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Colorectal cancer (CRC) is the third most common malignant tumor and the second most
fatal cancer worldwide. Several parts of the immune system contribute to fighting cancer
including the innate complement system. The complement system is composed of several
players, namely component molecules, regulators and receptors. In this review, we
discuss the complement system activation in cancer specifically CRC and highlight the
possible interactions between the complement system and the various TME components.
Additionally, the role of the complement system in tumor immunity of CRC is reviewed.
Hence, such work could provide a framework for researchers to further understand the
role of the complement system in CRC and explore the potential therapies targeting
complement activation in solid tumors such as CRC.
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INTRODUCTION TO COLORECTAL CANCER

Colorectal cancer (CRC) is the third most common malignant tumor and the second most fatal
cancer in the world. In 2018, 1.8 million new CRC cases were recorded, with 881,000 deaths,
accounting for approximately 10% of all new cancer cases and deaths worldwide (1). By 2035, the
number of new cases is expected to reach about 2.5 million (2). Twenty-five percent of the newly
identified patients are diagnosed with metastatic illness, and 40% will develop metastases within a
year (3).

Despite advancements in treatment modalities, patients with metastatic CRC (mCRC) have a
5-year survival rate of approximately 15% (4). Surgery, chemotherapy, and radiotherapy are the
common conventional treatments for CRC and can be used in combination depending on the
location and course of the disease (5, 6). Because of their non-specificity and cytotoxicity, several
side effects have been reported (7). Additionally, about half of the patients suffer from recurrence
despite neoadjuvant treatment (8). As a result, more effective and alternative treatments for CRC
patients are fundamental.

The understanding of the genomic landscape of CRC, via sequencing techniques, has yielded
important hints about the significant pathways and mechanisms underlying cancer formation.
These data have led to the discovery of cutting-edge therapies based on specific genetic markers.
Even with these improvements, survival rates for mCRC patients have remained dismal, with some
genetic mutations, as RAS mutations, showing a significant role in restricting therapeutic choices.
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Other treatment approaches, like immunotherapy or anti-BRAF
drugs, have only been shown to be beneficial in a tiny percentage
of patients. Consequently, a better understanding of the
molecular evolution of CRC is mandatory to pave the way for
potential therapeutic options (4).
INTRODUCTION TO IMMUNOTHERAPY
IN THE TREATMENT OF
COLORECTAL CANCER

It has been established that infiltration of T cells into CRC improves
the prognosis of the disease. T cells recognize self from non-self by
the binding of T cell receptors (TCR) to major histocompatibility I
(MHC I) that is expressed on the surface of tumor cells (9, 10).
Furthermore, co-inhibitory molecules assist the tumor cells to
escape the recognition and destruction by the immune system.
Immune checkpoint inhibitors block those molecules on T cells,
thus releasing the “brakes” of the cytotoxic T cells and enhancing
their antitumor activity. Such immunotherapies include
programmed cell death 1 (PD1) and cytotoxic T lymphocyte
antigen 4 (CTLA4) inhibitors (11). After showing an initial
success in the treatment of melanoma, immunotherapy has been
evolving as a promising strategy for many solid tumors including
CRC (12). A distinguishing feature of immunotherapy in contrast
to other pharmacological anti-cancer therapies is its ability to exert
a durable remission in selected patients on the long term (13), with
an acceptable safety profile (14). Nivolumab and pembrolizumab
have emerged as efficient PD1 antibodies to treat patients with
metastatic deficient mismatch repair (dMMR) CRC (15). While
cancer immunotherapy mainly involves the manipulation of the
cytotoxic T-cell function or number, there are other immune
factors that play a significant role in cancer treatment modalities.
In view of the recognized role of the complement system in
inflammation, some reports have recently advocated complement
modulation as a potential immunotherapeutic tool in solid tumors,
e.g. melanoma as well as ovarian (16), lung, breast, and colon
cancers (17, 18).
INTRODUCTION TO THE
COMPLEMENT SYSTEM

