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Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland

Acute myeloid leukemias (AML) comprise a wide array of different entities, which have in
common a rapid expansion of myeloid blast cells leading to displacement of normal
hematopoietic cells and also disruption of the microenvironment in the bone marrow
niches. Based on an insight into the complex cellular interactions in the bone marrow
niches in non-neoplastic conditions in general, this review delineates the complex
relationship between leukemic cells and reactive cells of the tumor microenvironment
(TME) in AML. A special focus is directed on niche cells and various T-cell subsets as these
also provide a potential therapeutic rationale considering e.g. immunomodulation. The
TME of AML on the one hand plays a vital role for sustaining and promoting
leukemogenesis but - on the other hand - it also has adverse effects on abnormal
blasts developing into overt leukemia hindering their proliferation and potentially removing
such cells. Thus, leukemic cells need to and develop strategies in order to manipulate the
TME. Interference with those strategies might be of particular therapeutic potential since
mechanisms of resistance related to tumor cell plasticity do not apply to it.
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INTRODUCTION

Acute myeloid leukemia (AML) can be defined as a clonal expansion of hematopoietic progenitor
cells showing a stop of differentiation and maturation at various stages (1). AML has a severe impact
on affected patients with a general five-year survival rate of 24%, a median survival of 8.5 months,
and an even worse prognosis in the most commonly affected patient group of people over the age of
65 showing a median survival of only 2.7 months (2). This data and the fact that no increase in
survival rates could be achieved in the last decades, show the urgent need for improved
treatment modalities.

The mainstay of AML therapy includes intensive chemotherapy and allogeneic hematopoietic
cell transplantation (AHCT) (3). The rationale behind AHCT is the idea that blasts remaining after
chemotherapy will be eliminated by the transplanted donor-immune cells (graft-versus-leukemia
effect). However, in a considerable fraction of patients, relapses occur. On the other hand, many -
especially elderly - AML patients are not eligible for this therapeutic option (4) and, thus, other
therapeutic strategies must be explored. Improved understanding of the biology of AML and
especially its microenvironment, including the exploration of the applicability of chimeric antigen-
receptor T cells (CAR-T), might open new treatment options and significantly improve the outcome
of patients. A key to achieve this goal is a profound understanding of the bone marrow niche, which
provides physical protection and release of pro-survival factors for leukemia cells (5, 6), and the
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interaction between AML blasts and the immune system as
potential target for immunotherapeutic approaches (7, 8).

As hematopathologists, we are confronted daily with
evaluation of bone marrow biopsies and the characterization of
its cellular components. This work has resulted in the
conceptualization of various own studies dealing with the TME
of hematopoietic neoplasms, which will be presented in this
review along with seminal publications of other groups. So the
focus of this review is the TME of myeloid tumors, particularly
AML, from the viewpoint of histopathology that may
mechanistically explain how AML blasts interact with the TME
to support growth and survival. For a detailed view on
therapeutic approaches targeting the TME in AML, we refer to
other excellent reviews focusing on that topic (9, 10).

THE MICROENVIRONMENT OF THE BONE
MARROW NICHE

The term “bone marrow niche(s)” has been coined to describe
the specialized interplay of various cells and soluble factors
providing the basis for sufficient and well-regulated
hematopoiesis from the hematopoietic stem cells (HSC).

The bone marrow consists of a delicate vascular architecture
of arterioles, veins and specialized sinusoids that enable
trafficking of cells and soluble factors to the blood stream and
vice versa, particularly through the fenestrated basal lamina of
the sinusoids (11). Another important component of the bone
marrow niches are stromal cells, which to a large extent comprise
the adipose tissue, a longtime neglected component (12). Many
authors distinguish a perivascular and an endosteal niche (10). It
is still a matter of debate whether this distinction really can be
made, since there is cumulating evidence in the support of the
existence only of the former (13).

Hematopoiesis occurs in a circadian fashion effectuated by
sympathetic nerve fibers in the bone marrow (14), and HSC
themselves have been shown to be subject to respective
oscillation, which is orchestrated by the sympathetic nervous
system (15). Signaling via P3-adrenergic receptors regulates
nestin-expressing mesenchymal cells and their cell progenitors
(MSC) (16), which are of core importance for the perivascular
bone marrow niches (17). As a net effect, 33-adrenergic signaling
e.g. regulates trafficking of HSC (18).

