donations and sample taken 2-3 months post hospital
discharge. RSV samples were collected from participants who
took part in a human challenge study and were monitored for
infection by viral PCR tests (consented under UK London REC
11/LO/1826). Briefly, healthy participants were challenged
intranasally with 104 plaque-forming units of the M37 strain of
RSV and monitored for up to 6 months as previously
described (27).
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Repertoire Library Generation
Tempus™ tube samples were defrosted at room temperature and
RNA was extracted using the Tempus™ RNA extraction kit
according to the manufacturer’s instructions. RNA samples were
template switch reverse transcribed using SMARTScribe™

reverse transcriptase (Clonetech) according to manufacturer’s
instructions using the SmartNNN TSO Primer (Supplementary
Methods Table 1) with a minimum of 170 ng of RNA input. The
samples were then treated with 0.5 units/ml of Uracil-DNA
Glycosylase (NEB) for 60 min at 37°C to reduce UMI
interference, then incubated at 95°C for 10 min to inactivate
the enzyme. Samples were amplified using Q5 polymerase (NEB)
according to manufacturer’s instructions with an annealing step
of 65°C for 20s and extension step of 72°C for 50 s for 21 cycles.
Round one of PCR was performed with forward primer Smart20
and mixed heavy chain (IG[M, G, A]-R1) reverse primers
(Supplementary Methods Table 1). For PCR1 8 x 20 ml
reactions were performed with 1 ml of RNA input per reaction.
A semi-nested 2nd PCR was performed with forward primer
PID-Step and reverse primers IG[M/G/A]-R2 (Supplementary
Methods Table 1); 16 reactions of 20ml each was performed for
each isotype with the same thermal cycling conditions as PCR1
but with 12 cycles, with 1ml of template. The primers in PCR2
also contain Patient Identifier (PID) sequences to allow
multiplexing on PacBio (Supplementary Methods Table 2).
Samples were run on a bioanalyzer (Agilent 7500), isotypes
from patients were pooled at equal concentrations and
concentrated using Wizard PCR Clean-up kits (Promega)
according to manufacturer’s instructions with 30 ml of elute.
Each isotype was then purified using a PippinPrep™ with
Marker K reagents (Sage Biosciences) used as an external
ladder reference (IgM/G/A 600-100bp). The concentration was
checked using a DNA quantification kit on the Qubit according
to manufacturer’s protocol, the different isotype samples were
pooled at equal concentrations and purified with SPRIselect
beads (Beckman Coulter) at X0.8 sample volume with elution
in 30ml of TE buffer. Sequencing was performed on either the
PacBio RSII or Sequel platforms (See Supplementary
Methods Table 2).

Quality control, data cleaning and removal of multiplicated
UMIs was carried out as previously published (16, 28).
Immunoglobulin V-D-J gene usage and CDRH3 was
determined using IMGT/High V-quest. Clonotype clustering
was carried out as per (16, 28), in brief: a Levenshtein distance
matrix was generated on the CDRH3, hierarchically clustered
and branches cut at 0.05 to generate clones. Physicochemical
properties were calculated using the R Peptides package (29).
Analysis of Clonal Diversity
We sought for methods to qualitatively (visualising clone size
distribution) and quantitatively compare clonal diversity
(calculating metrics which summarise clonal diversity). We
first noted, as one would expect, that sequencing depth (i.e.,
number of sequences sampled per repertoire) was a strong
predictor of the number of clones (Supplementary Figure S1).
For all repertoires considered here, a wide range of sequencing
Frontiers in Immunology | www.frontiersin.org 3
depth was observed (number of sequences range from 836 to
105,323, median = 12,040). We therefore adopted the following
procedure in this analysis: first, to quantify the extent of clonal
diversity we used the Gini coefficient which measures the
evenness in the distribution of clone size across clones;
application of this metric to quantify BCR clonal diversity has
been well documented (30–32). For a given repertoire, clones
were ordered by their clone sizes, and the cumulative
distributions of clone sizes (in terms of percentage of
sequences in repertoire) and its percentile distribution were
compared for evenness. As such, the resulting metric was
independent from the absolute numbers of sequences and
clones, thereby allowing fair comparison across repertoires of
different sequencing depths. As Gini coefficient is an indicator of
evenness, we took (1 – Gini coefficient) as the metric of clonal
diversity. To qualitatively compare clonal diversity, we generated
visualisation using the following procedure to minimise the
impact of sequencing depth differences: we first sampled
12,000 sequences (≈ median sequencing depth; see above)
from each repertoire; for repertoires with less than 12,000
unique observations, this number of sequences was sampled
with replacement. We then sampled up to 100 clones with
probability scaled by clone sizes to generate bubble plots where
each bubble represents a clone and bubble sizes are scaled with
clone sizes. Genotypic features like V gene usage can be
represented as colours. Such plots were included in Figure 2C.

Analysis of BCR Clone Lineage Trees
Lineage trees were reconstructed using the maximum parsimony
method implemented in the dnapars executable in the phylip
package (33). All clones with at least 3 sequences were
considered; IMGT-gapped, V-gene nucleotide sequences of all
observations in the clone together with the annotated germline
V-gene sequence (included to root the tree) were included as
input to dnapars. Functionalities implemented in the alakazam R
package (34) were used to call dnapars and reformat the output
into text-based tree files (newick format) and directed graphs
(igraph objects manipulated in R). The directed graphs were
further parsed using functions in alakazam and igraph to obtain,
for each observed sequence in the given clone, its distance D
from the given germline gene g (denoted here asDg), as estimated
by the dnapars-reconstructed lineage tree: the closer this distance
is to 0, the closer the sequence is to germline and therefore a
lower mutational level.