The complement system is one of the first lines of defence against
foreign pathogens or stressed cells, as a major part of our innate
immune system. It is a network of soluble proteins, membranous
receptors as well as regulators that can act in various tissues and
are generated by the liver. The complement can be activated via
various pathways including the classical, lectin and alternative
(19, 20). The main action of the complement system is by
inducing an immune reaction by activating the adaptive
immune system and opsonizing pathogens, thus maintaining
homeostasis. The classical pathway is initiated by the binding of
the C1 component to IgG or IgM antibodies, forming antigen-
antibody complexes (21). On the other hand, the lectin pathway
Frontiers in Immunology | www.frontiersin.org 2
(LP) is activated by the recognition of sugar residues such as
mannan-binding-lectins (MBLs), collectins or ficolins, just like
the C1 complex (22). Consequently, this could lead to the
activation of the classical pathway C3 convertase (C4bC2a), an
enzymatic complex that cleaves C3 component into C3a and
C3b. The alternative pathway is activated by permissive surfaces
and leads to the formation of the bioactive C3(H2O) and the
alternative pathway C3 convertase: C3(H2O)Bb with the aid of
factor D and factor B (23). These pathways would act
synergistically to increase the level of the opsonin C3b at the
target site (24). Consequently, this would trigger phagocytosis of
the pathogen or stressed cells (23), via the formation of the C5
convertase and the complex with C6 and C7 that forms the
membrane attack complex (MAC: composed of C5b, C6, C7, C8
and C9) (19). MAC would cause the formation of lytic pores,
massive calcium influx, membrane permeabilization and cell
death (25, 26). Once the complement system gets activated,
opsonins are produced throughout the process including the
components C3b, C4b and C1q, that bind to the target tagging it
for phagocytosis by antigen-presenting cells (APCs), thus leading
to its clearance. Other key mediators are anaphylatoxins that are
released in the circulation in order to trigger inflammation. They
activate macrophages, neutrophils, mast cells, basophils, and
eosinophils, resulting in cytokine production leading to
vasodilation, increase vascular permeability, and neutrophil
extravasation and chemotaxis (27).

The complement system has a wide range of functions
including orchestration of the immune-mediated clearance of
apoptotic host cells and immune complexes. Besides, the
complement cascade is also activated directly upon pathogen
encounter. It is worth mentioning that the complement system
modulates the activity of adaptive immune cells such as B and T
cells. For instance, the activated complement C3 fragments could
bind to the receptors CR1, CR3, and CR4, leading to macrophages
activation and phagocytosis induction (20). In addition, C5a, a
potent anaphylatoxin and an active fragment of C5, binds to C5a
receptor (C5aR), and regulates macrophage polarization and
activates the nuclear factor-kB (NF-kB) signaling pathway (28).
This sheds the light on the potential role of such a pathway in
various inflammatory disorders (29, 30).

The function of the complement system is tightly controlled by
multiple regulatory factors in order to protect the normal cells
from unwanted casualties such as membrane-bound complement
regulatory proteins (CRPs), which have a decay-accelerating
activity and membrane cofactor activity (31). This includes the
complement receptor type 1 (CR1/C4bp/CD35), factor H,
membrane cofactor protein (CD46), decay-accelerating factor
(CD55), and protectin (CD59) (Figure 1). CR1/CD35 is
expressed by various immune cells such as neutrophils,
eosinophils, monocytes, follicular dendritic cells, B and T
lymphocytes (32). It acts as a cofactor in the cleavage of the C3b
and C4b mediated by factor I, and it fastens the decay of the
classical and alternative convertases (33). CD46 regulates T cell
function by being a cofactor of factor I in C3b/C4b cleavage
(34–36). On the other hand, CD55 which is expressed on several
circulating blood cells, endothelial and epithelium cells, speeds up
January 2022 | Volume 13 | Article 810993
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the decay of the classical and alternative C3 and C5 convertases
(37, 38). Furthermore, CD59 inhibits the formation of MAC and
the introduction of the C9 component into the lipid bilayer (39).
Also, C1 inhibitor (C1INH) is known to inactivate the function of
C1r, C1s, and MBL associated serine proteases (MASPs) (25).
Another important regulator is carboxypeptidases, particularly
carboxypeptidase N (CPN1), that inactivates the anaphylatoxin
components C3a and C5a (40).