The endosteal bone marrow niche (17) has been described as a
shelter for HSC, and its regulation is orchestrated by osteoblasts
and their progenitors (19). Osteoblasts form protective layers for
HSC, they can also keep them in a non-circulatory state via cell-
cell adhesion molecules (20). This niche is preserved after
treatment by chemotherapy and radiation, being the source of
bone marrow renewal after such insults (21). As also capillaries
seem to play an as important role in the endosteal niche as in the
perivascular niche, it has been proposed to relinquish the
separation between different niches. Just recently Panvini et al.
presented human data on the presence of nestin+ capillary-like
tubes (NCLTs), not surrounded by sub-endothelial perivascular
cells in direct contact to the bone line and spatially correlated

with hematopoietic stem/progenitor cells and possibly involved
in regulating human hematopoiesis within the endosteal
compartment (22). This group also showed that the endosteal
niche capillary network gets destroyed in the course of AML
evolvement in favor of the central perivascular niche.

The perivascular niche is considerably (about 9 times)
larger. Its MSC can differentiate into osteoblasts, adipocytes,
chondrocytes and fibroblasts (23), and are particularly important
for HSC by secreting factors such as C-X-C motif chemokine 12
(CXCL12), stem cell factor (SCF) and interleukin (IL) 7 (16).
Vice versa, MSC can be modulated by HSC to improve their own
microenvironment (24). The most voluminous compound of the
perivascular niche, the adipocytes of the bone marrow, have been
shown to be different from adipocytes elsewhere in the body.
Their amount steadily increases during lifetime and they are
involved in HSC maintenance and proliferation by secreting
adipokine and adiponectin (25), in addition of being an
important source of nutrients for bone marrow cells.
Production of CXCL12, IL3 and IL6 has also been documented
for this cell type (26). Finally, the vascular partition consists of
sinusoids and arterioles, which — based on single cell analysis —
must be regarded as different subcompartments (27, 28), e.g.
sinusoids being mainly involved in cell egression from the bone
marrow, while arterioles play a central role in nutrient and
oxygen supply.

Macrophages - as in many other forms of TME - also are a
pivotal part of the bone marrow niches. They can give rise to
osteoclasts, influence osteoblasts and CXCL12-secretion by MSC
to maintain homeostasis of HSC (29). Interestingly, the
progenies of HSC, megakaryocytes also play a backloop role
for HSC by secreting several cytokines such as insulin-like
growth factor 1, platelet factor 4 and transforming growth
factor beta (TGFP) (30).

THE TUMOR MICROENVIRONMENT OF
MDN AND MPN: SIMILARITIES AND
DIFFERENCES TO AML

A weighty proportion of AML cases does not present as de novo
disease but represents clinical or at least genetically perceptible
evolution (31) of background clonal hematopoietic stem cell
disorders such as myelodysplastic syndromes (MDS) that are
now proposed to be called myelodysplastic neoplasms (MDN),
or myeloproliferative neoplasms (MPN), the microenvironment
of which has been the focus of research. MDN patients carry a
high risk (up to 25%) of developing AML (32), while in MPN this
risk is more variable, depending on the respective entity, and is
below 10%. Interestingly in this regard, MDN cells can induce
transformation of normal MSC into MSC with proinflammatory
characteristics, which can then support leukemic progression
(33), while vanishing nestin-positive niches is a well-established
mechanism of MPN pathogenesis (34). Moreover, it has been
shown in animal models that certain molecular dysfunctions in
MSC can induce an MPN-like phenotype (35, 36). This just
shows two brief insights into the interaction and relationship of
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neoplastic ells and their environment of these disease groups. In
the following paragraphs when focusing on different cell subsets
and soluble factors, we will figure out current knowledge in
regard to the TME of AML.