We sought to summarise, for a given clone, the distribution of
Dg; this distribution would indicate the overall mutational level
of sequences within the clone (summarised using conventional
statistics like the median of Dg) and the evenness of mutational
level (i.e. whether the clone consists of expansion of sequences
with a similar mutational level, or it comprises sequences with a
wide range of mutational levels). This can be visualised as a
heatmap (clones [vertical axis] versus Dg [horizontal axis], with
colours scaling with density of the distribution; see Figure 5B),
or as a curve (clones [vertical axis] versus the median of Dg

[horizontal axis], See Figure 5C). The curve representation
allows calculation of area-under-curve (AUC) as a metric
which we termed “Germline Likeness”, to quantify mutational
May 2022 | Volume 13 | Article 807104
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levels across clones. This is similar to quantifying sequence
similarity to germline, except that here Germline Likeness
quantifies the tendency to which all clones from the BCR
repertoire of a given individual have high similarity to the
germline (and therefore lower mutational levels).

Detecting Class-Switch Recombination
Events From Lineage Trees
Since the lineage trees were constructed using only V-gene
sequences (see above), in theory antibody sequences of
different subclasses could be ordered in the tree in a way that
imply class-switch recombination (CSR) events which are
mechanistically impossible. We therefore pruned the dnapars-
reconstructed tree to remove edges which imply CSR events that
violate the physical order of constant region genes in the human
IGH locus. This was performed using a Python implementation
of the Edmond’s algorithm to construct a minimum spanning
arborescence tree with the given germline V gene sequence as
root. With this arborescence tree the type of CSR (subclass
switched from/to) and the distance-from-germline at which the
CSR event occurred (estimated as the median distance-from-
germline of the two observations relevant to the given event)
were obtained.

We noticed that the quantification of CSR events is dependent
on the number of sequences sampled in the repertoire. To
eliminate this confounding factor, we followed the sampling
protocol for the clone size visualisation (Figure 2C): briefly, we
sampled 12,000 sequences (≈median sequencing depth across all
samples) from each repertoire; for repertoires with less than
12,000 unique observations, sampling was performed with
replacement. The analysis presented here (Figure 6) is the
result after this subsampling analysis, therefore corrected for
difference in sequencing depth.

Convergent Network
Productive heavy chain sequences with CDRH3 of length shorter
than 30 amino acids were considered in the construction of a
convergent network. Sequences were connected if they meet the
following criteria (a) same V and J gene usage; (b) from different
individuals; (c) same CDRH3 amino acid length, and (d) ≥85%
CDRH3 amino acid identity. The same criteria have been applied
in published studies investigating convergent clonotypes across
SARS-CoV-2 B-cell repertoires (35, 36). To allow interpretation of
possible targets of sequences in convergent network clusters,
known binders were included in constructing the network.
Known binders were taken from the following sources: first
experimentally determined antigen-antibody structural complexes
deposited in the Protein Data Bank (PDB). PDBe was queried on
19 May 2021 with the search term ‘Organism: Severe acute
respiratory syndrome coronavirus 2’. The resulting list of PDB
entries was overlapped with entries in the SAbDab structural
antibody databases (37) to obtain list of PDB complexes of
antibodies and SARS-CoV-2 proteins. A total of 215 heavy
chains from 186 structures were considered. Second, known
binders validated in experiments where antibody variable regions
were cloned and assessed for SARS-CoV-2 protein binding were
taken from published work (38–43). All known binder sequences
Frontiers in Immunology | www.frontiersin.org 4
were annotated for V/J gene usage using either IMGT/High-
VQuest (if DNA sequences were provided) or IMGT/
DomainGapAlign (if only amino acid sequences were provided).
Information regarding specificity (i.e. SARS-CoV-2 protein targets)
was obtained from either Supplementary Data Files in the cited
publications or by visual inspection (for PDB structures).
Supplementary Table S2 contains all known binder sequences
included in this analysis. To construct the network, known binders
were connected to one another and to repertoire sequences using
the identical criteria mentioned above. In total 809 unique CDRH3
sequences were considered in constructing the convergence
network. The resulting network contains 7500 sequences (7370
from repertoire, 130 known binders).

We note that the method of constructing convergent networks
is comparable to single-linkage clustering. We compared these
results with complete-linkage clustering (applied in R using the
command ‘hclust(method = “complete”)’) and found that using
the same amino-acid identity cutoff, it produced clusters which are
notably smaller (Supplementary Figure S6A). Since in the binders
list we have SARS-CoV-2 binders for which crystal structures are
available, we reason that those antibody structures which bind the
antigen in the same way should be grouped together. Manual
inspection of these structures found that they are grouped together
in our networks, but are separated under complete-linkage
clustering (Supplementary Figure S6A). We confirm this
observation quantitatively, by comparing the antibody-antigen
structures by calculating the TM-score (44) between every pair
of binder structures, which confirm that our convergent networks
group together binders with similar interface at the three-
dimensional structural level (Supplementary Figure S6B, see
figure legend therein). We therefore reason that complete
linkage is too stringent, and our networks are likely to group
sequences which engage with the antigen in the same way.