Any dysregulation (deficiency or overactivation) in the
complement system can lead to various diseases involving the
inflammation process and abnormal immune response, such as
autoimmune diseases (41), and cancer (42). Like any other
physiologic processes, complement system has regulators that
aid in the maintenance of its function, that have been extensively
reviewed before (24). In cancer, some of the complement
components can be produced by the tumor and neighboring
stromal cells. It remains unclear whether the tumor would
benefit from the complement proteins or even develops
possible ways of immune evasion.
ROLE OF COMPLEMENT IN THE TUMOR
MICROENVIRONMENT

The tumor microenvironment (TME) plays critical roles in
carcinogenesis initiation and evolution, metastasis and relapse,
Frontiers in Immunology | www.frontiersin.org 3
as well as treatment resistance (43). Cancer cells, stromal cells
such as immune cells and fibroblasts (44), in addition to the
extracellular components make up the TME (45). Tissue-
associated macrophages (TAMs), tumor-associated neutrophils
(TANs), and myeloid-derived suppressor cells (MDSCs) are the
immunosuppressive cell types that mostly infiltrate the TME
(46). The proliferation and invasion of tumors have also been
linked to dendritic cells (DCs) (47), cancer-associated fibroblasts
(CAFs) (48), and regulatory T cells (Tregs) (49). Interactions
between these cells and cancer cells are critical in tumor
biological activity and response to treatment.

Interestingly, the immune microenvironment is rich in
complement proteins and there is emerging evidence that
complement components might have immunosuppressive
functions in the TME by serving as a bridge between tumor-
promoting and tumor-suppressing immune responses (50).
Noteworthy, in malignant tumors, complement protein
expression is found to be elevated. Since tumor cells and
stromal cells both generate abnormal complement proteins, the
TME’s complement system becomes aberrantly activated,
promoting tumor development by curbing inflammation,
stromal cell immunity, and tumor cell expansion, epithelial-
mesenchymal transition (EMT), migration, and metastatic
spread (51, 52).

In the TME, the major pathway implicated in complement
activation is unknown. In patients with CRC, the LP was shown
FIGURE 1 | Complement system players. The complement system is composed of multiple mediators (C1, C2, C4, C3, C5, MAC: C6, C7, C8, and C9), cofactors
(factor B, D and I), receptors (CR1, CR2, CR3, CR4, C3aR, and C5aR), and regulators (C1INH, factor H, CPN1, CD55, CD46, and CD59).
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to be considerably higher than in normal individuals (53).
Furthermore, complement proteins such as C1q and C5b-9
were found in colon, pancreatic, lung, and breast neoplasms as
well as in melanomas (54, 55). Complement proteins were shown
to drive and attract macrophages into cancer tissues, where IL-12
secretion by TAMs was suppressed by C5a (56). Additionally, in
colon cancer liver secondaries, a tumor-inducing profile was
acquired via the activation of NF-kB pathway. Consequently,
C5a-mediated macrophage polarization with the expression of
C5a receptor (C5aR) on TAMs was identified (28).

