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This study aimed to construct a signature of N6-methyladenosine (m6A) regulator-related
genes that could be used for the prognosis of head and neck squamous cell carcinoma
(HNSCC) and to clarify the molecular and immune characteristics and benefits of immune
checkpoint inhibitor (ICI) therapy using the prognostic signature to define the subgroups of
HNSCC. This study showed that eighteen m6A regulators were abnormally expressed in
the Cancer Genome Atlas (TCGA) HNSCC tissues compared with those in normal tissues.
We constructed a signature of 12 m6A regulator-related genes using the Cox risk model,
combined with the least absolute shrinkage and selection operator (Lasso) variable
screening algorithm. Based on the median of the signature risk score, the patients were
divided into high- and low-risk groups. The Kaplan–Meier survival analyses showed that
patients with high-risk scores demonstrated poorer overall survival (OS) than those with
low-risk scores based on TCGA-HNSCC data (p <0.001). The OS of high-risk patients
was significantly worse than that of low-risk patients in the GSE65858 (p <0.001) and
International Cancer Genome Consortium (ICGC) oral cancer cohorts (p = 0.0089).
Furthermore, immune infiltration analyses showed that 8 types of immune cell infiltration
showed highly significant differences between the two risk groups (p <0.001). In the
Imvigor210CoreBiologies dataset of patients who received ICIs, the objective response
rate (ORR) of the low-risk group (32%) was significantly higher than that of the high-risk
group (13%). Additionally, patients in the high-risk group presented with a more significant
adverse OS than that of the low-risk group (p = 0.00032). GSE78220 also showed that
the ORR of the low-risk group (64%) was higher than that of the high-risk group (43%) and
the OS of low-risk patients was better than that of high-risk patients (p = 0.0064). The
constructed prognostic signature, based on m6A regulator-related genes, could be used
to effectively distinguish between prognoses for HNSCC patients. The prognostic
org February 2022 | Volume 13 | Article 8098721
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signature was found to be related to the immune cell infiltration of HNSCC; it might help
predict the responses and prognoses of ICIs during treatment.
Keywords: signature, m6A regulators related genes, prognosis, immune responses, head and neck squamous
cell carcinoma
INTRODUCTION

Head and neck squamous cell carcinoma (HNSCC) is a
commonly occurring malignancy reported in humans
worldwide (1, 2). Presently, most patients are diagnosed in the
later stages, which often leads to a high risk of recurrence and
metastatic disease development; the 5-year survival rates remain
at 40%–50% (3, 4). The current standard management for
HNSCC includes the assessment of patients’ prognoses based
on the size, location, and invasion of their tumors using the
Tumor, Nodes, and Metastases (TNM) classification system;
strategies are formulated on this basis (5). However, patients
within the same TNM stage continue to demonstrate different
responses to treatment (6). Therefore, it is imperative to discover
stable and reliable molecular signatures to evaluate the prognoses
of patients and to propose more effective treatments.

N6-methyladenosine (m6A) is the most common post-
transcriptional RNA modification documented in eukaryotic
cells; these modifications mostly occur near mRNA stop
codons in the 5′- and 3′-untranslated regions (UTRs), as well
as in internal long exons (7, 8). The m6A methylation level is
coordinated by the action of methyltransferases (“writers”) such
as the enzymes methyltransferase (METTL)3, METTL14, Wilms
tumor 1-associated protein (WTAP), and VIRMA; by the action
of demethylases (“erasers”) such as fat mass- and obesity-
associated protein (FTO) and a-ketoglutarate-dependent
dioxygenase AlkB homolog 5 (ALKBH5); and by the action of
binding protein “readers” such as YTH domain-containing 1
(YTHDC1), YTH domain-containing 2 (YTHDC2), YTH N6-
methyl-adenosine RNA binding protein 1 (YTHDF1), YTH N6-
methyladenosine RNA binding protein 2 (YTHDF2), and
heterogeneous nuclear ribonucleoprotein C (HNRNPC) (9–11).
M6A methylation plays an essential role in many physiological
and pathological processes, including immune response
generation, microRNA editing, and the progression of various
cancers (12–14).

The epigenetic modification of m6A methylation results in
the regulation of tumor progression by affecting the expression of
oncogenes or suppressor genes. For example, METTL3
expression is significantly upregulated in bladder cancer and is
closely related to poor prognoses in patients (15). Moreover,
many studies have shown that m6Amethylation is closely related
to anti-tumor immune response generation. Han et al. have
demonstrated that YTHDF1 is an essential mediator of tumor
immune evasion; their findings suggest that it may be a potential
target for improving the efficacy of immunotherapy (16).
Previously, Yi found that the signature based on m6A
regulators can distinguish the prognosis of HNSCC patients
(17). Simultaneously, the study found that some m6A
regulators were correlated with the expression of PD-L1 in
org 2
HNSCC. This means that m6A methylation played a vital role
in the tumor immune microenvironment of HNSCC.
However, due to the limited number of m6A regulators, the
accuracy of this model for evaluating the prognosis of HNSCC is
not ideal. The m6A regulators can extensively regulate the
expression of downstream genes through m6A methylation.
Therefore, constructing a prognostic risk model based on m6A
regulator-related genes may better evaluate prognosis and
immunotherapy response.