Analogous convergent networks were constructed using the
EBOV and RSV repertoire data, separately considered with
respective known binders and Healthy individuals’ repertoire; the
majority of clusters were formedmainly of sequences fromHealthy
donors absent of known binders (45–48), although we were able to
identify two convergent clusters of RSV-infected individuals with
similar CDRH3 to known binders of the RSV fusion glycoprotein
(Supplementary Figure S7). To investigate whether clusters shared
across disease conditions exist, convergent networks were also
constructed considering CV19, RSV and EBOV repertoire and
binder sequences altogether (Supplementary Figure S8).
Supplementary Table S3 contains all convergent networks
constructed, presented as list of pairwise sequences.

Statistical Analysis and Data Visualisation
V-D-J gene usage for each patient was turned into a proportion to
normalise for different numbers of sequences and allow for
comparison. Gene usage analysis was performed in GraphPad
Prism 8.4.3 using a two-way ANOVA with a Dunnett’s post hoc
test. P-values have been corrected using the Benjamini-Hochberg
method wherever applicable. All other statistical analyses were
performed in the R statistical computing environment (version
4.0.2). Data visualisation was performed using the R ggplot2
package and the following specialised R packages: visNetwork
May 2022 | Volume 13 | Article 807104
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(forvisualising convergent CDRH3 network clusters) and ggseqlogo
(for visualising CDRH3 sequence logos). PDB structures were
visualised using PyMOL (version 2.3.0). Histograms of CDRH3
length and hydrophobicity, as measured by Kidera factor 4, were
constructed on the Brepertoire website (49).
RESULTS

Patient Cohorts
IGH sequences, of total V-D-J plus ~150-200 bp of C regions,
were obtained from pandemic, epidemic and endemic diseases
and stages along with 24 healthy controls across multiple age
ranges (Figure 1 and Table 1). This included: 16 hospitalised
COVID-19 patients (CV19), 5 of these patients had follow-up
convalescent samples (CV19-Recovered, hereafter CV19R), 12
Ebola convalescent plasma donors (EBOV), 12 participants
challenged with RSV, 6 of whom became infected (RSV-I) and
6 of whom did not (RSV-U). Healthy Samples (Healthy) were a
grouping of YFVD0, RSVD0 and samples taken as controls
during the (COVID-19) pandemic (n=24). Numbers of
sequences varied from 836 to 105,323, median = 12,040 per
sample, IGH gene usage for each patient was expressed as a
proportion of the total in order to normalise for differences in
sequence numbers between different samples.

IGH Gene Repertoire Changes in
Response to Viral Infection
Although the humoral immune response is varied, with different
subclasses of antibody having different effector functions (50),
many methods of repertoire analysis have hitherto not
distinguished between antibody subclasses. We have used
PacBio methods to obtain full V-D-J sequence in the context
of subclass usage to investigate class switching events during
immune responses to infection. We also distinguish between
mutated versus unmutated IgM sequences, as a proxy for
identifying IgM memory responses. Comparisons of subclass
distribution, in relation to healthy controls, revealed a significant
increase in the proportion of IgA1 compared to IgA2 in CV19,
and RSV-I and the proportion of IgG1 relative to IgG2 in CV19,
EBOV and RSV-I (Figures 2A, B). The differences in CV19 IgG
and IgA repertoire returned to ‘normal’ healthy levels by the time
of convalescent sampling (CV19-Recovered) 2-3 months later.

Immune challenge is characterised by clonal expansion of B
cells that express Ig which reacts with the challenging antigen. We
identify members of clones in the repertoire by clustering the
CDRH3 regions and looking at the largest clones in each sample
we can see evidence of increased clonal expansions in CV19
patients (Figure 2C). In the full CV19 repertoire IGHV4 family
genes were expanded (Figure 2C), more specifically of IGHV4-39
(Supplementary Figure S2) and some IGHV3 family; this is
particularly noticeable in IgG1 and IgA1. Analysis of clonal
diversity of memory B cells using the Gini coefficient, taking all
possible clones into account, found that CV19 patients had a less
clonally diversified repertoire in all but the IgMmutated, IgG2 and
IgG4 partitions (Figure 2D and Supplementary Figure S3),
suggesting pervasive expansions of specific BCR clones.
Frontiers in Immunology | www.frontiersin.org 5
Unusually, we also saw a decrease in diversity of unmutated
IgM sequences, indicative of clonal expansion prior to SHM and
CSR (Figure 2D). These values returned to normal in the CV19R
samples. In comparison, IGHV1 family was expanded in RSV-I
IgG1 partition (Figure 2C), particularly of IGHV1-18
(Supplementary Figure S4). Active infection with RSV, as well
as samples taken 28 days after yellow fever vaccination, showed an
increase in diversity of IgA2. Interestingly, EBOV memory B cell
populations were more diverse than healthy controls in all the
main switched subclasses (IgG1, IgG2, IgA1, IgA2) (Figure 2D
and Supplementary Figure S3).