Previously, TANs have been linked to cancer progression,
where it was found that complement system activation may lead
to TANs chemotaxis within malignancies (57). This was further
supported by the study by Dick et al. that reported C5aR to cause
neutrophil dysfunction, while the study by Allendorf et al.
discovered that C5a stimulates epithelial and endothelial cells
to secrete leukotriene B4 (LTB4), which aids in neutrophil
recruitment (58, 59). C5a, which is produced when
complement is activated, promotes neutrophil recruitment by
boosting the generation of the cytokine IL-1 (60). On the other
hand, C5aR deficiency has been shown to prevent colon cancer
tumor spread by lowering neutrophil infiltration in liver
secondaries (61).

It was found that C3a-C3aR activation plays a key role in cell
migration. Moreover, it was proved that inflammation and
aberrant complement activation prompted metastasis in
different cancers by TME status modulation, extracellular
matrix (ECM) degradation, and tissue barriers disruption as
well as enhancing the motility of neoplastic cells (62). In CRC,
the activation of NF-kB pathway and the transcription factor
AP-1 by the C5a–C5aR signaling may promote the production of
matrix metalloproteinases MMP-1 and MMP-9, which were
critical for the ECM breakdown (63, 64). Also, tumor cells
produce C5a, which in turn increases the release of IL-10,
transforming growth factor-beta (TGF-b1) and monocyte
chemoattractant protein-1 (MCP-1), thus enhancing tumor
metastasis (Figure 2) (61). Additionally, C3 and C4 may
adhere to collagen and elastin in the arterial wall causing an
enhancement of the vascular permeability, thus facilitating
tumor spread (65, 66).
ROLE OF THE COMPLEMENT SYSTEM IN
TUMOR IMMUNITY

The complement system was known to be an immune
surveillance system against cancer due to its activity on tumor
cells via MAC accumulation-mediated cell lysis or phagocytosis
of opsonized cancer cells by macrophages and neutrophils. It is
known that CRPs, whether soluble or membranous are elevated
in cancer, with a differential expression across various cancer
types (67, 68). In the tumor-immune interaction, complement-
associated proteins play a vital role whether directly or indirectly
by regulating tumorigenesis, development, and metastasis (69,
70). Like any other counterpart of the immune system, tumor
cells manage to develop inhibitory mechanisms for the
Frontiers in Immunology | www.frontiersin.org 4
complement cascade in order to prevent complement-
dependent cytotoxicity (CDC). However, several studies
highlight the controversial role of the complement system in
CRC, whether as a tumor suppressor or a tumor promoter (41).
For example, mCRPs along with factors H and FHL-1 could be
present in soluble forms that might attach to tumor cells, leading
to tumor resistance to complement activation (71). Also, tumor
cells may produce proteases that cleave complement molecules,
and/or abolish MAC by endocytosis (72–74). This could induce
multiple effects such as resistance to apoptosis and augmentation
of complement resistance (75, 76). Moreover, several studies
have shown that the complement activation may lead to chronic
inflammation that results in the development of an
immunosuppressive microenvironment and may even activate
angiogenesis and cancer-promoting signaling pathways (77). For
instance, mice deficient of the C3, C4, or C5aR components
showed inhibition in their tumor growth in mice (78, 79). Also,
the C5a component present in the TME could promote tumor
cell growth by the recruitment of MDSCs and suppression of T
cells (78, 80, 81). Also, the amount of C5a within the tumor was
linked to the differentiation of regulatory T cells (82).
Furthermore, the components C3 and C3a were reported to
play crucial roles in cancer, where the disruption of C3a/C3aR
axis caused a defect in the immune infiltration and leading to
inhibition of tumor growth (83). Furthermore, C3a was found to
promote T-cell apoptosis and MDSC recruitment, along with
DCs and CD8+ T cells inhibition (83). Another possible
mechanism of complement system through the C5a/C5aR
pathway, where MDSCs upregulate the expression of
programmed cell death 1 ligand (PD-L1) and repress the anti-
tumor immune response (81, 84). Also, MDSCs induce the
production and release of reactive oxygen and nitrogen species
in order to suppress T cell function (81). On another note, CRPs
were reported to be upregulated in various cancer types (85, 86),
that promote the binding of C1q component to apoptotic cells,
thus protecting tumor cells from lysis and inflammation (87).
Therefore, blocking complement receptors in cancer could aid in
enhancing the efficacy of the cellular immunotherapy (88, 89).