THE ROLE OF MESENCHYMAL STEM
CELLS AND THEIR PROGENIES IN AML

MSC are pluripotent cells that can differentiate into different
types of mature cells as described above. During lifetime, there is
a “physiological” change of MSC, which is reflected by increase of
adipocytes and loss of osteoblasts (37). This alteration might also
explain the well-known increasingly reduced bone marrow
cellularity in the course of life. The underlying change of MSC
differentiation is achieved via different mechanisms, including
altered cytokine levels, resulting in decreased Wnt-related
signaling and intensified RhoA-related signaling (38) as well as
reduced Runx2 signaling, which is important for osteoblastic
differentiation (39). “Senescence” that can be attributed to
(cumulative effects of) pro-inflammatory cytokines, and
changes of the sympathetic nerve system during life affect MSC
(40). Indeed and as a cumulative result of altered signaling in
cancer, nestin-positive MCS are significantly reduced in several
hematologic malignancies. In a study on the TME of MPN, we
could demonstrate that there is both a reduction of sympathetic
nerve fibers and, consecutive, of nestin-expressing MSC in MPN,
which is linked to the effects of proinflammatory cytokines that
are increased in MPN, and can be to a part reverted by
administering P3-adrenergic agonists (34). Interestingly,
reduced numbers of nestin-positive MSC also correlate with
another inflammatory condition, GVHD in AHCT patients
(41). On the other hand, the role of nestin-positive MSC is
different in AML as here, no depletion of these MSC has been
observed (Figures 1A, B) and it is speculated that AML blasts are
in need of MSC for survival and chemotherapy resistance, being
dependent on the oxidative phosphorylation and tricarboxylic
acid cycle activity, and antioxidant defense of the latter (42).

N 4
s '
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Whether the genuine disruption of MSC niches in MPN (34)
compared to rather increased MSC-niche densities MDN (43)
may additionally explain the higher transformation rate into
AML of the latter, is an intriguing hypothesis that remains to
be resolved.

Analogously to what has been mentioned in the previous
section discussing the relationship between MPN and their TME,
mutations can also occur in the MSC themselves, which is
documented in MPN linked to mutations in Ptpnll (44) or
progression of AML fostered by Ctnnbl mutations in osteoblasts
(45) in mouse models. This shows a new path of leukemogenesis,
initiated not by mutations occurring in HSC but in MSC with
secondary mutations occurring in the blasts. Similar to what is
known from studies on bone marrow senescence, disruption of
sympathetic nerve signaling also happens in AML. In mouse
models on both AML and MPN, the destruction of Schwann cells
and reduced sympathicotonus significantly altered bone marrow
niches and promoted the increase of leukemic stem cells and
disease progression (34, 46). Interestingly, P3-adrenergic
agonists helped to restore physiological conditions and
prevented disease progression.

AML blasts can push MSC to differentiate into osteoblasts,
being as supportive for leukemia as for HSC in general (47), and -
via the mechanism of leukemic stem cell protection - in the
endosteal niche in particular (48). This seems to occur via
secretion of proinflammatory cytokines such as CCL3 or
thrombopoietin (TPO). Single cell RNA sequencing studies
could already provide deeper insights into the reprogramming
of MSC in vivo: Baryawno et al. elegantly demonstrated that
different MSC are involved, including e.g. significant changes in
osteoblast subsets and decreases differentiation into adipocytes,
accompanied by upregulation of hypoxia-related genes in
MSC (28).

Adipocytes are getting diminished by AML expansion in the
bone marrow, which seems to be not only due to spatial
disproportion, but also by preferential MSC-differentiation
towards the osteoblastic lineage (49). On the other hand,
adipocytes provide nurture to AML cells via release of fatty

FIGURE 1 | Distribution of nestin+ cells of the perivascular niches in AML. (A) Nestin expression in MSC-equivalents in normal bone marrow (immunohistochemistry,
400x); (B) Increased presence of nestin-positive MSC-equivalents in a case of AML suggesting importance of the former cells for AML survival

(immunohistochemistry, 400x).
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acids and also are important for bioavailability/unavailability of
many lipophilic drugs (50), so their importance for AML cells is
still difficult to interpret. Interestingly, the latter property of these
cells is suspected being one reason for the inferior survival of
elderly AML-patients as adipocyte-rich niches may provide a
protective environment for AML blasts (51).

AML blast tightly interact with the endothelium. It has long
been known that AML show an increased microvascular density
compared to non-neoplastic bone marrow (52). Vascular
endothelial growth factor (VEGF) is a major player in this
relationship: besides fostering angiogenesis it can also inhibit
apoptotic signaling in AML cells and support proliferation by
upregulating secretion of GM-CSF by endothelial cells (53).
Moreover, adhesion of leukemic stem cells through E-selectin
to the vascular niche protects the former from the lethal effect of
chemotherapy, which can be specifically counteracted (54).