Here, first, m6A regulators related to genes were identified
using TCGA database. Next, 12 genes were screened through
univariate Cox analysis and the least absolute shrinkage and
selection operator (Lasso) regression. A risk prognosis signature
was then established through multivariate Cox regression
analysis. Finally, the accuracy of the signature was verified in
both the training and validation sets, and the relationship
between the prognostic signature and immunotherapy
responses was explored. In conclusion, it is anticipated that
this study will provide insights for the development of a stable
tool regarding prognosis and immunotherapy predictions that
will be valuable for HNSCC patients.
MATERIALS AND METHODS

Data Availability and Analysis
The data on genome copy number variation, gene mutation, gene
expression, and methylation levels were downloaded from the
TCGA-HNSCC database (https://xenabrowser.net/datapages/).
For transcriptome data, 546 TCGA-HNSCC samples were used,
including 500 tumor tissue samples, 44 normal tissue samples, and
two metastatic cancer tissue samples. After removing the two
metastatic cancer samples, 544 samples were used for gene
expression correlation analysis. The clinical information of
HNSCC patients in TCGA is provided in Table 1. All 522 copy
number variation samples from the Gistic2 database were used for
correlation analysis. For acquiring TCGA-HNSCC methylation
data, the methylation beta value was directly used for correlation
analysis; it was downloaded from TCGA-HNSCC database UCSC
Xena (https://xenabrowser.net/datapages/). Additionally, the
immune infiltration data of TCGA-HNSCC samples were
obtained from http://timer.comp-genomics.org. M6A
methylation modification sites were predicted according to the
data and software provided by http://www.cuilab.cn/sramp.
GSE65858 and GSE78220 datasets were acquired from Gene
Expression Omnibus (GEO) and International Cancer Genome
Consortium (ICGC) oral cancer from India (ORCA-IN) data. The
immune response data were obtained using the R package
“IMvigor210CoreBiologies” (v.1.0.0) (18). Data information used
in this study is shown in Supplementary Table 1.
February 2022 | Volume 13 | Article 809872
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M6A RNA Methylation Regulator
Identification
The data on 21 m6A regulators were collected from the document
(14). TCGA-HNSCC dataset included data on 500 HNSCC and 44
normal tissues. After performing logarithmic transformation and
normalization of the expression data of all samples, the differences
in expression of m6A regulators in tumor tissues versus normal
tissues were illustrated via heatmaps.

Copy Number Variant and Single
Nucleotide Variant Mutation Analysis
The R package “maftool” was used for SNV analysis, with default
settings used for all parameters (19). For the TCGA dataset, SNV
and CNV amplifications and deletions were determined and
Frontiers in Immunology | www.frontiersin.org 3
summarized for each gene in all samples and each cancer type;
the R package “ComplexHeatmap”was then used to generate SNV
mutationheatmaps for eachcancer type (20). In the visual display of
the Cancer Cell Line Encyclopedia (CCLE) and Genomics of
Drug Sensitivity in Cancer (GDSC) datasets, CNV data included
gene-level circular binary segmentation (CBS) copy number data
and was not processed using the Gistic2 number algorithm.

Kyoto Encyclopedia of Genes and
Genomes \ and Gene Ontology \
Enrichment Analyses
The R package “clusterProfiler” was used to conduct KEGG
pathway and GO enrichment analyses (21). The parameters used
were pAdjustMethod = “BH” and p-value cutoff = 0.05.
TABLE 1 | Clinical information of HNSCC patients in The Cancer Genome Atlas.

Primary tumor, N = 500 Tissue normal, N = 44 p

Age: 0.251
≤ 60 244 (48.9%) 17 (38.6%)
> 60 255 (51.1%) 27 (61.4%)

Alcohol exposure: 0.096
No 157 (31.4%) 19 (43.2%)
Yes 332 (66.4%) 23 (52.3%)
Not Reported 11 (2.20%) 2 (4.55%)

Tumor stage:
stage I/II 95 (19.00%) –

stage III/I 337 (67.40%) –

Not Reported 68 (13.6%) –

Pathologic T: .
T0 1 (0.20%) –

T1 45 (9.00%) –

T2 132 (26.4%) –

T3 96 (19.2%) –

T4 11 (2.20%) –

T4a 156 (31.2%) –

T4b 4 (0.80%) –

TX 33 (6.60%) –

Not Reported 22 (4.40%) –

Pathologic N:
N0 171 (34.2%) –

N1 65 (13.0%) –

N2 12 (2.40%) –

N2a 7 (1.40%) –

N2b 101 (20.2%) –

N2c 44 (8.80%) –

N3 7 (1.40%) –

NX 69 (13.8%) –

Not Reported 24 (4.80%) –

Pathologic M:
M0 186 (37.2%) –

M1 1 (0.20%) –

MX 61 (12.2%) –

Not Reported 252 (50.4%) –

Lymphovascular invasion:
No 219 (43.8%) –

Yes 120 (24.0%) –

Not Reported 161 (32.2%) –

subtype:
Atypical 68 (13.6%) –

Basal 85 (17.0%) –

Classical 49 (9.80%) –

Mesenchymal 75 (15.0%) –

Not Reported 223 (44.6%) –
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Then, Cytoscape cluGo was used to visualize KEGG channels
and GO networks.

