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Unexplained recurrent spontaneous abortion (URSA) is believed to be associated with
impaired immunosuppression at the maternal-fetal interface, but the detailed molecular
mechanism remains unclear. The ATP-adenosine metabolic pathway regulated by CD39/
CD73 has recently been recognized to be important in immunosuppression. This study
aimed to investigate the regulation of decidual natural killer (dNK) cells and fetal extravillous
trophoblast (EVT) cells by CD39 and CD73 in URSA, as well as the possible regulatory
mechanism of CD39/CD73 via the TGF-b-mTOR-HIF-1a pathway using clinical samples
and cell models. Fewer CD39+ and CD73+ cells were found in the URSA decidual and
villous tissue, respectively. Inhibition of CD39 on dNK cells transformed the cells to an
activated state with increased toxicity and decreased apoptosis, and changed their
cytokine secretion, leading to impaired invasion and proliferation of the co-cultured HTR8/
SVneo cells. Similarly, inhibition of CD73 on HTR8/SVneo cells decreased the adenosine
concentration in the cell culture media, increased the proportion of CD107a+ dNK cells,
and decreased the invasion and proliferation capabilities of the HTR8/SVneo cells. In
addition, transforming growth factor-b (TGF-b) triggered phosphorylation of mammalian
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target of rapamycin (mTOR) and Smad2/Smad3, which subsequently activated hypoxia-
inducible factor-1a (HIF-1a) to induce the CD73 expression on the HTR8/SVneo cells. In
summary, reduced numbers of CD39+ and CD73+ cells at the maternal-fetal interface,
which may be due to downregulated TGF-b-mTOR-HIF-1a pathway, results in reduced
ATP-adenosine metabolism and increased dNK cytotoxicity, and potentially contributes to
URSA occurrences.
Keywords: URSA, dNK, CD39, CD73, adenosine, TGF-b
INTRODUCTION

Unexplained recurrent spontaneous abortion (URSA) is defined
as two or more consecutive spontaneous abortions (1, 2). The
mechanism remains unclear, but is thought to be associated with
immune intolerance. During early pregnancy in humans, the
fetal extravillous trophoblast (EVT) cells invade into decidua and
remodel the uterine spiral arteries (3). Decidua consists of
epithelial cells and immune cells. Successful pregnancy requires
a unique immune tolerant environment where delicate and
complex crosstalk between the fetal-derived EVT cells and the
maternal-derived decidual cells takes place (4).

Natural killer (NK) cells, a population of innate lymphoid
cells, can lyse cancer cells and virus-infected cells. They play an
important role in controlling the adaptive immune response by
producing pro-inflammatory and anti-inflammatory cytokines
(5, 6). Decidual natural killer (dNK) cells are a special type of NK
cells, which constitutes 70% of immune cells in the decidua (7).
The other 30% include macrophages, dendritic cells, and T cells
(8). dNK cells are different from peripheral blood NK (pNK)
cells, in that they are identified as CD56brightCD16-, while the
pNK cells are mainly (95%) CD56dimCD16+ (7). The origin of
dNK cells remains uncertain, but it is possible that they are from
a group of minor agranular CD56brightCD16- NK cells in the
blood, which migrate into the uterus and transform (8). The role
of dNK cells in the adaptive immune response, particularly the
production of proinflammatory and anti-inflammatory
cytokines, has been characterized (5, 6). It has been reported
that dNK cells exhibit lower cytotoxicity, but higher secretion
potential, than pNK cells in physiological settings (9–11). The
dNK cells express a variety of surface receptors, such as NKp44
(CD336), NKp30 (CD337) and NKG2D (CD314) (1, 2). When
these receptors are activated, an array of cytokines and growth
factors that regulate the immune tolerance and angiogenesis at
the maternal-fetal interface are produced, including GM-CSF,
TNF-a, IFN-g, IL-10, IL-8, IL-2, interferon-inducible protein-10
(IP-10), hepatocyte growth factor (HGF), PLGF, CCL-3, CCL-4
and several vascular endothelial growth factor (VEGF) family
members (2, 9).
urrent spontaneous abortion; dNK,
lood natural killer; EVT, extravillous
actor-b; mTOR, mammalian target of
tor-1a.
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Adenosine and its phosphates ADP and ATP mediate several
functions such as inflammation via binding to purine receptors
on cell surfaces (12). Extracellular ATP and ADP concentrations
are regulated by CD39 (NTPDase1) and CD73. CD39 is
expressed on the extracellular surface of endothelial cells,
particularly in human vascular and placental trophoblastic
tissues (13). It is also expressed on the surface of certain
immune cells such as neutrophils, monocytes, natural killer
cells, and some subsets of T and B lymphocytes, where it
inactivates nucleotides (12). CD39 hydrolyses ATP and ADP
to produce AMP, and the membrane-bound ecto-5’-nucleotidase
CD73 further hydrolyses AMP to produce adenosine (14, 15).
Extracellular adenosine regulates the immune function of T
lymphocytes (16–18), B lymphocytes (19–21) and NK cells
(21–24) via binding to four different G protein–coupled
purinergic receptors A1, A2A, A2B and A3. Thus, CD39 and
CD73 can change pro-inflammatory immune cells driven by
ATP to anti-inflammatory ones induced by adenosine (25). It has
been demonstrated that CD39 and CD73 can mediate the growth
and metastasis of tumor cells (24, 26–31). The adenosine effect
mediated by CD39 and CD73 is considered one of the most
important immunosuppressive regulatory pathways in the tumor
microenvironment. Upregulated CD39/CD73 has been reported
in a large number of solid cancer studies, and displays correlation
with poor prognosis (32–35). Studies have shown that tumor
cells and Treg cells co-express CD73 and CD39 and produce
extracellular adenosine (36, 37). However, the effects of CD39
and CD73 on dNK and EVT cells, which are the main immune
cells at the maternal-fetal interface maintaining immune
tolerance, and the key cells for the remodeling of spiral
arteries, respectively, have been seldom studied.