Extracellular matrix components are an important factor for cell
(im-)mobility and, thus, also a vital component of the TME. Already
ten years ago, we could show the importance of RHAMM/CD168
(Figure 2A), the receptor for hyaluronic acid-mediated motility, as a
negative prognostic marker for AML patients (55). CD44 that also
interacts with hyaluronic acid (Figure 2B), is a type I
transmembrane protein serving - especially in its sialofucosylated
form - as adhesion molecule with ligands such as osteopontin, E- and
L-selectin and fibronectin, and is an important factor for homing of
HSC, and particularly of leukemic stem cells (56). Blocking CD44,
the most commonly variant of which expressed in AML is v6 that is
moreover linked to poor outcome, has been shown to prevent
persistence of AML blasts in the bone marrow niche upon
chemotherapy, which is otherwise linked to the quiescent-
promoting- and, thus, cell-protective TME functions of CD44 (57).

THE ROLE OF LYMPHOCYTES AND
MONOCYTES IN AML IMMUNE ESCAPE

As seen in many other tumors, immune escape is an important
survival strategy for AML. AML blasts have been shown to

impede the formation of immune synapses (58) and impair
cytotoxic activity of T-cells (59). Generally, and in AML in
particular, immune escape can be divided into different
strategies including hiding of the malignant cells from the
immune system up to manipulation of various immune-
cell subsets.

T-cells can be divided into regulatory and cytotoxic T-cell
subgroups. Regulatory T-cells (Tregs) dampen inflammatory
responses, both by secreting anti-inflammatory cytokines as
well as silencing cytotoxic T-cells (60). Thus, Tregs’ effects to
provide protection from the immune system may be important
for AML. AML blasts express one of the most potent cell-contact
immune silencers, programmed death ligand 1 (PD-LI;
Figures 3A, B), which increases with disease progression (61).
They can also produce reactive oxygen species (62) and
indolamine-2, 3-dioxygenase (IDO), which both promote
differentiation towards Tregs (63). Just recently, a study by
Ragaini et al. demonstrated that an IDO1-related immune gene
signature predicts overall survival in AML (64). Another target
to induce T-cell anergy is T-cell immunoglobulin and mucin
domain 3 (TIM3), which binds to and is activated by galectin-9,
the latter being highly expressed on AML blasts, which
leads to an activation of several downstream signaling
pathways such as the MAPK/ERK, PI3K- and AKT (65). TIM3
can stimulate the production of IDO and thus foster immune
evasion (66). Yet, regarding the role of TIM3-expression
AML, there are still conflicting results (67-69). Secretion of
inducible T-cell co-stimulator ligand (ICOSL) and IDO’s
product, N-formylkynurenine, furthermore contribute to an
immunosuppressive environment stimulating the expansion of
Tregs, while limiting cytotoxic activity (70, 71). Low Treg levels
have been generally associated with better outcomes in AML
(72). However the very dynamic nature of these interaction can
be appreciated from the following example: in a retrospective
cohort we could show higher numbers of FoxP3+ Tregs
(Figure 4A) in the early phases after induction therapy are
associated with higher complete remission rates and better
overall AML survival (73), contrasting their role when assessed

of CD44v6 in AML cells (immunohistochemistry, 400x).

FIGURE 2 | Expression of hyaluronic acid binding proteins in AML. (A) Diffuse expression of RHAMM in AML cells (immunohistochemistry, 400x); (B) Diffuse expression
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FIGURE 3 | Distribution of PD-L1+ mononuclear tumor-infiltrating cells in AML. Case of relapsing AML showing high expression of PD-L1 (B) in contrast to very
scarce expression of PD-L1 in the adjacent non-neoplastic bone marrow (A; immunohistochemistry, 200x).

at baseline AML biopsies (74). We hypothesized that this is
attributed to active changes of the T-cell compartment reflecting
the stereotypic recovery of the immune system after
chemotherapy. Due to their immunomodulatory abilities, the
expanding Tregs could foster the recovery of normal
hematopoietic cells effectuated e.g. by limiting activity of
effector T-cells, which may otherwise react to potential neo-
epitopes unmasked due to cell destruction caused by
chemotherapy. Accordingly, the beneficiary role of Tregs
becomes evident when looking at lower rates of GVHD in
Treg-high AHCT patients (75). Alongside, high expression
levels of the surface molecules mentioned such as PD1/PD-L1
and TIM3 are associated with worse prognosis in AML, thus
suggesting potential relevance for therapeutic interventions, with
first immune checkpoint inhibition trials being underway (76)
although - as alluded to above —investigations of the expression
of these markers still produces conflicting results (69). Yet and in
accordance with the described above, it seems that immune
checkpoint inhibition as a single therapy is not successful,
therefore currently combination therapies are being
explored (77).