Construction of the Risk Signature
The selection of candidate risk m6A regulators related to genes
was performed via univariate Cox regression and Lasso analyses.
Multivariate Cox regression analysis was used to establish a profile
of independent prognostic genes. The risk score calculation was
conducted according to the following formula:Ri = Sn

j=1bjxij,where
Ri represents the risk rate of the first sample; I = 1, 2,…, 500; bj
denotes the regression coefficient of the gene j in the Coxmodel; j =
1, 2,…, 12; and xij indicates the expression value of the gene j in
sample i. The patients were divided into high-risk and low-risk
groups, based on the mean value of the risk score.

Prediction of M6A Methylation
Modification Sites
Them6Amodification siteswerepredictedusing the sequence-based
RNA adenosine methylation site predictor (SRAMP) software. As a
public prediction server, SRAMP combines three random forest
classifiers that exploit the positional nucleotide sequence pattern,
the K-nearest neighbor information, and the position independent
nucleotide pair spectrum features to accurate identification of RNA
m6A sites. SRAMP uses either genomic sequences or cDNA
sequences as its input, achieving competitive performance in cross-
validation tests and rigorous independent benchmarking tests (22).
The gene symbols of significantly enriched geneswere converted into
gene bank Accession Number IDs by utilizing the “bitr” function of
the R package “Clusterprofiler.” Then, the R package “rentrez” was
used to download the transcript sequence of each gene from the gene
bank (2021.3.6 download) in the same gene selection database. The
longest transcript in the database of the same gene was selected.

Immune Infiltration
Tumor immune infiltration analysiswas basedon the proportionof
immune cells predicted by using the Cibersort software. First, the
death risk of eachTCGA-HNSCC samplewas calculated according
to the 12-gene multivariate Cox model screened via Lasso analysis.
Then, 500 HNSCC cancer tissue samples were divided into high-
and low-risk groups, based on themedian value of the death risk of
all samples. Cibersort was used to estimate the infiltration ratios of
22 immune cells in 500 HNSCC cancer tissue samples. A
visualization method (bar chart) was used to show differences in
immune cell infiltration in the high- and low-risk groups, and the
Wilcoxon test was further used to perform statistical tests for the
differences in immune cell infiltration between these groups. For
immune cells with significant differences between the high- and
low-risk groups, all samples were divided into high- or low-
infiltration groups using median or tertile values; the survival
difference between the two groups of patients was then analyzed
using the R package “survival” (23).

Relationships between Immune Score,
Stromal Score, and Tumor Mutational
Burden (TMB)
The ESTIMATE algorithm (Estimation of STromal and
Immunecells in MAlignant Tumor tissues using Expression data)
Frontiers in Immunology | www.frontiersin.org 4
(24) was used to value stromal and immune microenvironment
infiltration based on gene transcriptome data. The analysis method
is integrated with the R package “ESTIMATE.” TMB is a measure
of the total number of mutations per megabyte of tumor tissue. It
represents the mutation density of tumor genes and defined as the
average number of mutations in the tumor genome including the
total number of gene coding errors, base substitution insertions, or
deletions (25).

Immune Response Analysis
The IMvigor210CoreBiologies and GSE78220 datasets were used
to analyze the correlation between prognostic signature and the
treatment response to ICIs, including differences in effectiveness
and survival prognosis. The ICI efficacy was evaluated according
to the response evaluation criteria in solid tumors (RECIST) v.1.1
standards. Responders are referred to as patients with objective
response rate (ORR), complete remission (CR), or partial
remission (PR), whereas non-responders are defined as those
with stable disease (SD) or progressive disease (PD).

Statistical Analysis
A flow chart for the m6A regulator-related genes signature
development and subsequent analyses has been provided in
Figure 1. Pearson’s correlation coefficients and the corresponding
p values were calculated between m6A regulatory factors and other
genes at three levels, namely transcription level, methylation level,
and CNV mutation number. Pearson’s correlation coefficients of
>0.5 or <-0.5 and a p-value of <0.05 were used as thresholds to
perform screening of correlations at the three levels of gene
expression, methylation, and CNV, respectively. Genes with
significant correlations at all three levels were selected for the next
step of the analysis.

Univariate and multivariate Cox regression analyses were
performed to analyze the correlations between the genes and the
overall survival (OS) in HNSCC patients. First, significant m6A
regulator-related genes were screened according to the univariate
Cox regression results; they were then further screened using Lasso
regression analysis. The significantly different genes screened in
the above-mentioned step were used to establish a multivariate
Cox model. This was combined with Lasso regularization to
conduct variable screening. The Lasso screening parameters
were a = 1, nl = 100, and l=l.min. Those genes whose
multivariate Cox regression coefficients were not equal to zero
under Lasso regularization were selected as target genes to conduct
the next step of the analysis. Kaplan–Meier (K-M) and log-rank
analyses were used to evaluate the survival differences between
patient groups. Results were considered statistically significant if a
two-sided p-value <0.05.
RESULTS

Alteration of M6A RNA Methylation
Regulators in TCGA-HNSCC Patients
In total, 544 cases based on TCGA-HNSCC transcriptomic data
were analyzed, including 500 tumor tissues and 44 normal tissue
samples, revealing that the expression of 18 m6A regulator genes
February 2022 | Volume 13 | Article 809872
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was higher in tumor tissues than that in normal tissues, including
7 m6A writer genes (VIRMA, RBM15, METTL3, WTAP, CBLL1,
METTL14, and LRPPRC), 9 reader genes (IGF2BP1, HNRNPC,
HNRNPA2B1, YTHDF1, ELAVL1, FMR1, YTHDF3, YTHDF2,
and YTHDC1) and 2 erasers genes (ALKBH5 and FTO)
(Figures 2A, B). These results indicate that m6A modification
is related to the occurrence of HNSCC.