TGF-b is abundantly expressed in theendometriumandpromotes
its decidualization (38). It regulates the immunosuppression and
immunoactivation balance via acting on type I (TbRI) and type
II (TbRII) receptors that phosphorylate the downstream signal
transducers Smad2 and Smad3 (39, 40). It also regulates the
homeostasis of NK cells and inhibits their cytokine production
and cytolytic activity (41, 42). TGF-b facilitates the transition of
CD16+ pNK cells to CD16- cells and inhibits the development
and differentiation of human NK cells (43). It also transforms
pNK cells into noncytotoxic and proangiogenic NK cells, a cell
type similar to dNK cells, with the presence of hypoxia and a
demethylating agent (34). In tumors, TGF-b signaling has been
found to induce the generation of CD39/CD73 myeloid cells
(44). However, dNK cells exist in a different microenvironment
February 2022 | Volume 13 | Article 813218
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from pNK cells and exhibit a different phenotype, and it remains
unknown whether TGF-b regulates CD39 and CD73 expression
on dNK and EVT cells, respectively, at the maternal-
fetal interface.

This study aimed to investigate the role of CD39/CD73 in the
crosstalk between dNK and EVT cells at the maternal-fetal
interface, and its relationship with URSA. We first measured
CD39 and CD73 levels at the maternal-fetal interface of URSA
and normal tissues, and then investigated the impact of CD39 and
CD73 on the adenosine production and functions of dNK and
EVT (or HTR8/SVneo) cells. Furthermore, the impact of TGF-b
on the CD73 expression in HTR8/SVneo cells was explored to find
a possible cause for the CD39/CD73 imbalance.
MATERIALS AND METHODS

Clinical Sample Collection
Fresh decidual and villous samples were obtained at the First
Affiliated Hospital of Chongqing Medical University from
women with voluntary terminations of pregnancy (n = 30) or
unexplained recurrent spontaneous abortions (URSA, n = 12).
Abortions with genetic abnormalities detected by chorionic villus
sampling or anatomical examination were excluded. Before the
operation, informed consent from each participant was obtained.
The study conformed to the Ethical Review Methods for
Biomedical Research involving Humans adopted by the
National Health Commission of the People’s Republic of
China. All the samples (Table S1) were put in ice-cold
phosphate buffer saline (PBS) in sterile containers after
collection, and immediately transferred to the laboratory.

Cell Lines
The human trophoblast HTR-8/SVneo cell line was purchased
from the American Type Culture Collection (ATCC, USA), and
cultured in Gibco™ RPMI 1640 medium (Thermo Fisher
Scientific, USA) with L-glutamine, 10% fetal bovine serum
(FBS, PAN-Biotech, Germany) and 1% penicillin-streptomycin.
The K562 cells were purchased from the National Infrastructure
of Cell Line Resource of China and cultured in the same medium.
All the cells were grown in standard culture conditions (37°C
and 5% CO2 in humidified air).

Cell Preparation and Purification
The decidual tissue was first washed thoroughly with cold PBS,
cut into pieces of about 1–3 mm, and digested by gentle shaking
with 0.1% collagenase type IV (Catalog#: C5138, Millipore
Sigma, USA) and 0.01% DNase I (Catalog#: 10104159001,
Millipore Sigma, USA) for 1 h at 37°C. Afterwards, the
mixture was sequentially filtered through nylon meshes of
decreasing pore sizes (100, 200 and 400 mesh). The decidual
mononuclear cells in the final filtrate were then concentrated by
density gradient centrifugation (1000g, 20 min) with ficoll
(Catalog#: 17144002, GE Healthcare, Sweden). After
centrifugation, the mononuclear cells were collected, washed,
and counted. The dNK cells from the decidual mononuclear cells
Frontiers in Immunology | www.frontiersin.org 3
were enriched using the human CD56+CD16- NK Cell Isolation
Kit (Catalog#: 130-092-661, Miltenyi Biotec, Germany)
according to the manufacturer’s instructions. The isolated dNK
cells were cultured in RPMI 1640 medium containing
recombinant human IL-15 (10 ng/mL, Catalog#:I8648, Sigma),
and then immediately underwent various analyses such as
flow cytometry.

Flow Cytometry Assays
The dNK cells were cultured in 6-well plates (5 × 105 cells/well) for
24 hours. The mononuclear cells were resuspended in staining
buffer, and then immediately stained with a range of monoclonal
antibodies, namely anti-CD56 TULY56 FITC (Catalog#: 11-0566-
42, eBioscience, USA), anti-CD16 PE (Catalog#: 12-0168-42,
eBioscience, USA), anti-CD39 APC (Catalog#: 17-0399-41,
eBioscience, USA), anti-CD107 APC H4A3 (Catalog#: 560664,
BD Pharmingen, USA), anti-CD314 PE (Catalog#: 557940, BD
Pharmingen, USA), anti-CD336 PE (Catalog#: 558563,
BD Pharmingen, USA), anti-CD337 PE (Catalog#: 558407, BD
Pharmingen, USA), anti-CD73 PE (Catalog#: 550257, BD
Pharmingen, USA), anti-Annexin V FITC (Catalog#: 556419,
BD Pharmingen, USA), anti-DAPI (Catalog#: 564907, BD
Pharmingen, USA) and anti-CD45 APCCY7 (Catalog#: 348805,
BD Pharmingen, USA). After incubation at room temperature for
30 min, the cells were then washed and resuspended in PBS for
flow cytometry analysis (CytoFLEX, eBioscience, USA). The
strategy for multidimensional flow cytometry analysis is shown
in the Supplementary Material, Figure S1.

ELISA
The concentrations of ATP (Catalog#: 14432H1, MEIMIAN)
and adenosine (Catalog#: 1913H1, MEIMIAN) in the culture
medium were determined with enzyme-linked immunosorbent
assay (ELISA) Kits. The dNK cells were cultured in 24-well plates
(2×105 cells/well) for 24 hours. The culture medium was
collected and centrifuged, and the supernatant was stored at –
80°C until assayed according to the manufacturer’s protocols.