T-cell exhaustion can further be achieved by alterations of the
metabolic microenvironment of AML, which can be
characterized as glutamine-rich (78) and an arginine-deprived
(79). Therefore, administering L-asparaginase (80) and
inhibiting arginine deprival (81) have been both shown to be
promising options for AML. Further immunomodulating drugs
such as lenalidomide have also been tested in AML. In a
translational side-project of a randomized clinical study
(HOVON103 AML/SAKK 30/10), addressing the role of TME
in AML treated by chemotherapy with or without addition of
lenalidomide, we could show that its addition may be beneficial
to (elderly) patients suffering from AML with multilineage
dysplasia, where it led to a reduction of microvascularization
and, likely, to an intensified specific T cell-driven anti-leukemic
response (82). Lenalidomide promotes the degradation of two
transcription factors, Aiolos and Ikaros, of the cereblon-
mediating signaling (83, 84). Lenalidomide affects both
neoplastic cells - by facilitating apoptosis, and the surrounding
T-cells - by activating them via enhanced secretion of IL 2 (85).
Indeed, under lenalidomide, the amount of T-bet+ T cells more
consistently increased (82), which might be interpreted as a sign
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FIGURE 4 | Distribution of regulatory T-cells and TH1-cells in AML. Presence of regulatory T-cells expressing FOXP3 (A) and Tbet (B) in bone marrow involved by

Frontiers in Immunology | www.frontiersin.org

February 2022 | Volume 13 | Article 811144


https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles

Menter and Tzankov

Tumor Microenvironment in AML

of increased T cell-driven immune response against the tumor
cells. Consistently, this T-bet+ T-cell subgroup (Figure 4B) is a
significant contributor to T-cell activation (86), and has a
potential beneficiary effect on AML outcome as it fosters anti-
AML immunity (87).

The role of B-cells has not been investigated at a larger scale
so far. Cheng et al. investigated the prognostic importance of the
TME in AML and showed a negative impact of memory B-cells
(yet not statistically significant) on survival, while increased
numbers of naive B-cells had a positive impact (88).

Besides T-cells of the adaptive immune system, AML blasts
also alter the function of innate immune system cells, namely NK
cells and macrophages. AML blasts downregulate surface
molecules needed for their recognition by NK cells via the
receptor natural killer group 2 member D (NKG2D), and
release altered NKG2D-ligands reducing the cytotoxic activity
of NK cells (89, 90). Another mechanism to evade NK-cell
recognition and, thus, destruction is inhibiting release of
interferon 7y (91). Similar to solid tumors, AML blasts induce a
shift of macrophages towards M2 polarization, M2 macrophages
being immunosuppressive, supporting angiogenesis and tissue
repair (92). Elevated levels of M2 macrophages in AML patients
have been described in vivo and in mouse models (93). Another
population manipulated by AML blasts are myeloid-derived
suppressor cells, which are derived from monocytes (94).
These cells cause T-cell inactivity via several mechanisms
ranging from PD-L1 expression to secretion of cytokines such
as IL10 and/or TGFp. In line with M2-macrophages and Tregs,
these myeloid-derived suppressor cells are also more abundant in
AML patients (94), and, consistently, they seem to be a risk factor
for disease progression of MDN to overt AML (95). Finally, AML
blasts also show a defective antigen-presentation by
downregulation of human leukocyte antigens (HLAs) helping
to render them invisible to immune cells (96).

These complex interactions between AML cells and non-
neoplastic immunomodulating cells seems to represent a major
source of difficulties for applying CAR-T in such instances (97),
besides difficulties in identifying targets not also expressed by

non-neoplastic HSC (98). As detailed above, induction of
myeloid-derived suppressor cells and Tregs significantly
reduces T-cell responses, which also holds true for CAR-T
responses. Targeting CD33, which is not only expressed on
AML blasts, but also on the myeloid-derived suppressor cells is
a potential strategy to overcome this dilemma (99). Respecting
AML-TME interactions, a phase I/II trial is currently running to
explore the application of CD44v6 CAR-T in AML (https://
clinicaltrials.gov/ct2/show/NCT04097301). Constructing CAR-T
with costimulatory domains to dampen the influence of Tregs
might be another potential approach (100). A further obstacle to
the efficacy of CAR-T is the secretion of various soluble factors
by AML blasts, which will be discussed in the next paragraph.