In CRC, tumor cells were found to produce C3 component
thus leading to modulation of the response of macrophages and
its anti-tumor immunity, via the C3a-C3aR axis and PI3Kg
signaling pathways (90). Also, another study reported that the
C5a/C5aR1 axis could play a role in the tumor immunity and
promote cancer progression (91). A previous study by Bao D.
et al. showed that high levels of C3, CR4, and C5aR1 were
associated with poor prognosis in CRC as well as immune
infiltration levels of immune cells (92). Also, in colon
carcinoma tissues, multiple complement elements including
C2, C5, complement factor B (CFB), complement factor I
(CFI), CR4, complement component 4 binding protein
(C4BPB), CD46, CD55, and CPN1 were significantly higher
than that in normal tissues. C1q was found to enhance tumor
growth and to be highly expressed in CRC biopsies (55).
Moreover, other studies found an increase in C3a serum
concentration in colon cancer patients (93). Furthermore, the
DAF/CD55 was selected to be a potential biomarker for poor
January 2022 | Volume 13 | Article 810993
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prognosis in patients with colon cancer (92, 94), where tumors
that express CD55 showed an increase in the CDC resistance (72,
95, 96). Also, LP components and serum levels of MBLs and
MBL-MASP levels were increased in the serum of colon cancer
patients and were reported to be a prognostic factor for
recurrence and poor survival (53, 97). This highlights the value
Frontiers in Immunology | www.frontiersin.org 5
of the complement system in tumor immunoregulation,
especially that of CRC.

Several studies claim that the chronic inflammatory state of
the TME promotes neoplastic transformation (98). A recent
study reported mutations in complement genes in CRC to be
associated with the involvement of hypoxia gene expression as
FIGURE 2 | Role of the complement system in the CRC tumor microenvironment (TME). Complement proteins are produced by the liver into the circulatory
bloodstream. There was an elevation in the levels of the complement proteins (especially the leptin pathway related proteins) in the colon TME. This promotes further
inflammation and recruitment of tumor associated macrophages (TAMs) and tumor associated neutrophils (TANs). Also, the complement system triggers the
secretion of IL-10, CCL2, TGF-b1 and metalloproteinases (MMPs) that could enhance CRC metastasis.
January 2022 | Volume 13 | Article 810993
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well as poor survival (99). In addition, there was an observed
increase in the CD55 expression through the hypoxia inducible
factor (HIF), leading to inhibition of CDC (99). In CRC, the C5a
component was generated by serine proteases on the surface of
tumor cells independent of complement activation (100), while
the C5a/C5aR pathway was found to induce cell proliferation,
motility, and invasiveness (101, 102). Blocking of this pathway
was demonstrated to improve the response to PD-L1 therapy in
CRC (103). On the contrary, another study described the tumor-
derived C3a/C3aR signaling to affect TAMs by inducing the M2
phenotype and suppressing CD8+ T cells in CRC (90). Also,
there was an improvement in response to PD-L1 therapy in C3-
deficient tumors, thus suggesting that complement regulation of
macrophages might affect T cell function and hence the
therapeutic efficacy of PD-L1 antibodies (90).
THERAPEUTIC ASPECTS OF THE
COMPLEMENT SYSTEM IN CRC