Luminex Assay
The isolated dNK cells were cultured in 24-well plates (2×105

cells/well) for 24 hours, and the medium was collected. A
Luminex X200 System (Luminex, USA) was used to measure
the cytokine levels in the medium. The cytokines TNF-a, IL-10,
IL-4, IL-6, IL-8, IP-10, IL-5, IL-13, IFN-g, IL-17, IL-1, IL-27,
HGF, GM-CSF and Galectin-1were determined using human
luminex discovery assays (LXSAHM-15). The concentrations
were calculated based on the mean fluorescent intensity (MFI).
Standard curves were generated for reference cytokines and used
to calculate cytokine concentrations in the medium.

Western Blot
The proteins in the villous and decidual tissues as well as the
cultured cells were extracted using the RIPA lysis buffer
(Catalog#: P0013B, Beyotime Biotechnology, China) with
PMSF (Catalog#: ST506, 1mM, Beyotime Biotechnology,
China). After separation with 10% SDS-PAGE, the proteins
were transferred to a PVDF membrane. The membranes were
February 2022 | Volume 13 | Article 813218
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blocked with TBST (TBS+Tween) containing 5% skimmed milk
powder for 1 hour, and then incubated with the corresponding
primary rabbit polyclonal antibodies in Primary Antibody
Dilution Buffer (Catalog#: P0256, Beyotime Biotechnology,
China) at 4°C overnight. The antibodies were CD39 (1:1000,
Catalog#: ab223842, Abcam, UK), CD73 (1:1000, Catalog#:
ab175396, Abcam, UK), TGF-b (1:2000, Catalog#: ab27969,
Abcam, UK), Phospho-mTOR (1:1000, Catalog#: 5536, Cell
Signaling Technology, USA), Phospho-Smad2 (1:1000,
Catalog#: 3108, Cell Signaling Technology, USA), Phospho-
Smad3 (1:1000, Catalog#: 9520, Cell Signaling Technology,
USA), HIF-1a (1:1000, Catalog#: 36169, Cell Signaling
Technology, USA) and b-actin (1:5000, Catalog#: GB11001,
Servicebio, China). Then, the membranes were washed and
incubated with HRP-conjugated secondary rabbit antibodies
(1:10,000; Proteintech) at room temperature for 2 hours. Band
signals were visualized and analyzed with enhanced
chemiluminescent reagent (Millipore Sigma) and a Vilber
Fusion image system (Fusion FX5 Spectra, France).

RT-PCR
Total RNA was extracted from HTR8/SVneo cells using
Invitrogen™ TRIzol reagent (Thermo Fisher Scientific, USA)
according to the manufacturer’s instructions. cDNA was
synthesized using Roche Reverse Transcription Kit (Catalog#:
07912455001, Roche), and qPCR was performed using the
SYBR Premix Ex Taq (TaKaRa Biomedical Technology, China)
with a LightCycler™ 96 instrument (Roche, Switzerland).
GAPDH was used as the internal gene control. Its primer pair
was: forward: 5′CAGGAGGCATTGCTGATGAT3′, reverse: 5′
GAAGGCTGGGGCTCATTTT3′. The primer pairs of the tested
genes were as follows: CD73 forward: 5′ACCAGCGAGGACTC
CAGCAAG3′, reverse: 5′AGCAGCAGCACGTTGGGTTC3′,
HIF-1a forward: 5′ATCAGACACCTAGTCCTTCCGATGG3′,
reverse: 5′GTGGTAGTGGTGGCATTAGCAGTAG3′.

Immunohistochemistry
The villous and decidual tissues were first cut into 4 mm-thick
slices. Immunohistochemical staining was then performed
according to standard procedures (45). Primary antibodies for
TGF-b (1:200, Catalog#: ab27969, Abcam), cytokeratin 7 (1:200,
Catalog#: ET1609-62, HUABIO), CD39(1:200, Catalog#:
ab223842, Abcam), CD73 (1:200, Catalog#: ab175396, Abcam),
or NCAM (1:200, Catalog#: ET1702-43, HUABIO) was added
and incubated overnight. The antibodies were quantified with
3,3’-diaminobenzidine (DAB) staining (ZSGB Biotech, China).
ImageJ software was used to measure the average optical density
(AOD) of positive signal in each view field.

Cell Invasion Assay
Transwell™ inserts (8 µm) containing polycarbonate
membranes (Catalog#: 3428, Corning Incorporated, USA) were
coated with an 8× dilution of Matrigel (Catalog#: 356234,
Corning Incorporated, USA). HTR8/SVneo cells (5×104) were
seeded into the upper chamber with serum‐free culture medium
and the isolated dNK cells (1×105) were placed in the lower
chamber with culture medium supplemented with 10% FBS, and
Frontiers in Immunology | www.frontiersin.org 4
incubated for 24 hours. The cells were stained with crystal violet
and observed with light microscopy (EVOS FL Auto Imaging
System, Thermo Fisher Scientific, USA). The invasion rate was
measured with the ImageJ software.

Cell Proliferation Assay and Measurement
of Mitochondrial Membrane Potential
Approximately 5×103 HTR8/SVneo cells and 1×104 isolated
dNK cells were co-cultured in the central part of each well in a
96-well plate for 24 hours. Then, the suspended dNK cells were
discarded and fresh culture medium was added. After 24-hour
incubation, 10 mL of CCK-8 solution was added into each well,
and the plates were incubated for another 2 hours. A microplate
reader (Thermo Fisher Scientific, USA) was used to measure the
absorbance at 450 nm of each well.