Identification of M6A Regulator-Related
Genes in HNSCC Patients
Pearson correlation analysis was used to perform screening ofm6A
regulator-related genes with significant correlations at the CNV,
mutation, and transcription levels (|Pearson’s R| > 0.5 and p< 0.05).
As a result, 9176 genes were detected and found to be significantly
correlated with m6A regulatory genes at the CNV level (Table 2);
17,309 genes were significantly correlated at the methylation level
(Table 3), and 8504 genes were significantly correlated at the
transcription level (Table 4). The Venn diagram presented in
Figure 3A shows that the expression of 1598 genes at the
transcription, CNV, and methylation levels were related to the
expression ofm6A regulators. The specific 1598 genes are shown in
SupplementaryTable 2. Among them, 192 geneswere significantly
correlated with YTHDC2 at the methylation level, 146 genes were
correlated with YTHDC2 at the CNV level, and 796 genes were
significantly correlated with YTHDC2 at the transcription level.
Thirty-three genes were significantly correlated with YTHDC2 at
the methylation, CNV, and transcription levels. The parts of genes
that are highly correlated with m6A regulatory factors are
summarized in Supplementary Figure 1.

KEGG and GO Enrichment Pathway
Analysis of M6A Regulator-related genes
Based on 1598 m6A regulator-related genes, KEGG pathway
enrichment analysis was conducted and revealed that
Frontiers in Immunology | www.frontiersin.org 5
65 pathways were significantly enriched (p <0.05)
(Supplementary Table 3). The top 35 enrichment KEGG
pathways have been shown in Figure 3B. Furthermore, 187
m6A regulator-related genes in the top ten pathways were
selected for subsequent analysis (Supplementary Tables 4 and
5). The Cytoscape plug-in “ClueGO” was used to perform
network analysis using the KEGG pathway and GO results of
these 187 m6A regulator-related genes. In terms of KEGG
pathways, mTOR, autophagy, and the ubiquitin-mediated
proteolysis signaling pathway were found to be significantly
enriched (Figure 3C). In the cellular component (CC), focal
adhesion and the protein kinase complex were found to be
significantly enriched (Figure 3D). For the biological process
(BP), significantly enriched pathways included protein kinase-
related processes, autophagy, and the stress-activated mitogen-
activated protein kinase (MAPK) cascade (Figure 3E). For
molecular function (MF), protein kinase activity and cell
adhesion were found to be significantly enriched (Figure 3F).

Moreover, analysis of the SNV and CNV mutations of these
187 m6A regulator-related genes in head and neck cancer,
ovarian cancer, cervical cancer, endometrial cancer, colorectal
cancer, and breast cancer showed that endometrial cancer
presented with the most considerable mutation burden for
SNV, whereas the mutation burden in HNSCC was relatively
low (Supplementary Figure 2).

Screening Key Genes Related to M6A
in HNSCC
Univariate Cox regression analysis showed that 58 m6A
regulator-related genes were associated with the survival of
HNSCC patients (Figure 4A). The K-M survival curve of
patients with high- and low-expression groups of certain key
m6A regulator-related genes is presented in Supplementary
Figure 3. Subsequently, HNSCC patients were divided into
FIGURE 1 | Flowchart of the study.
February 2022 | Volume 13 | Article 809872
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low- and high-expression groups according to the median
expression of each m6A regulator-related gene. Lasso-Cox
regression results indicated that 12 genes could be considered
as prognostic factors of OS in HNSCC patients (Figure 4B). The
Frontiers in Immunology | www.frontiersin.org 6
lasso-Cox regression coefficients for these 12 genes have been
shown in Figure 4C. Construction of a protein–protein
interaction (PPI) network of 58 genes using the string protein
interaction database and revelation of the top 12 genes indicated
TABLE 2 | Genes were significantly correlated with m6A regulators at the level of copy number variation (top 20).

Correction adjust_P gene_m6A Gene Type

1 0 YTHDF2 TAF12 CNV
1 0 YTHDF2 RAB42 CNV
1 0 YTHDF2 RNU11 CNV
1 0 YTHDF2 GMEB1 CNV
1 0 YTHDF2 SCARNA24 CNV
1 0 RBM15 AHCYL1 CNV
1 0 RBM15 STRIP1 CNV
1 0 RBM15 ALX3 CNV
1 0 RBM15 UBL4B CNV
1 0 RBM15 SLC6A17 CNV
1 0 RBM15 KCNC4 CNV
1 0 RBM15 SNORA25 CNV
1 0 LRPPRC PLEKHH2 CNV
1 0 LRPPRC RN7SKP66 CNV
1 0 LRPPRC DYNC2LI1 CNV
1 0 LRPPRC ABCG5 CNV
1 0 LRPPRC ABCG8 CNV
1 0 RBM15B MANF CNV
1 0 RBM15B RBM15B CNV
February 2022 | Volume 13 | Article 80
A

B

FIGURE 2 | Alterations in m6A regulators in The Cancer Genome Atlas- head and neck squamous cell carcinoma (HNSCC) patients. (A) Heatmap showing the
expression of m6A regulators in tumor and normal tissues. (B) Differences illustrated in expression levels between HNSCC (blue box) and normal (red box) tissues for
21 m6A regulators. For t-test: ns, p ≥ 0.05; *p < 0.05; **p < 0.01; ***p < 0.001.
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that PRKCA, MAP2K7, VDAC1, FZD6, SQSTM1, and CYCS
were located at key positions (Figure 4D). Moreover, the 12 key
m6A regulator-related genes revealed by using the SRAMP
software were considered to be potential m6A methylation
modification sites (Figure 5).