Complement activation is a key driver of several immunological
diseases, e.g., paroxysmal nocturnal hemoglobinuria (PNH),
auto immune hemoly t i c uremic syndrome and C3
glomerulopathy. Most clinical trials addressing the value of
complement-related therapeutic targets are focusing on those
diseases. As a result, the anti-C5 antibody, eculizumab, was
approved by the FDA in the treatment of PNH in 2007. The
other complement drug in clinical use is the C1 inhibitor,
Frontiers in Immunology | www.frontiersin.org 6
Cinryze, approved by the FDA for the treatment of hereditary
angioedema as the first one of this class in 2010. Many other
diseases are related to complement system derangement,
including age-related macular degeneration, neuromyelitis
optica and myasthenia gravis. Several clinical trials are ongoing
to evaluate complement-related therapies in those diseases (104).
Only a few complement-based lead molecules have been
developed to therapies. A fewer number has gained the FDA
or EMA approval. Table 1 summarizes the basic features of
medications acting on the complement system.

The development of high-resolution and dynamic-range
analytical and structural methods, together with the
introduction of complement-gene “knockout” models, formed
the necessary foundations for a better understanding of the
complement’s role in human pathologies including cancer
(118). In cancer research, the therapeutic aspects of the
complement system emerged as a consequence of unveiling its
effect on TME components. Complement-related therapies may
represent a promising strategy to overcome the failure of
response to immunotherapy in different solid tumors including
CRC (18).

Several concerns delayed the progress of complement-related
therapeutics, as they are known to block an important arm of
innate immunity. Hence, studies aimed to modulate rather than
to completely block the complement receptors (119, 120). There
are several disadvantages that appeared with the use of
complement-based medications in the aforementioned
autoimmune diseases. For example, complement inhibition
TABLE 1 | Complement-targeting medications in different pathological diseases.

Specific
Target (s)

Medication Mechanism of Action Modality Current Clinical Use Clinical Trial
ID

References

C1, MASPs Cinryze Inhibition of lectin and classical
pathways

Purified native
protein

Hereditary angioedema NCT02316353
NCT02584959

(105)

Suppression of C1r/s and the
MASPs activity

Under investigation in kidney
transplant patients

C3 AMY-101 (Cp40),
compstatin
derivative

Compstatin derivative with improved
potency and safety profile compared
to compstatin

Peptide Acute respiratory distress
syndrome due to COVID-19
(SAVE trial)

NCT04395456 (106, 107)

Periodontal inflammation
C3 Pegcetacoplan

(APL-2)
Pegylated form of compstatin Peptide Paroxysmal nocturnal

hemoglobinuria
NCT03500549 (108, 109)
NCT04085601

Geographic atrophy NCT02503332
C5 Eculizumab Inhibits the cleavage of C5 into C5a

and C5b
Antibody Paroxysmal nocturnal

hemoglobinuria
NCT03500549 (108, 110–113)

Acute hemolytic uremic
syndrome

NCT01194973

Myasthenia gravis NCT01892345
Neuromyelitis optica NCT04355494
Severe COVID-19

C5a Receptor PMX53 C5aR1 inhibitors Cyclic hexapeptide Preclinical in mice Preclinical (114)
PMX205 Suggestive for

neurodegenerative diseases
C5a Receptor Avdoralib

(IPH5401)
C5aR1 inhibitors Monoclonal

antibody
Bullous Pemphigoid NCT04563923 (115)
Advanced solid tumors NCT03665129

CD59 Anti-CD59 Inhibits MAC blocker “CD59” Monoclonal or
biphasic antibody

Multiple myeloma Preclinical (116, 117)
Cervical cancer

CD46 Anti-CD46 Inhibits CD46 and prevents C3b and
C4b degradation by Factor H

Monoclonal or
biphasic antibody

Cervical cancer Preclinical (116)
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impairs opsonization and bacteriolytic activity, thus increasing
the risk of infections. This was reported in the case of eculizumab
which was effective, however, associated with drawbacks,
such as high risk of meningococcal infections and difficult
pharmacokinetics. In order to overcome such challenges, the
next generation complement-based medications were developed
(104). These next generation high-potential drugs are rapidly
progressing through clinical trials and are likely to change this
field as they will have the potential of inhibiting the complement
beyond C5 in various diseases and avoid the challenges
associated with complement inhibition. Thus, next generation
complement-based therapies have the advantage of owing a safer
profile, in particular, a lower incidence of serious adverse effects
compared to the older medications (104).