SOLUBLE FACTORS AFFECTING
THE TME

AML cells depend on numerous cytokines and soluble factors
provided by cells of the bone marrow niches. In addition, several
adhesion factors seem to be essential for AML cells within
these niches.

CXCL12 (Figure 5A) is secreted by MSC under the
orchestration of sympathetic nervous signaling, and regulates
leukocyte trafficking as mentioned above (101). Interactions with
its receptor, CXCR4, increase retention of HSC to the bone
marrow niches and decreases their progenies’ migration into the
bloodstream. Several years ago, we could show that active
CXCR4 signaling is associated with an inferior prognosis in
AML as a consequence of an increased retention to the bone
marrow associated with an enhanced chemoresistance of
leukemic cells (102). Indeed, under chemotherapy, AML cells
often overexpress CXCR4 (Figure 5B) that facilitates
overcoming apoptotic stimuli and improving cell survival by
entering a state of quiescence and stromal protection, thus,
being less amenable to the effects of cytotoxic drugs (103).
CXCR4 antagonists such as plerixafor or the monoclonal
antibody ulocuplumab are currently investigated in several
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FIGURE 5 | Expression of members of the CXCL12-CXCR4 axis in AML. (A) Expression of CXCL12 in perivascular MSC-equivalents in AML (immunohistochemistry,
400x); (B) Diffuse expression of the receptor of CXCL12, CXCR4, on AML blasts (immunohistochemistry, 400x).
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clinical trials (104). CXCR4-antagonists mobilize leukemic stem
cells into the blood stream and block several survival pathways as
discussed above, thus rendering AML cells more chemo-
susceptible. Importantly, granulocyte colony-stimulating factor
(G-CSF) that is commonly given to support recovery from
chemotherapy, seems to antagonize CXCR4 effects too, and is
claimed to improve AML outcomes by means of this
mechanisms, too (105).

ILs are an integral component for the regulation of the
immune system. AML blasts can secrete a variety of ILs to
adjust the TME to their needs: secretion of IL1f promotes
growth of blasts, thus, serving as an autocrine growth factor,
while suppressing non-neoplastic HSC (106) also by overturning
adrenergic signaling in the perivascular niches (see above). By
binding circulating IL2 via CD25, AML blasts can reduce T-cell
activity (107). IL8 seems to be important for chemoresistance
(108), and its secretion by endothelial cells is propagated by AML
blasts. IL10 is secreted by MSC of the TME and correlated with
worse survival in AML (109). By secreting IL10, MSC can induce

immune tolerance, a well-established function of IL10 (110), and
thereby shield AML blasts from detection by the immune system.

CONCLUSIONS

In this review, we tried to give an overview of the massively
expanding knowledge on the complex interactions of AML with
their TME. The delicate structures and functions of the bone
marrow niches are profoundly altered in order to help AML
blasts to survive, expand and escape immune surveillance. Both,
various cellular subsets as well as soluble factors play important roles
in this settings (Figure 6). With more and more knowledge
generated from treating solid tumors with immunotherapy, it is
now also beginning to be explored in AML, especially in instances
treated by chemotherapy. An area still not profoundly investigated
is AML in the setting of AHCT. Indeed and as may be anticipated
from the information on the interaction of AML with its TME
reviewed here, increased knowledge on different pathways and

FIGURE 6 | Schematic summarizing some interactions of AML with the TME. Stimulatory signaling is delineated in red, inhibitory — in green; tumor-promoting cells
are blueish, tumor-suppressing cells — greenish, while niche-cells and nutrient-supplying cells are yellowish. The scheme does not claim to be complete and mainly
reflects aspects that have been addressed in this review. For abbreviations, we kindly refer to the manuscript body.

! Treg cell

Frontiers in Immunology | www.frontiersin.org

February 2022 | Volume 13 | Article 811144


https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles

Menter and Tzankov

Tumor Microenvironment in AML

mechanisms of action mediated through the TMA that may - if
therapeutically adjusted - counterbalance graft-versus-host-, while
supporting graft-versus-leukemia effects in the setting of AML
treated by AHCT has the potential to considerably improve
outcome. Further understanding and finding modes of action of
immunotherapies and therapies targeting non-immunologic AML-
TME interactions to counterbalance the manipulative effects of
AML blasts on the bone marrow niche and its constituents has the
potential to improve the prognosis of AML patients both at initial
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