Construction and Evaluation of an M6A
Regulator-Related Genes’ Signature
The 12 genes selected via Lasso regression analysis were used for
multivariate Cox regression analysis to obtain the survival risk
score of each sample in TCGA-HNSCC (Figure 6A). Then, risk
scores were calculated for every cancer sample calculated by
using the following formula: Riskraw = DAD1*2.316
+CYCS*1.426+CSNK2A2*1.576+VPS25*0.728+VDAC1*0.976
+TMLHE*0.381+CYTH3*0.024+PRKCA*0.260-TP73*0.567+
Frontiers in Immunology | www.frontiersin.org 7
FZD6*0.047+SQSTM1*0.094-MAP2K7*3.070. It is normalized
while visualizing the risk score using the following formula: Risk
score = Riskraw-median of all Riskraw. Based on the median
signature risk score, the patients were divided into high- and
low-risk groups. The K-M survival curve showed that high-risk
patients exhibited poorer OS than low-risk patients based on
TCGA-HNSCC data (p <0.001; Figure 6B). Patients’ 3-, 5-, and
10-year survival statuses were assessed using the risk rate; the
prediction accuracy was evaluated using the area under the curve
(AUC). The predicted AUC values for survival at 3, 5, and 10
years were 0.70, 0.72, and 0.75, respectively (Figure 6C).
Multivariate analyses confirmed that the high-risk group was
an independent inferior factor for OS (HR=3.00, 95% CI: 2.00–
4.60, p < 0.001), after adjusting gender, age, clinical stage, and
histology grade (Table 5).
TABLE 4 | Genes were significantly correlated with m6A regulators at the transcription level (top 20).

Correction adjust_P gene_m6A Gene Type

0.93 1.74E-211 YTHDF3 VCPIP1 Expression
0.91 9.12E-191 ZC3H13 AKAP11 Expression
0.91 6.60E-189 ZC3H13 LRCH1 Expression
0.90 1.25E-180 RBM15B QRICH1 Expression
0.90 1.24E-178 KIAA1429 MTDH Expression
0.89 9.93E-175 LRPPRC CEBPZ Expression
0.89 2.66E-173 KIAA1429 KIAA0196 Expression
0.89 4.53E-170 YTHDF3 ARFGEF1 Expression
0.89 2.54E-169 ZC3H13 VWA8 Expression
0.88 4.07E-167 KIAA1429 YTHDF3 Expression
0.88 4.07E-167 YTHDF3 KIAA1429 Expression
0.88 4.98E-167 ZC3H13 UTP14C Expression
0.88 2.10E-166 ZC3H13 PROSER1 Expression
0.88 5.66E-160 RBM15B WDR82 Expression
0.88 1.01E-159 LRPPRC WDR43 Expression
0.88 1.79E-159 KIAA1429 UBR5 Expression
0.88 2.55E-159 ZC3H13 ELF1 Expression
0.87 1.02E-155 KIAA1429 VCPIP1 Expression
0.87 1.24E-155 YTHDC1 CENPC Expression
February 2022 | Volume 13 | Art
TABLE 3 | Genes were significantly correlated at the methylation level (top 20).

Correction adjust_P gene_m6A Gene Type

0.85 4.67E-148 ZC3H13 COL10A1 Methylation
0.84 2.39E-142 FTO BCAS3 Methylation
0.83 2.09E-134 ZC3H13 PNISR Methylation
0.82 3.22E-132 METTL14 LARP7 Methylation
0.82 4.50E-132 FTO WDR25 Methylation
0.82 1.79E-130 ZC3H13 CEP57L1 Methylation
0.82 8.15E-130 ZC3H13 ZNF326 Methylation
0.82 2.39E-129 ZC3H13 OSMR Methylation
0.82 2.43E-129 ZC3H13 PRPF39 Methylation
0.82 2.94E-129 FTO PRKCE Methylation
0.82 3.16E-129 ZC3H13 SNX14 Methylation
0.82 4.15E-129 ZC3H13 WRN Methylation
0.82 3.48E-127 METTL14 COL10A1 Methylation
0.82 3.88E-127 ZC3H13 PPIP5K2 Methylation
0.82 8.70E-127 METTL14 USP38 Methylation
0.81 2.08E-126 ZC3H13 NUF2 Methylation
0.81 3.05E-126 ZC3H13 ABHD13 Methylation
0.81 6.68E-126 ZC3H13 EXOC5 Methylation
0.81 1.58E-125 ZC3H13 RUFY2 Methylation
0.81 2.84E-125 METTL14 RCHY1 Methylation
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The prognostic values of the signature scores were externally
verified using the GSE65858 dataset, which revealed that there
was a significant difference in OS between the high- and low-risk
groups (p <0.001; Figures 6D, E). The predicted AUC values for
3- and 5-year survival based on the signature score were 0.67 and
0.68, respectively (Figure 6F). These values were slightly lower
than the predicted performance values based on the training set.
Frontiers in Immunology | www.frontiersin.org 8
This risk factor could not predict the 10-year survival status for
the GSE65858 dataset, mainly because the follow-up times of the
cases in the GSE65858 data were lower than 10 years (Figure 6F).