Mitochondrial membrane potential (DYm) is an important
parameter of mitochondrial function (46, 47). Loss of DYm is a
sign of early apoptosis, and hence was also measured in dNK
cells using the cationic probe JC-1 (Catalog#: C2006, Beyotime
Biotechnology, China) according to the manufacturer’s
instructions. In short, the isolated dNK cells were cultured in
12-well plates (2×105 cells/well) for 12 hours. Then the cells were
collected and incubated with JC-1 staining solution (5 mg/ml) at
37°C for 20 min. The cells were then washed twice with JC-1
staining buffer, and the fluorescence intensities of the
mitochondrial JC-1 monomers (lex=514 nm, lem=529 nm)
and aggregates (lex=585 nm, lem=590 nm) were measured
with a fluorescence microscope (EVOS FL Auto Imaging System,
Thermo Fisher Scientific, USA) and a flow cytometer
(CytoFLEX, eBioscience, USA), respectively. The DYm were
calculated as the fluorescence ratio of red (i.e., aggregate) to
green (i.e., monomer) signals.

Statistical Analysis
Statistical analysis was carried out with GraphPad Prism (version
8, GraphPad Software, USA). Comparisons between two groups
were performed using unpaired two-tailed t tests, and those
among three or more groups were using one-way analysis
of variance (ANOVA). All data are presented as mean ± SEM;
P < 0.05 was considered statistically significant.
RESULTS

Lower Levels of CD39 and CD73 Were
Found in URSA Patients
To assess the expression of CD39 and CD73 in normal pregnancy
and URSA patients, we performed immunohistochemical staining
analysis. It was found that CD39 was present in the dNK cells that
also express CD56, and CD73 was present in trophoblast cells that
also expressCK7 (Figures 1A andS2).The intensity valuesofCD39
in thedecidua and those ofCD73 in the villi fromtheURSApatients
were both significantly lower than those from normal pregnancies
(Figure 1A). Since there are multiple types of immune cells in the
decidual tissue expressing CD39, we further used multicolor flow
cytometry to measure the proportions of CD39+ dNK cells in the
February 2022 | Volume 13 | Article 813218

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Zhu et al. CD39/CD73 Mediated Immune Tolerance
decidua of normal pregnancies and URSA patients. The
proportions of CD39+ dNK cells in URSA were significantly
lower than those of normal specimens (Figure 1B). Western blot
analysis also showed that the levels of CD73 in villous tissues of
URSA patients were significantly lower than those of normal
pregnancies (Figure 1C).
Impacts of CD39/CD73 on the
Extracellular Levels of ATP and Adenosine
We first isolated dNK cells from the decidual tissue of normal
pregnant women and URSA patients, and cultured them in vitro
for 24 hours. The concentrations of ATP and adenosine in the
media were determined using ELISA. The concentration of ATP
was found to be significantly higher, while that of adenosine was
significantly lower in the URSA medium, indicating a hampered
Frontiers in Immunology | www.frontiersin.org 5
metabolism from ATP to adenosine, which was catalyzed by
CD39 on dNK cells from the URSA patients (Figure 2A).

We then further analyzed whether the abovementioned
effects were related to CD39 of the dNK cells by adding the
CD39 inhibitor ARL67156 into the media of dNK cells from
normal pregnancies. Isolated dNK cells were cultured in the
absence or presence of the CD39 inhibitor for 24 hours. Results
showed the CD39 inhibitor increased the concentration of ATP
and decreased that of adenosine (Figure 2B).

Additionally, we investigated the CD39/CD73 regulation on
ATP and adenosine production at the maternal-fetal interface by
co-culturing dNK and HTR8/SVneo cells, with or without
ARL67156 and the CD73 inhibitor APCP. In this co-culture
system, both individual and combinational addition of
ARL67156 and APCP significantly attenuated adenosine
production and increased ATP concentration (Figure 2C).
A

B

C

FIGURE 1 | Expression of CD39 and CD73 in normal pregnancy and URSA patients. (A) Immunohistochemical staining of CD39 in decidual tissues and CD73 in
villous tissues in normal pregnancies (n=3) and URSA patients (n=3). (B) Percentages of CD39+ dNK cells in the decidual tissues of normal pregnant women (n=6)
and URSA patients (n=6). (C) Western blot analyses of CD73 in the villous tissue of normal pregnant women (n=3) and URSA patients (n=3). Results are shown as
mean ± SEM, *P < 0.05, ****P < 0.0001 by two-tailed t tests. AOD, average optical density.
February 2022 | Volume 13 | Article 813218
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Impacts of CD39/CD73 on the Apoptosis
and Mitochondrial Function of Activated
dNK Cells
We investigated the effect of CD39 on dNK cell apoptosis by
culturing the activated dNK cells with or without the CD39
inhibitor ARL67156 for 12 or 18 hours, followed by staining with
Annexin V and DAPI. The percentages of Annexin V+ DAPI+

dNK cells cultured with CD39 inhibitors were found to be lower
than those untreated (Figure 3). This indicates that CD39
promotes apoptosis of dNK cells. We further investigated the
Frontiers in Immunology | www.frontiersin.org 6
effect of CD39 on DYm of the dNK cells, the loss of which is an
indicator of dNK apoptosis. It was observed that the JC-1 red/
green ratio was higher in dNK cells treated with CD39 inhibitors,
suggesting reduced DYm caused by CD39.