Large clone sizes can mask whole repertoire changes, so we
analysed the frequency of gene use after reducing the data to one
representative sequence per clone. We found increased use of
IGHV3-30 in IgM mutated sequences in CV19 patients
(Figure 2E), and also of IgM-mutated/IgA1/IgG1 in CV19R;
this was unique to CV19. An increase in use of IGHV4-39 was
found in CV19 IgA1 sequences and was also found increased
across the board in EBOV and RSV-U samples (Figure 2E).
IGHV3-23 was found to be reduced in ongoing infection (likely
an offset as a result of relative increases in usage of other genes)
but exceeded the healthy levels in CV19R. IGHV1-69, which has
previously been associated with viral infections (51, 52), was
increased in RSV-I but not EBOV or CV19. The YF day 28
vaccine samples increased use of IGHV3-7 in IgM-mutated only
(Figure 2E; comparisons for other V genes in Supplementary
Figure S4).

Complementarity Determining Region 3
(CDRH3) Immaturity in COVID-19
Given the importance of CDRH3 in antibody recognition, and
the contribution to CDRH3 from the IGHD and IGHJ genes, we
analysed these also. In CV19 samples there was a significant
increase in use of IGHD2-2, IGHD3-3 and IGHJ6 (Figure 2E).
These genes tend to be more hydrophobic (IGHJ6 being the
exception) and all have among the longest amino acid lengths
with only IGHD3-16 being 2 AA longer. This contribution can be
seen in the overall CV19 repertoire which skews towards longer
amino acid sequences and increased hydrophobicity, indicative
of early response as affinity maturation causes shorter less
hydrophobic CDRs (Supplementary Figure S5). A clustering
analysis of peptide physicochemical properties of CDRH3
regions generally results in a difference between IgM sequences
and memory sequences (Figure 2F), presumably reflecting biases
in antigen selection during post-challenge development. We can
see that healthy and CV19 subclass sequences mostly have
similar CDRH3 properties to each other, however, in the case
of CV19 IgG1 and IgG3 cluster closer to IgM sequences from
healthy and EBOV rather than healthy IgG1 and IgG3 sequences
implying a more ‘naïve’, unselected, repertoire.

Convergent Antibody Clusters Reveal
Distinct VDJ Preferences
To assess the functional importance of the skewed patterns of V,
D and J gene usage in CV19 we created networks connecting
sequences observed in our CV19 and control repertoire data
May 2022 | Volume 13 | Article 807104
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(Figure 3A), using criteria previously employed in discovering
‘convergent’ antibody sequences shared between patients (53).
By also including known SARS-CoV-2 binders (see Methods),
we determined that this method is superior in comparison with
complete-linkage clustering, in grouping together antibody
sequences which bind the antigen in similar manner
(Supplementary Figure S6). We obtain clusters of CDR3
sequences found in both CV19 patients and healthy controls,
some of which converge towards known binders of SARS-CoV-2
proteins such as those targeting the receptor binding domain
(RBD) of the spike protein (Figure 3B). Many of these large
convergent clusters did not, however, include a known binder in
the network (Figure 3C). Interestingly, we observe that some of
these convergent clusters also contain sequences from Healthy
controls, suggesting that our baseline repertoire contains B cells
capable of recognising SARS-CoV-2 proteins, as reported by
others (36, 53). Overall, convergent clusters use a diverse set of V
genes, but most of our larger convergent clusters contain IGHV3
or IGHV4 families and demonstrate increased IGHJ6 usage as
well as the more commonly used IGHJ4 (Figure 3C). A
comparison exclusively of the known binders to date reveals
distinct combinations of V and J gene preferences (Figure 3D).
We do find clusters of sequences using IGHV3-53 and IGHV1-58
such as those used in anti-RBD antibodies (e.g. Figure 3B). We
find that sequences from convergent clusters tend to be found in
larger clonal expansions than those without evidence of
convergence (Figure 3E), possibly implying that specific clonal
expansions in response to challenge are shared across patients.
We note that half of the larger clusters have substantial
contributions from healthy control sequences, so there may be
some IGH genes, such as IGHV3-33/IGHJ5 found also in RSV-I
and EBOV convergent networks (Figure 3C and Supplementary
Figures 6A, B), which have increased versatility such that they
are often seen in response to multiple different challenges.

Similar analyses of RSV and EBOV repertoires were limited
by the paucity of information on antibody binders, however it
was notable that only RSV-I, and not RSV-U, showed evidence of
convergence. IGHV1-18 appears in a large cluster with a known
RSV F-protein binder and although the large IGHV3-23 cluster
does not contain a known binder it forms part of the larger
expansion of IGHV3-23 genes in mutated IgM genes from this
cohort (Figure 2E, Supplementary Figure S7B).