During the external verification of the ICGC ORCA-IN
dataset, the OS of high-risk patients was significantly
worse than low-risk patients (p = 0.0089; Figures 6G, H).
Additionally, the predicted AUC values of the 1- and 2-year
A B

C D

E F

FIGURE 3 | Identification and enrichment pathway analysis of m6A regulator-related mRNAs in head and neck squamous cell carcinoma (HNSCC) patients. (A)
Overlapped differentially expressed genes at CNV, methylation, and transcription levels. (B) Enrichment analysis of 1598 m6A regulator-related genes via the Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway. (C–F) Significantly enriched KEGG and Gene Ontology (GO) pathways. Objects with the same color belong
to the same group and have been depicted using the same color label on the side. GO analysis helped classify regulators into the biological process (BP), cellular
component (CC), and molecular function (MF) groups.
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survival statuses were both estimated to be 1. The follow-up time
of cases in this dataset was not sufficient to predict survival
rates >3 years (Figure 6I).

Comparison of Mutation Status Between
High- and Low-Risk Groups
Gene mutations are considered the main driving factors for the
occurrence and development of cancer. To better understand the
underlying mechanism by which the signature of the risk score
could be used to effectively assess the prognoses of patients, the
Frontiers in Immunology | www.frontiersin.org 9
gene mutations of patients in the high- and low-risk groups were
investigated. As shown in Figure 7, using the model, it was
predicted that the overall mutation rate of the low-risk group
was ~5% lower than that of the high-risk group (89.44% vs.
98.39%, respectively). Additionally, the two groups of high-
frequency mutation genes and mutation rates also showed
significant differences. In the low-risk group, the five genes with
the highest mutation rates were TP53 (59%), TTN (39%), PIK3CA
(23%), MUC16 (18%), and CSMD3 (18%), while the five genes
with the highest mutation rates in the high-risk group were TP53
A B

C D

FIGURE 4 | Screening of the key genes related to m6A in head and neck squamous cell carcinoma (HNSCC). (A) Univariate Cox regression analysis, showing 58
m6A regulator-related genes associated with the survival of patients with HNSCC. (B) The 12 m6A regulator-related genes are most relevant to the survival status,
as identified by screening with the Lasso–Cox regression. The partial likelihood deviance is shown against log (Lambda). A vertical line is drawn at the value fitting the
tenfold cross-validation. (C) The Lasso–Cox regression coefficients for the 12 identified genes. (D) PPI network of 58 genes, highlighting the top 12 genes.
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(83%), TTN (47%), FAT1 (27%), CDKN2A (24%), and CSMD3
(20%). In addition, weak associations between the risk score and
TMB (r = 0.11, p = 0.007) are shown in Supplementary Figure 4A.

Association Between High-Risk Score
and Low Infiltration of Anti-Tumor
Immune Cells
Considering that patients in the different risk groups demonstrated
different prognoses and molecular variation patterns, it could be
suggested that the risk score might also be related to the infiltration
of immune cells in the tumor microenvironment. First, we found
that the risk score was weakly associated with the immune score
(r = -0.15, p = 0.0008) and stromal score (r = 0.12, p = 0.01)
(Supplementary Figures 4B, C). Then, immune cell infiltration
was compared between the high- and low-risk groups using
Cibersort, with findings revealing that eight types of immune cell
infiltration showed highly significant differences between the two
groups (p <0.001) among the 22 types of immune cell infiltration,
including macrophage M0, B cell memory, natural killer (NK) cell
activated,NKcell resting,TcellCD8,Tcell regulatory (Tregs),T cell
follicular helper, andmyeloid dendritic cell resting (Figures 8A, B).
Among these, the proportions of T cell CD8+, T cell regulatory, and
T cell follicular helper cells were significantly higher in the low-risk
Frontiers in Immunology | www.frontiersin.org 10
group than those observed in the high-risk group. MacrophageM0
cell infiltration was significantly higher in the high-risk group than
that in the low-risk group (Figure 8C).

Considering the characteristics of m6A-related genes and
immune cell TCGA-related data, we analyzed the correlation
between the expression of m6A regulators and the expression of
PD-L1. The results showed that 19 m6A regulator expression were
related to PD-L1 expression. Among them, three genes with the
strongest correlation coefficients with PD-L1 expression were
YTHDC2 (R=0.388), YTHDF3 (R=0. 0.273) and METTL14
(R=0.271) (Supplementary Figures 5A–C), and the correlation
between other m6A methylation regulators and PD-L1 is shown in
theSupplementaryTable6. Furthermore, analyzed theexpressionof
PD-L1 in the high- and low-risk groups of patients, and the results
showed that there was no significant difference in the expression of
PD-L1 between the two groups (Supplementary Figure 5D).

Ability of High-Risk Score to be Used for
Prediction of Poor Responses to ICIs
Considering that patients in thehigh- and low-risk groups exhibited
different levels of immune cell infiltration, it could be suggested that
these groups might demonstrate an impression of the efficacy of
ICIs. As there is currently no transcriptome data available for
FIGURE 5 | SRAMP analysis of potential m6A methylation modification sites on 12 m6A regulator-related genes.
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TABLE 5 | The multivariate analyses of overall survival according to risk group,
after adjusting for other potential predictors in TCGA.