Interestingly, it was found that the effective doses used to
treat cancer were much lower than that those used in the
treatment of autoimmune diseases. One of the main
therapeutic targets of complement system would be the C3
component as it is a point of convergence of the three
complement pathways and a molecular hub for crosstalk with
multiple pathogenic pathways. However, targeting C5 could
inhibit the lytic effect of MAC, but leaves the complement
build-up at the C3 level intact. Thus, it seems that C3 represents
an attractive target for therapeutic modulation of the
complement cascade. An example of a C3 inhibitor is
compstatin which is a cyclin tridecapeptide that inhibits the
cleavage of C3 to its active forms C3a and C3b. Compstatin and
its newly developed analogues showed promising results in a
wide spectrum of clinical applications (118).

In the last few years, a limited number of reviews and original
studies have discussed the potential use of complement in
therapeutics of different cancers (17, 18, 121, 122). Since the
role of the complement system remains controversial, whether
it is pro- or anti- tumorigenic, studies suggested suppressing
the complement activation as a novel strategy for cancer
treatment, probably using C5aR and C3aR blockers (25). Anti-
complement agents in cancer treatment are considered a
potential approach to be used in combination with traditional
chemotherapies or immune checkpoint inhibitors without
increasing myelosuppression; a well-known side effect of the
chemotherapy (123). Also, complement inhibition has a
promising role in enhancing the effect of immunotherapy,
especially as the complement receptors C3aR and C5aR are
expressed on CD8+ TILs and genetically engineered T cells
(124). Additionally, targeting complement/C3aR/C5aR/IL-10
pathway has been suggested to synergize other treatment
modalities, as it enhances the T-cell anti-tumor efficacy (124,
125). A previous study used fusion proteins (anti-PD-1-IL10) or
(anti-CTLA4-IL-10), to be added for TILs expansion in the
adoptive cellular therapy (124). Such a synergistic effect was
further tested and confirmed in other studies on preclinical
models of colon and lung cancers (103, 126), paving the way
for future clinical trials. However, the risk and benefits of
combining anti-complement therapies with other anti-cancer
agents should be further investigated.
Frontiers in Immunology | www.frontiersin.org 7
Several studies reported improving the complement-
mediated monoclonal antibodies (mAbs) effects through
genetic engineering, conjugation or even glycosylation. Others
suggested turning a non-complement-fixing antibody into a
complement-fixing antibody such as IgG1 and IgG3 that are
most efficient in activating complement and CDC (127). For
instance, the Fc part can be engineered to augment the CDC
activity of therapeutic mAbs (128), while bispecific antibodies
can be engineered to recruit complement effector functions
(129), and alteration of the glycosylation was found to boost
the lytic potential of mAbs (130).