VDJ Selection Differs Between
Ages in COVID-19
The disparity in COVID-19 severity and mortality between age
groups is striking, so we looked for age-related differences in our
B cell repertoire data, grouping by <50 and >60 based on this
mortality disparity. The difference in IgA1/IgA2 ratio is less in
older people, not reaching statistical significance. (Figure 4A).
On the other hand, the increase usage of IgG1 in CV19 is robust
across age (Figure 4B). Considering Ig gene usage, we observe
the intriguing case of IGHV3-30 which is only preferentially used
by the over 60s during infection (Figure 4C). Conversely,
IGHV3-53, which appears relatively frequently in known
binder data in combination with IGHJ4/6 but did not appear
Frontiers in Immunology | www.frontiersin.org 6
in our total cohort analysis (Figure 2E), is significantly increased
in the under 50s IgM-mutated partition (Figure 4C). We also
found that IGHV4-39, IGHD2-2, IGHD3-3 and IGHJ6, which we
find are expanded in CV19 across multiple B cell partitions, only
have significantly increased expression in the under 50s and not the
over 60s; IGHV4-34 appeared increased in both age groups in the
IgG1 partition, but did not reach statistical significance (Figure 4C).

IgG1 Is Immature in Response to COVID-19
Beyond the scope of gene usage, our BCR repertoire data also
enabled reconstruction of individual BCR lineage trees to make
inferences about the evolution of a particular clone. Using the
annotated germline V allele as the root of the tree, we estimate,
for each sequence in the lineage, its distance from the root
(Figure 5A); this distance being directly proportional to
mutational level. We visualise the distribution of this germline
distance across all clonotypes observed in each given individual,
and observe that the repertoire is dominated by clonotypes with
very low mutational levels for a subset of CV19 patients, whilst
the predominance of such clones is broadly absent in healthy
controls (Figure 5B, C). Interestingly, in repertoires from
convalescent individuals (both EBOV and CV19), we instead
observe dominance of clonotypes with higher mutational levels,
although the pattern is less striking than the CV19 patients
during hospitalisation (Figure 5C). These curves allow for
quantification of the Area Under the Curve (AUC), which
constitutes a metric we term “Germline Likeness”: a higher
Germline Likeness corresponds to a lower level of mutation
across all clones (Figure 5D); this is akin to quantifying sequence
similarity to the germline, except that Germline Likeness here
quantifies such phenomenon for a given repertoire in general,
rather than a specific sequence. Using this metric we confirm that
CV19 repertoires were dominated by clones that were largely
unmutated, while EBOV samples carried the greatest mutation
rate (Figure 5E). As might be expected, with time to generate a
germinal centre response, Germline Likeness in CV19 faded with
time (Figure 5F), to the point where the CV19R repertoires have
similar level of mutations compared to the EBOV-convalescent
and healthy control repertoires. Partitioning the analysis by
isotype, RSV and healthy controls demonstrate the expected
trend where an increased level of mutations can be found in both
IgG and IgA compared to IgM (Figure 5G). However, in CV19
only IgA showed a significant change in Germline Likeness from
IgM, albeit with a similar level of Germline Likeness to the
healthy IgM (Figure 5G).

Ongoing Class Switch Recombination
(CSR) Is Detectable in PBMCs of
COVID-19 and EBOV Patients
Our lineage trees were further analysed for CSR events:
respecting the sequential order of CSR in the genome, we
identify CSR events where sequences of different antibody
classes/subclasses are directly connected in the lineage tree.
This enables us to trace the timing of CSR events (distance
from the germline), the direction of class switching (e.g. from
IgM to IgG1) and frequency of observation. Many clones have
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evidence of CSR, particularly in EBOV, even after correcting for
clone sizes (Figure 6A). In particular, CV19 patients were more
likely to switch early to IgG1 from IgM, with little mutation
(Figures 6B–D) and to IgA1 from IgG1 later in the lineage with
more mutation (Figures 6B, D). This agrees with the lack of
Frontiers in Immunology | www.frontiersin.org 7
CDRH3 “maturity” in IgG1 (Figure 2F) and the overall
increased use of IgG1 and IgA1 seen in CV19 (Figures 2A, B).

The evidence of increased CSR in convalescent EBOV
patients is striking and occurs across the board with the
exception of IgM switching to IgG1 (Figure 6D). We noticed
FIGURE 1 | Schematic to illustrate data collection and analysis conducted in this study. Samples were taken from Healthy individuals, recovered Ebola survivors,
hospitalised COVID-19 patients, live RSV challenge participants that either became infected or did not and Yellow Fever vaccine recipients before vaccine and 28 days
post-inoculation. Extracted sample RNA was subject to a heavy gene specific race 5’ and nested PCR amplification process retaining V-D-J and sub-class information.
TABLE 1 | Donor characteristics.

Sample Age Gender Ethnicity COVID-19 Severity Score
(out of 6)

Days since symptom
onset

Healthy
(n = 24)

Median 29.5 (Range 23 - 76)
≤50 years old: 15/24 (62.5%)
≥60 years old: 9/24 (37.5%)

Female: 7/24
(29.2%)
Male: 5/24
(20.8%)
Unknown: 12/24
(50%)

White: 12/24 (50%)
Unknown: 12/24 (50%)

COVID-19 (n = 16) Median 50.5 (Range 28 - 87)
≤50: 8/16 (50%)
50-60: 3/16 (18.75%)
≥60: 5/16 (31.25%)

Female: 7/16
(43.75%)
Male: 9/16
(56.25%)

White: 13/16 (81.25%)
South East Asian: 1/16
(6.25%)
Indian Subcontinent: 2/16
(12.5%)

Median 3 (Range 1 - 5) Median 8 (Range 1 – 35)

COVID-19 Recovered
(n = 5)

Median 50 (Range 28 - 87)
≤50: 3/5 (60%)
≥60: 2/5 (40%)