Characteristics HR 95%CI p-value

Age (years)
>60 vs. ≤60 1.10 0.81-1.60 0.44

Gender
Male vs. Female 0.81 0.56-1.20 0.25

Clinical stage
III/IV vs. I/II 1.00 (0.73-1.40) 0.87

Histology grade
G3/G4 vs. G1/G2 1.20 0.84-1.80 0.29

Risk group
High vs. Low 3.00 (2.00-4.60) <0.001
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patients receiving ICIs in HNSCC, data reported for other cancers
were used to verify this speculation. The results based on the use of
the Imvigor210CoreBiologies dataset showed that non-responders
to ICIs (SD+PD)presentedwithhigher risk scores than responders
(CR + PR; p <0.001; Figure 9A). Concurrently, the ORR was
significantly higher in the low-risk group than that in the high-
risk group (32% vs. 13%, respectively; Figure 9B). Additionally,
patients in the high-risk group exhibited significantly adverse OS
compared to those in the low-risk group (p = 0.00032; Figure 9C).
Thisfinding indicates that the risk score can be used as a prognostic
marker of the immune response.

Finally, the GSE78220 dataset was used to verify the
relationship between risk score and immune response,
A B C

D E F

G H I

FIGURE 6 | Construction and evaluation of m6A regulator-related mRNA signature. (A) The risk score of the 12-gene model in the Cancer Genome Atlas dataset.
Red represents the time to death, green represents survival status, and the ordinate represents the difference between risk and median scores. (B) Model risk score
prognostic analysis of patient survival. (C) The receiver operating characteristic (ROC) curve is predicted by using the model. (D–F) External verification using the
GSE65858 dataset. (G–I) Verification result for the ICGC ORCN-IN dataset.
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revealing that the risk scores of the non-responders were
significantly higher than those of the responders (p <0.001;
Figure 9D). Moreover, the ORR in the low-risk group was
significantly higher than that in the high-risk group (64% vs.
43%, respectively; Figure 9E). Simultaneously, the OS of the low-
risk group was significantly better than that of the high-risk
group (p = 0.0064; Figure 9F).
DISCUSSION

Owing to the heterogeneity of HNSCC and the unsatisfactory
therapeutic effects encountered, it is necessary to determine an
accurate prognosis for HNSCC patients to explore and establish
proper individualized treatments (26). Previous studies have
indicated that the abnormal expression of m6A regulators may
be related to the occurrence and development of various
cancers, including breast cancer, bladder cancer, glioma, and
colorectal cancer (9, 15). However, recent research into the
pathological role of m6A regulatory factors in HNSCC
progression remains limited, and few studies have addressed
prognostic and predictive evaluation biomarkers for
immunotherapy using m6A-related genes. The findings of
this study showed that the expression of certain m6A
regulators was upregulated in HNSCC tissues compared to
normal tissues. This study also identified 1598 m6A
regulator-related genes that were significantly related to CNV,
methylation, and transcription levels. KEGG pathway
enrichment analysis based on m6A regulator-related genes
helped identify 187 genes in the top ten pathways; 12 genes
were identified as prognostic factors via Lasso regression
analyses. Subsequently, a prognostic signature constructed
using these 12 m6A regulator-related genes was used to better
distinguish between outcomes in HNSCC. Interestingly, this
Frontiers in Immunology | www.frontiersin.org 12
signature was associated with immune cell infiltration and with
the responses and outcomes pertaining to therapy with ICIs.

Here, the expression of various m6A RNA methylation
regulators was different in tumor and normal tissues within the
TCGA-HNSCC database; this was consistent with the findings of
previous reports (27, 28). M6A is known to demonstrate
complex functions and is widely involved in regulating mRNA
splicing, translation, decay, 3’-end processing, and non-coding
RNA processing (29, 30). Through these processes, it
demonstrates the biological function of methylation
modification. Previous studies have demonstrated that m6A
regulators related to mRNA signatures can exhibit an
independent prognostic value, such as those of pancreatic and
bladder cancer (31, 32). Here, 1598 m6A regulator-related genes
were found to be significantly correlated to CNV, methylation,
and transcription levels. A prognostic signature for HNSCC
patients was then developed based on 12 m6A regulator-
related genes via Lasso regression analyses. SRAMP software
analysis showed that the 12 genes in this prognostic signature
possessed m6A methylation modification sites, indicating that
m6A methylation might affect the expression of these 12 genes.
Furthermore, the findings of this study showed that the
developed signature could be used to effectively distinguish
between the prognoses for TCGA-HNSCC patients; the
prognostic evaluation value of the signature was also verified in
two other datasets (GSE65858 and ICGC ORCA-IN). Notably,
the AUC of the developed prognostic signature demonstrated
high accuracy for the training set and the two validation sets
(GSE65858 and ICGC ORCA-IN). These results indicate that the
signature demonstrates marked clinical availability.