Impacts of CD39/CD73 on Cytokine
Secretion by dNK Cells
We first evaluated whether the cytokine secretions of dNK cells
from normal pregnant women and those from URSA patients
were different. The dNK cells isolated from the decidual tissues
A

B

C

FIGURE 2 | Production of ATP and adenosine in dNK cells. (A) dNK cells were isolated from decidual tissues of normal pregnant women (n=4) and URSA patients
(n=4), and then cultured in a 24-well plate (2 × 105 cells/well) for 24 hours. The concentrations of ATP and adenosine in the media were measured using ELISA
(mean ± SEM, ****P < 0.0001, two-tailed t tests). (B) Freshly prepared dNK cells (n=10) were isolated from healthy decidua and incubated in the absence or
presence of CD39 inhibitor (ARL67156) in a 24-well plate (2 × 105 cells/well) for 24 hours. The concentrations of ATP and adenosine in the media were measured
using ELISA (mean ± SEM, **P < 0.01, ****P < 0.0001, two-tailed t tests). (C) dNK cells isolated from healthy decidua (n=4) were co-cultured with HTR-8/SVneo cells
(dNK cells:HTR-8/SVneo cells = 2:1) and incubated in the absence or presence of the CD39 inhibitor ARL67156 and/or the CD73 inhibitor APCP in a 24-well plate
(2 × 105 cells/well) for 24h. The concentrations of ATP and adenosine in the media were measured using ELISA (mean ± SEM, ns, statistically not significant, **P <
0.01, ***P < 0.001 compared with the untreated group, one-way ANOVA and post hoc tests).
February 2022 | Volume 13 | Article 813218
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A

B

C

D

FIGURE 3 | The effect of CD39/CD73 inhibiting on the apoptosis and mitochondrial membrane potential (DYm) of dNK cells. dNK cells were isolated from
healthy decidua of first-trimester pregnancies (n = 3), incubated in the absence or presence of the CD39 inhibitor ARL67156 for 12 hours (A) or 18 hours (B),
and then double stained with Annexin V and DAPI (mean ± SEM, ***P < 0.001, two-tailed t tests). (C) Microscope images taken from the JC-1 monomer fluorescence
channel (green) and aggregate fluorescence channel (red) of dNK cells (n=5) with and without incubation with ARL67156 for 12 h. The monomeric JC-1 form was excited
using a 525 nm laser, observed at an emission wavelengths of 514~529 nm, and is shown in green. The aggregate form was excited using a 566 nm laser, observed at
585~590 nm, and is shown in red. (D) Flow cytometry-based JC-1 assay as a measure of changes in mitochondrial membrane potential in dNK cells (n=5) induced by
the CD39 inhibitor. The upper left quadrant indicates the cells with more JC-1 as aggregates with red fluorescence (i.e., normal DYm), the lower right quadrant indicates
the cells with more JC-1 as monomers with green fluorescence (i.e. low DYm). (mean ± SEM, *P < 0.05 compared with the untreated group).
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of both donor groups were cultured for 24 hours, and then the
cytokine concentrations in the culture media were determined
using a multiplex cytokine assay. The dNK cells from URSA
patients secreted significantly higher amounts of GM-CSF, IL-1,
IL-5 and IL-10, with a trend of more IL-13, but lower levels of IL-
8 and IP-10, and a trend of less HGF, IFN-g, IL-6, IL-17 and IL-
27 than dNK cells from the normal group. There was no
difference in the secretion of IL-4 and TNF-a between the two
groups (Figure 4A).

Next, we isolated dNK cells from normal pregnancies, and
cultured them in the absence or presence of the CD39 inhibitors
ARL67156. The cytokines in the culture media were then
analyzed. The results showed that dNK cells cultured with the
CD39 inhibitor secreted significantly more IL-10, IL-4, GM-CSF,
galectin-1 and IL-13, with a trend of more IL-5 than the
untreated group. The secretion of TNF-a, HGF and IL-1,
however, was suppressed in cells treated with the CD39
inhibitor, and IL-6, IL-8, IL-17 and IL-27 displayed a trend of
decreased secretion. Little or no effect on the secretion of IP-10,
IL-8 and IFN-g was observed (Figure 4B).

Furthermore, we explored the influences of CD39 and CD73
on cytokine secretion in the co-culture system. Interestingly, co-
cultivation of dNK and HTR-8/SVneo cells in the presence of
only the CD39 inhibitor or both the CD39 and CD73 inhibitors
decreased the secretion of IL-6, IL-8 and IL-4, but the CD73
inhibitor alone did not significantly affect the secretion of these
cytokines. The secretion of GM-CSF and galectin-1 was
significantly reduced only in the presence of both the CD39
and CD73 inhibitors. There was no significant difference in the
secretion of TNF-a, IL-10, IP-10, HGF, IL-5, IL-13, IL-17, IFN-g,
IL-1 or IL-27 when the co-culture system was treated with either
the CD39 or CD73 inhibitor (Figure 4C).

Impacts of CD39/CD73 on the Cytotoxicity
of Activated dNK Cells
We then investigated the effect of CD39 on the expression of
dNK cell receptors. The expression of NKG2D, NKp30 and
NKp44 on dNK cells isolated from normal pregnancies in the
presence or absence of CD39 inhibitor for 24 hours was
measured with flow cytometry. Increased expression of
NKG2D, NKp30 and NKp44 in the dNK cells treated with the
CD39 inhibitor was observed (Figures 5A–C).

Furthermore, flow cytometry was used to evaluate the
CD107a (lysosomal associated membrane protein-1, LAMP-1)
expression that reflects the cytotoxic degranulation ability of the
dNK cells. The percentage of the activated dNK cells expressing
CD107a was as low as 6.60% in the absence of other cells.
However, after adding the NK-sensitive K562 cells, this
percentage increased significantly to 15.1%. The percentage of
CD107a+ dNK cells further increased to 28.7% when the CD39
inhibitor was added (Figures 5D, E), which indicated that CD39
reduces degranulation of the dNK cells.