Female: 3/5 (60%)
Male: 2/5 (40%)

White: 4/5 (80%)
Indian Subcontinent: 1/5
(20%)

RSV Infected
(n = 6)

Young: 3/6 (50%)
Older: 3/6 (50%)

RSV Uninfected (n = 6) Young: 3/6 (50%)
Older: 3/6 (50%)

Ebola
(n = 12)

Young: 3/12 (50%)
Unknown: 9/12 (50%)

Female: 1/12
(8.3%)
Male: 2/12
(16.7%)
Unknown: 9/12
(75%)

White: 3/12 (25%)
West African: 9/12 (75%)

YFV D28 (n = 3) Median 28 (Range 27 - 28)
Young: 3/3 (100%)

Female: 1/3
(33.3%)
Male: 2/3 (66.7%)

White: 3/3 (100%)
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that although there is a similar pattern of CSR preferences in
White and West Africans individuals, the overall distance from
germline is longer before CSR occurs in West Africans
(Figure 6B). This may suggest that the ethnic bias in existing
immunoglobulin sequence databases has resulted in mis-
assignment of germline alleles. No CSR differences were seen in
the RSV data.
DISCUSSION

We compared immunoglobulin gene sequences from pandemic
(SARS-CoV-2), epidemic (Ebola) and endemic (Respiratory
Frontiers in Immunology | www.frontiersin.org 8
Syncytial Virus) patients in order to discover features that
might distinguish newly emergent and endemic infections. We
notice that although the sequencing depth varies between sample
types, metrics related to gene usage and mutational levels are
typically highly stable at different sequencing depths
(Supplementary Note), allowing us to perform robust
comparisons across different immune challenges. The ability of
B cells to generate a highly diverse immunoglobulin repertoire
that might bind any antigen, and the diverse functionality of the
antibodies produced, is critical for an effective immune response.
Repertoire studies aim to identify specific antibodies by looking
for biased usage of particular Ig genes, and have been useful in
the past (16, 28). However, not all expanded genes encode
A B

D
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F

C

FIGURE 2 | Distinct V-D-J and isotype repertoires in CV19, EBOV and RSV BCR have occasional similarities. (A, B) Difference in sub-class use of IgA (panel a) and IgG
(B) in viral disease and healthy BCR repertoires. (C) Clonal expansion of sequences of relevant effector types (as revealed in A) plus unmutated and mutated IgM to
identify trends of V gene usage in viral infections. Each bubble sampled to a uniform depth (see Methods), with size proportional to clone size, represents one clone
colour-coded by V-family usage. (D) Quantification of clonal expansion calculated using the Gini coefficient (see methods), revealed clonally expanded effector populations
(more monoclonal/less diverse, closer to 1) or more diverse clones (closer to 0) in viral infections. Sample types with significant differences (false discovery rate [FDR] <
0.05) compared against Healthy were highlighted in red. Dashed line indicates the median diversity in the Healthy cohort. (E) Frequency of selected V-D-J gene usage in
different cohorts for all sequences and further subdivided by IgM-mutated, IgA1, IgG1. Bar charts depict gene frequency usage in the Healthy cohort. Bubble plots depict
the difference in usage (coloured: blue reduced/red increased) compared to healthy repertoires. (F) CDRH3 physicochemical characteristics (represented by Kidera
factors) were analysed separated by sub-classes and disease status (Healthy/CV19), and compared using Minkowski distance. Note that IgG1 and IgG3 sequences from
CV19 cluster together with IgM (square bracket), away from those of the same sub-classes from healthy individuals (indicated by arrow). Statistical significance in panels
a, d and e was evaluated using one-way ANOVA and Dunnett post-hoc comparison against the Healthy cohort: p-value was corrected using the Benjamini-Hochberg
method and expressed as false discovery rate (FDR), indicated either with colour (panel c), bubble size (E) or the symbols under the following scheme: *, FDR < 0.05;
**, FDR < 0.01, ***, FDR < 0.001, ****, FDR < 0.0001.
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specific binders (49) and we need to consider the possibility that
expansions found in the midst of an acute response may be a side
effect of the disease involving inappropriate expansion of B cells
carrying antibodies with off-target effects rather than a specific
targeting to the challenge. Repertoire selection is normally a
delicate balance between tolerance versus immune response to a
pathogen and the inflammatory state of acute disease can upset
the balance. Serological studies have shown an increase in
autoreactive antibodies, particularly to interferons, during
acute COVID-19 for example (54, 55).