Several studies scrutinized the therapeutic effect of blocking
the complement system in mouse models. For instance, a study
by Downs-Canner et al. demonstrated a reduction in tumor
growth in a murine model of colon cancer, through different
methods of complement depletion (using cobra venom factor)
and inhibition (using Staphylococcus aureus superantigen-like
protein 7) (131). Furthermore, an enhanced immune cell
infiltration (namely CD8+ T cells) in the TME, as well as
increased chemokines expression (CCL5, CXCL10, and
CXCL11), were witnessed upon treatment of mice with these
inhibitors (131). Since C5a/C5aR1 signaling axis is known to play
a role in CRC TME immune infiltration, several studies explored
the effect of complement C5 deficiency (especially C5ar1)
where it was found to completely prevent CRC tumorigenesis.
Also, this was accompanied by an increase in the levels of
anti-inflammatory cytokines (IL-23, IL-9, IL-27, and IL-10)
and suppression of the pro-inflammatory cytokines and
chemokines (TNF-a, IL-1a/b, IL-6, IL-17A, IL-11, CCL2,
CCL17, CXCL1, and CXCL5) (91). Moreover, the C5aR1
antagonist, PMX205, strongly impeded CRC growth, thus
revealing the critical role of C5aR1 expression for colorectal
tumorigenesis (91). Other C5aR antagonists, including PMX53,
exerted efficient reduction in the tumor size and enhanced the
effect of anti-cancer chemotherapy in mice (126, 132). It is worth
mentioning that targeting the receptor C5aR rather than the
components C3 or C5, allows opsonization to take place in order
to protect cancer patients from the risk of acquiring bacterial
infections. In addition, production of lytic MAC will be
preserved upon inhibiting C5aR, hence favoring its anti-cancer
effect. However, targeting C5aR leaves the other complement
system components C3a uninhibited (132).

Several mAbs target tumor-specific antigens and are known
to promote crucial anti-tumor activities. Moreover, these mAbs
activate the immune system via the Fc portion through antibody-
dependent cellular cytotoxicity (ADCC) and CDC (133). As
previously mentioned, a successful complement activation
could induce various immune responses against tumors (MAC
formation, opsonization, and anaphylatoxins release) (71).
Further, studies showed enhanced anti-tumor activity of mAbs
by overpowering the effect of CRPs (67, 134). This has been
proposed by researchers where a biotin-avidin system or
bispecific monoclonal antibodies are used in order to target a
tumor antigen and simultaneously block a CRP, in order to limit
inhibitory factors in the TME (135–138).
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As previously mentioned, CRC cancer cells may resist CDC
through the decay accelerator “CD55” overexpression under hypoxic
conditions. Hence, a study by Dho et al., 2019, explored the potential
of a novel CD55 chimeric monoclonal antibody that suppressed
proliferation, invasion and migration of CRC cells, through
activating the complement system. Further, a synergistic action of
the anti-CD55 antibody and 5-fluoruracil (5FU) was observed on
CRC cells growth rate (139). The therapeutic potential of the
complement system as an anti-cancer agent was translated in the
clinical practice, where a phase I trial (STELLAR-001) has been
designed to investigate IPH5401 (anti-C5aR) in combination with
durvalumab (anti-PD-1) in advanced solid tumors (NCT03665129,
https://clinicaltrials.gov/ct2/show/NCT03665129) (140).

Other factors including factor H were demonstrated to
inactivate therapeutic ADCC. Antibodies targeting factor H
were previously utilized in lung cancer studies to increase C3b
deposition and mediate complement-dependent tumor cell lysis
(141). Therefore, targeting factor H in cancer may be a potential
strategy to overcome immune evasion and enhance tumor
response to immunotherapy. Another strategy to boost the
complement-mediated cytolysis is through the blockage of the
MAC blocker “CD59”, such as that reported in lung cancer using
trastuzumab and cetuximab (anti-EGFR) antibodies (123). In
addition, another regulatory protein, CD46 (MPC) is a cofactor
for C3b and C4b degradation by factor H, which represents
another target for the cancer treatment (18).
CONCLUSIONS

CRC is still considered among the most prevalent malignancies
worldwide. The known treatment strategies to treat CRC patients
Frontiers in Immunology | www.frontiersin.org 8
are surgery and chemotherapy. Nevertheless, the prognosis of
CRC has never been satisfying, especially for patients with
metastatic lesions. As a crucial member of humoral innate
immunity, the complement system was found to be present in
the TME of various cancers. Recent research has shown that the
complement can be pro or anti-tumoral, depending on the cancer
type, and different investigated models. A deeper knowledge of
the complement system’s interaction within TME will lead to a
new breakthrough in cancer immunotherapy. Therefore,
complement components and regulators represent a potential
target for CRC immunotherapy.
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