Additionally, the expressions of CD107a on dNK cells co-
cultured with the HTR-8/SVneo cells, in the presence or absence
of the CD39 and/or CD73 inhibitor was investigated.
Interestingly, the percentage of CD107a+ dNK cells decreased
Frontiers in Immunology | www.frontiersin.org 8
significantly to 2.83% when co-cultured with the HTR-8/SVneo
cells, a result opposite to co-cultivation with the K562 cells.
However, the percentage of dNK cells expressing CD107a in the
co-culture system increased to approximately 5% in the presence
A

B

C

FIGURE 4 | The effect of CD39/CD73 inhibiting on the cytokine secretion of dNK
cells. (A) dNK cells were isolated from decidual tissues of normal pregnant women
(n=4) and URSA patients (n=4), and cultured in a 24-well plate (2 × 105 cells/well)
for 24 hours. The cytokine concentrations in the media were determined using
Luminex assay (mean ± SEM, ns, statistically not significant, *P < 0.05, ***P <
0.001, two-tailed t tests). (B) Cytokine concentrations in the media of dNK cells
(n=5) cultured in the absence or presence of the CD39 inhibitor ARL67156 in 24-
well plates for 24 hours (mean ± SEM, ns, statistically not significant, *P < 0.05,
**P < 0.01, two-tailed t tests). (C) Cytokine concentrations in the media at 24 hours
of co-culture of dNK and HTR-8/SVneo cells (n=3) (mean ± SEM, ns, statistically
not significant, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 compared with
the untreated group, one-way ANOVA and post hoc tests).
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FIGURE 5 | The cytotoxicity of dNK cells was regulated by CD39/CD73 enzyme activity. (A–C) Freshly isolated dNK cells from healthy donors were incubated in the
absence or presence of the CD39 inhibitor ARL67156 for 24 hours, and then stained for the surface expression of the cytotoxicity markers NKG2D (A), NKp30 (B)
and NKp44 (C). All experiments were performed in triplicate (mean ± SEM, *P < 0.05, **P < 0.01 by two-tailed t tests). (D, E) Effects of CD39 on the degranulation
of activated dNK cells from healthy donors. To quantify degranulation, the surface expression of CD107a was measured after activation of isolated dNK cells were
incubated with or without (W/O) the NK-susceptible target cell line (K562 cells) in the absence or presence of the CD39 inhibitor ARL67156 for 24 hours (mean ±
SEM, **P < 0.01 compared with the untreated group, one-way ANOVA and post hoc tests). (F, G) dNK cells isolated from healthy donors co-cultured with HTR-8/
SVneo cells (dNK : HTR-8/SVneo cells = 2:1) in the absence or presence of the CD39 inhibitor ARL67156 and/or CD73 inhibitor APCP for 24 hours. The percentage
of dNK cells expressing CD107a was used as the indicator of degranulation (mean ± SEM, *P < 0.05, **P < 0.01, one-way ANOVA and post hoc tests).
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of the CD39 or CD73 inhibitor, and returned to the original
value of about 6% when both CD39 and CD73 inhibitors were
added (Figures 5F, G). These results indicated that HTR-8/
SVneo cells suppress the degranulation of dNK cells, and this
suppression is associated with CD39 and CD73.

Impacts of CD39/CD73 on the Invasion
and Proliferation of HTR8/SVneo Cells
To evaluate changes in the invasion and proliferation abilities of the
HTR8/SVneo cells, isolated dNK cells from normal pregnancies
were co-cultured with HTR8/SVneo cells in the absence or
presence of the CD39 inhibitor for 24 hours, and the matrigel
transwell assay and CCK-8 assay were performed, respectively. It
was found that the invasion of the HTR8/SVneo cells in the groups
with CD39 or/and CD73 inhibitor was significantly less than that
of the untreated group (Figures 6A, B). Compared with the
untreated group, cell proliferation rates also fell in the CD39 or
CD73 inhibitor groups, and the decrease was even more in the
group exposed to both inhibitors (Figure 6C).

TGF-b Induces the Expression of CD73 on
HTR-8/SVneo Cells via the mTOR-HIF-1a
Pathway
We then explored the potential mechanism for the CD73
downregulation in URSA. Compared with the samples from
Frontiers in Immunology | www.frontiersin.org 10
normal pregnancies, the level of TGF-b in the decidual and
villous tissues was significantly lower in the URSA pregnancies,
as revealed by immunohistochemical staining (Figure 7A).
Western blots showed the same result - the level of TGF-b in
the villous tissue of URSA patients was significantly lower than
that in tissues from normal pregnancies (Figure 7B).

To study whether and how TGF-b induces the expression of
CD73 on the HTR-8/SVneo cells, we measured the levels
of pmTOR (Figures 7C, D), the rapid phosphorylation
products of downstream mTOR effectors pSmad2 and pSmad3
(Figures 7E, F), as well as CD73 (Figures 7K–N) in the HTR-8/
SVneo cells after rhTGF-b treatment, and found increased
expression of all the receptors and effectors. Moreover, these
increases could be diminished by the addition of Smad2/3
inhibitor S525334, suggesting a TGF-b-mTOR signaling
pathway in the HTR-8/SVneo cells.