Looking across different viral diseases, we found a general
increase of IGHV4-39 use in the repertoire of two different viral
diseases (COVID-19 and Ebola). Despite this, only one of our
Frontiers in Immunology | www.frontiersin.org 9
convergent clusters, dominated by COVID-19 sequences, uses
IGHV4-39 (Figure 3C); it is possible that there are unannotated
IGHV4-39 SAR-CoV-2 binders. One single cluster does not,
however, explain the larger expansion in IGHV4-39 use across
the COVID-19 or Ebola repertoire. IGHV4-39 may therefore be
involved in the pathogenesis of the disease by promiscuous
binding to self-proteins. Alternatively, IGHV4-39 may simply
support a wide range of specific binding properties, supported
by the lack of convergence and given it has also been dominant in
cancer, bacterial infection, influenza and HIV responses (56–59).
Such promiscuous binders would have networks contributed to by
more than 1 cohort with 52 networks matching this description in
our data. It is also significant across all 64 large clusters 14 were
A B

D
E

C

FIGURE 3 | CDR3 regions from different CV19 patient repertoires converge, some with known SARS-CoV-2 binders. (A) CDR3 known binder networks were
created using same V, J and CDR3 length with at least 85% amino acid (AA) identity. (B) Convergent clusters from healthy and CV19 repertoire with known PDB
structures. IGHV and IGHJ use and the CDR3 AA sequence were noted. (C) Clusters containing at least 10 sequences were visualized, with breakdown of repertoire
origin (stacked bar plots), and the IGHV and IGHJ gene usage of each cluster aligned beneath. The number of donors with sequences in each depicted cluster are
shown as bar graphs (bottom panel, C), broken down into subsets with age ≤50 (light grey) and ≥60 (dark grey). (D) All known binders were analysed for similarity of
IGHV/J gene use to specific SAR-CoV-2 antibody targets. Dots coloured by enrichment (log-odds ratio, logOR). For each V/J combination only the target with the
top logOR metric was shown. (E) Comparison of clonal expansion of convergent (split by clone size; ≥10 or <10 sequences) and non-convergent clusters in healthy
and CV19 repertoires. Statistical significance evaluated using a Wilcoxon rank-sum test, ****: FDR < 0.0001. See Supplementary Figure S7 for analogous analyses
on RSV and EBOV repertoires.
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dominated by CV19/CV19-R sequences, yet only 5 matched
known binders, suggesting previously unknown SARS-CoV-2
specific binders. As more studies on both naturally infected and
vaccinated individuals identify and validate new SARS-CoV-2
binders, we expect more experimental validation to ascertain the
relevance of these clonotypes in the immune response. Further
data integration exercise incorporating more repertoires (from
both healthy and infected/vaccinated individuals) will discover
more convergent clusters which richer annotations.

In addition to expansion of gene use as an indicator of
activation, we can infer biological information from assessment
of the AID-mediated activities of CSR and SHM. These have long
been associated with germinal centre formation (60, 61).
However, there is mounting evidence that CSR can occur prior
to the germinal centre formation (8–11, 36, 53). T-independent
activation has been shown to be driven by CD40-independent
TLR/TACI activation (62). Our data indicates an early switching
to IgG1 without extensive hypermutation. This data is consistent
withWoodruff et al. (63) who also found high germline similarity
in IgA1, and (42) where COVID-19 samples were found to have
more naïve-like characteristics. Our COVID-19 IgA1 sequences
also indicate a lower level of hypermutation than the control
group, albeit higher than the COVID-19 IgG1, likely reflecting
their distance along the CSR hierarchy. Uniquely, our diversity
analyses also indicate expansion of unmutated IgM clones.
Alongside these data we see that CDRH3 region maturation of
Frontiers in Immunology | www.frontiersin.org 10
IgG1 and IgG3 genes in the COVID-19 patients is less removed
from the IgM state than healthy IgG1 and IgG3, or any other
class switched repertoires. Together with the lineage analysis of
CSR timing, the whole picture in COVID-19 is of an early
immature response of IgM, switching to IgG1 but without
much SHM such as might occur in the absence of T cell help
in a GC reaction, and then to IgA1. Whether these responses are
unique to a live infection or because the virus is so novel is
difficult to ascertain, with future vaccine and comparative studies
likely to shed further light on this phenomenon. IgG1 is known
for its antiviral properties (50, 64) so is expected in this data. The
majority of rapid immunological protection assays for COVID-
19 focus on IgM or IgG (65–68). Since switching to IgA1 is
notable in our data it would be useful for future serology assays to
include IgA. Euroimmun’s IgA on LFA had one of the highest
sensitivities at 87.8% compared to IgM and IgG from other
assays (range 43.8-93%, mean 72.5%, median 76%) (67, 69).

It is known that healthy older people generally have more
antibodies capable of binding self-proteins (70). The balance
between antibodies with positive versus negative/bystander
activity may be changed in older patients. We cannot tell this
from our data except that we see a higher frequency of known
spike binders clustering with COVID-19 repertoires in the
younger cohort. Significant age-related differences occur in the
dominant IGH COVID-19 genes: the increased use of IGHV3-30
is only seen in older COVID-19 patients and that of IGHV4-39
A B

C

FIGURE 4 | V-D-J and isotype usage repertoire differences between healthy and CV19 are not as apparent in older ages. CV19 and healthy patients were split by
over 60s and under 50s and were compared for IgA (A), IgG (B) usage and selected V-D-J gene usage (C). Statistical significance evaluated using two-way ANOVA
and Tukey’s post-hoc test: *, false discovery rate (FDR, corrected using the Benjamini-Hochberg method) < 0.05; **, FDR < 0.01, ***, FDR < 0.001, ****, FDR < 0.0001.
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only in the younger group. We also see selection for IGHD2-2,
IGHD3-3 and IGHJ6 only in the young, with IGHJ6 occurring
frequently in known binder networks, given the importance of
IGHD and IGHJ genes to the CDRH3 region it is striking that the
differences seen here are solely in the younger age group. We
note that by separating samples by age group the small sample
size limits the potential to discover more gene usage differences
with strong statistical significance. In the future integration with
other repertoire datasets, including those in response to SARS-
Frontiers in Immunology | www.frontiersin.org 11
CoV-2 vaccination, would yield more insights into age-related
differences in the humoral response against this virus.