Previous reports have shown that key genes within this
prognostic signature are related to the occurrence and
development of tumors. For example, the following six genes
are located at the center of the key protein interaction network:
FIGURE 7 | Comparison of mutational differences between high- and low-risk groups.
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PRKCA, MAP2K7, VDAC1, FZD6, SQSTM1, and CYCS.
PRKCA is overexpressed in oral tongue squamous cell
carcinoma and has been associated with poor prognosis (33).
MAP2K7A has been used as a candidate tumor suppressor in
gastric cancer (34) and T-cell acute lymphoblastic leukemia (35,
36), and has demonstrated the potential to be used as a
prognostic biomarker for prostate cancer (37). The deletion of
VDAC1 has been shown to cause glioblastoma (GBM)
metabolism rewiring, which can, in turn, affect epigenetic
Frontiers in Immunology | www.frontiersin.org 13
modification and inhibit tumor development and progression
(38). It has also been revealed that the FZD6-fibronectin actin
axis can be exploited in drug development for highly metastatic
forms of breast cancer (39). The pleiotropic protein p62/
SQSTM1 is subjected to degradation during autophagy, and its
expression has been demonstrated to increase in primary
HNSCC tumors. CYCS encodes the core component protein of
the mitochondrial electron transport chain, which is also
involved in the initiation of apoptosis and various tumor
A

C

B

FIGURE 8 | Relationship between low- and high-risk groups and immune cell infiltration. (A, B) Comparison of distribution of immune cell infiltration types in low-
and high-risk groups. (C) Difference in infiltration of various immune cells between low- and high-risk groups. For t-test: ns, p ≥0.05; *p < 0.05; **p < 0.01; ***p <
0.001; ****p < 0.0001.
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processes (40, 41). Although the mechanisms of some of these
genes in HNSCC were not clear in the present study, studies have
also confirmed that they could be involved in the occurrence and
development of tumors in other cancers. The biological functions
of these key genes in HNSCC are worthy of comprehensive in
vivo and in vitro studies.

The tumor microenvironment plays a vital role in the
occurrence and development of tumors, especially in the
immune infiltration of tumor cells (42, 43). This not only
affects the development of tumors but also affects the efficacy
of ICIs (44). Here, a significant difference was found in the level
of immune cell infiltration between the high- and low-risk
groups; patients in the high-risk group exhibited greater
infiltration of macrophages and less extensive infiltration of
CD8+ T cells. The degree of CD8+ T cell infiltration has been
established to be positively associated with better prognoses and
immunotherapy effects for patients (45, 46). Considering that
immune cell infiltration is an important factor in predicting the
treatment effect of ICIs, the original aim of this study was to
analyze the predictive value of risk score in HNSCC patients
Frontiers in Immunology | www.frontiersin.org 14
using ICI treatments. Although RNA sequencing or gene
expression microarray data for ICI treatments were lacking
regarding HNSCC, public transcription data from urothelial
carcinoma and melanoma patients were used to confirm that
high-risk patients demonstrated worse treatment responses to
ICIs and OS. This suggested that the scoring of the signature
constructed herein could be used to predict the treatment
responses to ICIs and OS. Although in our research we found
that the expression of many m6A regulators was weakly
correlated with PD-L1 expression, the signature of the m6A
regulator related genes has no obvious correlation with PD-L1
expression. In immunotherapy, immune cell infiltration was the
key to the effectiveness of ICI, and the expression level of PD-L1
was not an effective biomarker for ICI. The constructed signature
can predict the efficacy of ICIs may be attributed to the fact that
the signature was related to immune cells rather than PD-
L1 expression.

Additionally, the high- and low-risk groups were found to
present with different genetic mutation characteristics. The
frequency of gene mutations in the high-risk group was higher
A B C

D E F

FIGURE 9 | A high-risk score predicts poor response to immune checkpoint inhibitors (ICIs). (A–C) Exploration of the utility of risk scores as prognostic markers for
ICIs using the Imvigor210CoreBiologies dataset. (A) Comparison of risk scores between different immune response states. (B) Comparison of immune response ratio
between high- and low-risk groups. (C) Overall survival (OS) analysis of high- and low-risk groups. (D, E) Verification of relationship between risk score and immune
response using the GSE78220 dataset. (D) Comparison of risk scores between different immune response groups. (E) Comparison of immune response rates
between high- and low-risk groups. (F) Analysis of the OS of patients in high- and low-risk groups. For t-test: *p < 0.05; ***p < 0.001.
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than that in the low-risk group. A weak positive correlation was
also observed between risk score and mutation load.
Furthermore, the risk score was also weakly correlated with the
tumor stemness index, immune score, and stroma score. These
relationships might partly explain the underlying reasons as to
why the risk scoring model constructed could be used to predict
the prognosis of HNSCC.

In summary, this study has presented the following
contributions to HNSCC research. First, it established a
prognostic signature based on m6A regulator-related genes and
validated its applicability via several methods. This signature can
be used to effectively evaluate the prognoses of HNSCC patients
and may also potentially predict responses to ICI treatments.
Second, a few genes within this signature may be involved in the
progression of HNSCC and may serve as potential therapeutic
targets. Certain shortcomings and deficiencies in this study
remain. First, this research was based on bioinformatics analysis,
and the accuracy of the signature was not verified using clinical
samples. Moreover, the role and regulation mechanism of these
m6A regulator-related genes in HNSCC are still unclear, and
follow-up research will further analyze the biological functions of
these key genes in the occurrence and development of HNSCC.
CONCLUSIONS

Our findings suggest that the developed prognostic signature,
based on m6A regulator-related genes, can be used to effectively
distinguish between the prognoses of HNSCC. This prognostic
signature was shown to be related to the immune cell infiltration
of HNSCC and might help predict the response and prognosis of
ICI treatments. These findings suggested that the developed
signature could be considered a broad-spectrum biomarker for
prognosis in HNSCC and that it could be used to predict
patients’ responses to ICIs.
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