We further analyzed the activation of HIF-1a, since it has
been shown that CD73 is a direct target of HIF-1a (48). The
hypoxia mimetic CoCl2 was used to increase the level of HIF-1a
in the HTR-8/SVneo cells (Figure 7G). TGF-b enhanced HIF-1a
expression in the HTR-8/SVneo cells in the presence of CoCl2
(Figures 7H, I). However, this TGF-b-induced HIF-1a
expression was reduced by the addition of rapamycin. In
addition, CoCl2 treatment enhanced the CD73 expression,
which was abrogated by the HIF-1a inhibitor MeoE2
February 2022 | Volume 13 | Article 813218
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FIGURE 6 | The change of invasion and proliferation of HTR8/SVneo cells after inhibiting CD39 and CD73. Representative photos (A) and data (B) for the matrigel
transwell assay of normal dNK cells from healthy donors co-cultured with the HTR-8/SVneo cells (dNK: HTR-8/SVneo cells = 2:1) in the absence or presence of the
CD39 inhibitor ARL67156 and/or the CD73 inhibitor APCP. n = 3 for each group (mean ± SEM, **P < 0.01 compared with the untreated group, one-way ANOVA
and post hoc tests). (C) The OD values of the HTR-8/SVneo cells in the CCK-8 assay, showing their proliferation capacities (mean ± SEM, *P < 0.05, **P < 0.01
compared with the untreated group, one-way ANOVA and post hoc tests).
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FIGURE 7 | TGF-b induces the expression of CD73 on HTR-8/SVneo cells via mTOR-HIF-1a. (A) Immunohistochemical staining and villous tissues from normal and
URSA pregnancies. Results are shown as mean ± SEM, n = 3 (*P < 0.05, **P < 0.01, two-tailed t tests). (B) Western blot analysis of TGF-b in the villous tissues from
normal and URSA pregnancies. Results are shown as mean ± SEM, n = 3 (**P < 0.01, two-tailed t tests). (C, D) Western blot analysis of mTOR and pmTOR in HTR-
8/SVneo cells cultured with or without rhTGF-b (10 ng/mL) and the Smad2/3 inhibitor S525334. (E, F) Western blot analysis of Smad2/3 and pSmad2 and pSmad3
in HTR-8/SVneo cells cultured with or without rhTGF-b (10 ng/mL) and the Smad2/3 inhibitor S525334. (G) Relative mRNA levels of HIF-1a in the HTR-8/SVneo
cells cultured with or without CoCl2 (100 mM). (H, I) HTR-8/SVneo cells were treated with or without rapamycin (10 nM) for 1 hour, and then stimulated with rhTGF-b
(10 ng/mL) (or vehicle) and CoCl2 (100 mM) for 12 hours. The whole cell lysate was analyzed for HIF-1a by Western blot. (J) HTR-8/SVneo cells were cultured with
or without CoCl2 (100 mM) and the HIF-1a inhibitor MeoE2 (10 mM) for 24 hours. Relative mRNA levels of CD73 were measured by RT-PCR. (K, L) HTR-8/SVneo
cells were treated with the mTOR inhibitor rapamycin (10 nM) for 1 hour and then with rhTGF-b (10 ng/mL) or vehicle for 24 hours. The whole cell lysate was
analyzed for CD73 by Western blot. (M, N) The percentages of CD73+ HTR-8/SVneo cells from the abovementioned experiment were further analyzed with flow
cytometry. Means of three different experiments ± SEM are shown (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, two-tailed t tests or one-way ANOVA and
post hoc tests).
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(Figure 7J). When the mTOR pathway in the HTR-8/SVneo cells
was suppressed by rapamycin, the TGF-b-mediated expression
of CD73 also decreased (Figures 7K, L). This observation was
confirmed with flow cytometry analyses (Figures 7M, N). Thus,
our data indicated that TGF-b may induce CD73 expression in
the HTR-8/SVneo cells via the mTOR-HIF-1a pathway.
DISCUSSION

In this study, we found marked decrease levels of CD39 and
CD73 in the tissue from URSA patients compared with that from
normal pregnancies. The decreases in CD39 and CD73 resulted
in increased toxicity, decreased apoptosis, altered cytokine
secretion of the dNK cells, as well as impaired invasion and
proliferation of the co-cultured HTR8/SVneo cells, and may be
caused by downregulated TGF-b-mTOR-HIF-1a pathway. To
the best of our knowledge, this is the first study on CD39/CD73
at the maternal-fetal interface in URSA (Figure 8).

Three subgroups of dNK cells have been described, namely
dNK1, dNK2 and dNK3 cells. All the three subgroups express
CD49 and CD9. However, dNK1 cells also express CD39,
CYP26A1 and B4GALNT1, dNK2 cells express ANXA1 and
ITGB2, and dNK3 cells express CD160, KLRB1 and CD103,
respectively. Studies have found that dNK1 cells contain more
cytoplasmic granules than dNK2 and dNK3 cells. Also, dNK1
cells are more active in glycolytic metabolism and KIR gene
expression, and produce higher levels of LILRB1 and cytoplasmic
granule protein. This suggests a more critical crosstalk between
the dNK1 and EVT cells (8). It could be speculated that CD39 on
the surface of dNK1 may play a key role in communicating
with EVT.
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Both extracellular ATP and adenosine can induce apoptosis.
ATP possibly induces apoptosis via activation of P2X7R (49, 50),
while adenosine triggers apoptosis via A2A receptors. The
potency of ATP and adenosine in induction of apoptosis may
be different for different cells, depending on the receptors on the
cell surfaces (51). For example, Wang, et al. found extracellular
adenosine induces apoptosis of HGC-27 cells more strongly than
ATP (52). In our study, A2A is present on dNK cells and hence
the apoptosis may be triggered by adenosine rather than ATP.
Extracellular cAMP may also be hydrolyzed to adenosine (53).
However, no significant difference between cAMP concentration
was observed between the groups (Figure S3), and hence the
cAMP-adenosine pathway may not be involved in URSA.
Therefore, it is likely that CD39 increases the level of
intracellular adenosine and acts on A2A receptors, resulting in
the increase of mitochondrial membrane potential and apoptosis
of dNK cells.