In comparison to our CV19 data our EBOV data paints an
unusual picture where, even 2-3 months post-recovery with viral
negative PCR tests, there are abnormally high proportions of class
switched clones with little or no direction towards a particular sub-
class.GivenCSR is largelyunderstudied, as far aswecan tell suchhigh
rates of class switching, particularly so long after recovery, are entirely
unique to this infection.Anotherunusualobservationwas thatEBOV
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FIGURE 5 | Mutational levels in BCR lineages indicate lower somatic hypermutation in CV19. (A) Lineage trees were constructed by clonotyping the IgH CDR3 and the
lineages reconstructed using the whole V gene rooting on the predicted germline, allowing the distance from germline to be estimated for each sequence. This allows
ordering of sequences based on this distance from germline: depicted as a histogram [(A) bottom right]. (B) Clones in the repertoire, for selected donors, were ordered
(vertical axis) using median distance from germline (horizontal axis), and the distribution of such distance for each clone was plotted with heatmap colours being the
percentage of sequences within the clone containing the a given level of mutation. (C) Distance from germline distributions for every donor, split by condition, represented
as curves. Dotted line represents the theoretical expectation of mutational level. (D) From each of these curves (in c) the area under the curve (AUC) was calculated giving
a statistic of ‘Germline Likeness’, a higher AUC resembling more the germline and a lower AUC indicating more mutations. (E) Comparison of Germline Likeness between
conditions: sample types with significant (Benjamini-Hochberg-corrected false discovery rate [FDR] < 0.05) differences compared to Healthy (Wilcoxon rank-sum test) are
highlighted in red with the dotted line being the healthy median. (F) The Germline Likeness across timepoints for CV19 patients with Healthy and Ebola data are
reproduced here for comparison: trend was evaluated using the Jonckheere-Terpstra test. (G) Comparison of germline distance split by immunoglobulin isotype was
performed split by cohort: significant (FDR < 0.05) differences compared to IgM (Wilcoxon rank-sum test) are highlighted in red.
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survivors'memoryB cell populationsweremore diverse thanhealthy
controls suggesting stimulation with more diverse antigens, or a less
structured and directed immune response. A ‘decay-stimulation-
decay’ pattern resulting in the peak of antibody response being some
200 days after infection has previously been reported (71) and
cytokine storms during infection may also be contributing to this
phenomenon (72, 73). It was not possible to collect blood samples
from unrecovered patients, so we do not know if these observations
were a requirement of patient recovery or a phenomenon unique to
Ebola infection in general. In comparison to other sample types, our
EBOV samples were only sequenced to modest depth (median
number of sequences for EBOV = 5,346; CV19 = 38020.5;
Healthy = 12,486.5). We note that the detection of CSR events
within lineages is dependent upon sequencing depth
Frontiers in Immunology | www.frontiersin.org 12
(Supplementary Note); it is possible that the estimates of CSR
frequencies for EBOV in Figure 6 only represent the lower bound,
further highlighting the importance of CSR in the response
against EBOV.

By comparing examples of pandemic, epidemic and endemic
viral disease responses our results show that while aspects of B
cell responses are unique to particular infections, the human
immunoglobulin gene repertoire can show similarities of
response across two very different diseases. There are many
questions to be answered about the balance of beneficial versus
bystander responses in acute inflammatory diseases, where the
initial class switched responses seem to be immature (COVID-
19) and possibly unregulated (EBOV infection). Coupled with
the finding of genes such as IGHV4-39 appearing in two
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FIGURE 6 | Evidence of Class-switch recombination is increased in EBOV and in large CV19 expansions. Repertoires from each donor were sampled to uniform depth
(12,000, approximately the median sequence counts over all donors across all sample types). (A) Lineage clones (see Figure 5) were assessed for prevalence of CSR
events in terms of the proportion of clones and plotted by clone size and split by condition. (B) Bubble plot depicting the frequency and distance-from-germline of CSR
events, separated by the CSR start (‘From’, vertical axis) and end (‘To’, horizontal axis) isotypes. Quantification was performed separately for different sample types.
Bubble sizes are proportional to the frequency of CSR and colour is scaled by distance from germline at which CSR occurs, as estimated from the reconstructed lineage
trees. (C) Statistical comparison of the median distance from germline at which CSR events occurred across sample types. Each donor was considered separately for
every switch possibility. (D) Comparison of CSR frequency (percentage of clones with evidence of CSR) for each condition was also assessed for each donor (median,
D). Statistical significance was evaluated using one-way ANOVA and Dunnett post-hoc comparison against Healthy with Benjamini-Hochberg-corrected false discovery
rate (FDR) < 0.05 highlighted in red (C, D). For (D), Supplementary Figure S9 contain analogous plots for all CSR combinations with significant (FDR < 0.05) differences
compared against Healthy.
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completely different diseases, these data add weight to the
hypothesis that an emergency humoral immune response to
primary challenge can bypass normal stringent regulation and
thus allow the production of autoimmune antibodies.
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