The cytokine analyses showed that the dNK cells from URSA
patients, which had lower levels of CD39, secreted higher levels
of IL-10 than dNK cells from normal pregnancies. Samudra et al.
have also shown that the production of IL-10 leads to
miscarriage, which may be inhibited by CD39 (54). When
CD39 was inhibited, dNK cells increased the production of IL-
10 in vitro, suggesting a phenotypic shift to activated dNK cells
(55). IL-10 is known as an anti-inflammatory cytokine and, in
the majority of studies, CD39 is positively associated with IL-10
excretion (i.e. CD39 blockage reduces IL-10 levels). However,
our study and the study by Samudra et al. (54) showed the
opposite phenomenon, namely a negative association between
CD39 and IL-10. This may be because that both studies
investigated miscarriage associated with the maternal-fetal
interface. Considering that NK cell-derived IL-10 is critical in
February 2022 | Volume 13 | Article 813218
FIGURE 8 | Regulation of dNK cells and EVT cells by CD39 and CD73. CD39 and CD73 hydrolyze ATP to adenosine changed dNK cells cytotoxicity, apoptosis,
cytokine production, and impaired invasion of EVT cells. TGF-b induces the expression of CD73 on the EVT cells via mTOR-HIF-1a pathway.
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the DC-NK cell crosstalk (56), and that dNK cells exhibit lower
cytotoxicity but higher secretion potential, it is possible that the
regulatory mechanism for IL-10 secretion in dNK cells at the
maternal-fetal interface is different from other cells, although this
hypothesis requires further investigation. In vitro and in vivo
studies have both shown that IL-8 and IP-10 regulate trophoblast
invasion (57). We found the secretion of IL-8 was significantly
reduced after inhibiting CD39 in the co-culture system, but the
secretion of IP-10 was not affected by either CD39 or CD73
inhibition, suggesting the regulation of IP-10 may not rely on
CD39 or CD73. The secretion of IFN-g by dNK cells transforms
spiral arteries from arterioles that are constricted, muscular, and
vasoactive to vein-like structures with dilated thin-walls (58), but
our data showed that CD39 has no regulatory effect on IFN-g
secretion by dNK cells. HGF promotes the trophoblast cells
incorporation into the walls of endothelial tubes, indicating a role
in the differentiation of trophoblast intravascular and the
remodeling of vascular during pregnancy. HGF derived from
dNK cells is likely to act as a paracrine factor of the decidua,
guiding the differentiation of trophoblast cells along the invasion
pathway (59). As expected, inhibition of CD39 reduced HGF
secretion. In addition, our data showed that CD39 inhibitors
reduced the invasion and proliferation of the HTR-8/SVneo cells
(Figure 6). Taken together, the cytokine data suggest that CD39+

dNK may promote the production of IL-8 and HGF to support
the continuous invasion of EVT and the transformation of
uterine spiral arteries.

Generally, dNK cells display lower cytotoxicity and higher
cytokine secretion than pNK cells, which prevents immune attack
of the fetal cells (7). Previous studies have shown that NKP30,
NKP44 andNKG2Dcan increase the cytotoxicity of circulatingNK
cells via binding to related ligands (60, 61). Our results showed
reduced expression ofNKP30,NKP44 andNKG2D inCD39+ dNK
cells. It was likely that the loss of CD39 may transform dNK cells
into a highly toxic state by promoting the expression of cytotoxicity
receptors. In the co-cultivation experiments, the combined effects of
CD39 and CD73 inhibited the cytotoxicity of dNK cells.
Interestingly, HTR8/SVneo cells also showed the ability to
suppress dNK cytotoxicity in vitro. Studies have shown that
exogenous TGF-b can stimulate the expression of CD39 and
CD73 in T cells and dendritic cells (62, 63). In this study, we
found the villous tissues of URSA patients displayed lower level of
TGF-b compared with the normal pregnancies. In the subsequent
in vitro experiments, we found that TGF-b stimulated the CD73
expression in the HTR-8/SVneo cells. After adding exogenous
TGF-b into the culture system, pSmad2, pSmad3 and pmTOR
signals increased simultaneously in the HTR-8/SVneo cells. This
observation indicated a link between Smad signaling and mTOR
activation in the HTR-8/SVneo cells. We also found that the
Smad2/3 inhibitor SB525334 inhibited TGF-b-induced
phosphorylation of mTOR, which suggested that this
phosphorylation was Smad2/3-dependent. In addition, we proved
that the activation of HIF-1a induced by exogenous TGF-b is
mTOR-dependent, and is essential for the induction ofCD73under
normoxic conditions. On the contrary, mTOR activity is not
required in hypoxia-induced HIF-1a activation. These results
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indicate that the TGF-b-mTOR-HIF-1a pathway has important
significance in regulating immune tolerance viaCD73. In addition,
we found that the decidual tissue of URSA patients showed lower
level of TGF-b, so it was possible that TGF-b may regulate the
expression of CD39 in dNK cells in the same way.

Some limitations exist in this study. Firstly, although we
found extracellular adenosine activated the dNK cells, which
receptor the adenosine activated was uncertain. Among the four
types of purinergic receptors (A1, A2A, A2B and A3), A2A is the
one highly expressed on lymphocytes, and the immune
regulation of NK cells by adenosine via the purinergic receptor
A2A has been extensively reported (24, 64–66). In addition,
activation of A2B receptors requires a high concentration of
adenosine, which is not common in physiological conditions
(67). The cAMP/protein kinase A (PKA)/cAMP response
element binding protein (CREB) signaling pathway is
positively regulated by adenosine acting on A2A receptor (53,
68–70). We believe the effects of adenosine on the dNK cells were
also A2A-dependent. It was possible that CD39 increases the
level of intracellular cAMP by increasing the level of extracellular
adenosine and acting on A2A receptor, resulting in the
subsequent effects of dNK cells. Secondly, although we
observed reduced level of TGF- b in URSA, neither the source
or the cause was revealed. The decidual tissue is rich in TGF-b
(71), which may be excreted by many cell types including
decidual stromal cells (72), NK cells (41, 73), and trophoblasts
(74). This study focused on the regulatory pathway from TGF-b
to adenosine, and hence the upstream and downstream
mechanism may be investigated in future studies. Thirdly, only
limited quantities of decidual tissue was obtained due to practical
reasons, hence limiting the numbers of replicates for certain
analyses. Fourthly, although HTR8/SVneo cells are often used as
substitutes for EVT, they cannot fully represent EVTs under
physiological conditions. Lastly, animal studies were not
conducted in this study due to lack of an ideal model, although
the clinical samples and the isolated dNK cells co-cultured with
HTR8/SVneo cells provided sufficient evidence to support the
major findings of this study.

The pathway found in this study may be an important
immunoregulatory mechanism that causes URSA, and provides
a potential new therapeutic target for the prevention of URSA.
However, the cause for the downregulated TGF-b in URSA and
the detailed signaling pathways within dNK cells in response to
extracellular adenosine require future exploration.
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