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Immune system plays important roles in the pathogenesis of Parkinson’s disease (PD).
However, the role of B cells in this complex disease are still not fully understood. B cells
produce antibodies but can also regulate immune responses. In order to decode the
relative contribution of peripheral B cell subtypes to the etiology of PD, we performed
single cell RNA and BCR sequencing for 10,466 B cells from 8 PD patients and 6 age-
matched healthy controls. We observed significant increased memory B cells and
significant decreased naïve B cells in PD patients compared to healthy controls.
Notably, we also discovered increased IgG and IgA isotypes and more frequent class
switch recombination events in PD patients. Moreover, we identified preferential V and J
gene segments of B cell receptors in PD patients as the evidence of convergent selection
in PD. Finally, we found a marked clonal expanded memory B cell population in PD
patients, up-regulating both MHC II genes (HLA-DRB5, HLA-DQA2 and HLA-DPB1) and
transcription factor activator protein 1 (AP-1), suggesting that the antigen presentation
capacity of B cells was enhanced and B cells were activated in PD patients. Overall, this
study conducted a comprehensive analysis of peripheral B cell characteristics of PD
patients, which provided novel insights into the humoral immune response in the
pathogenesis of PD.

Keywords: Parkinson’s disease, B cells, scRNA-seq, scBCR-seq, adaptive immune response
INTRODUCTION

Parkinson’s disease (PD) is a progressive central nervous system disorder that affects the movement
(1). The main motor symptoms are rigidity, tremor, slow movement, and difficulty in walking (1).
Mental and behavioral changes may also accompanied with sleep problems, depression, memory
difficulties, and fatigue (1). It is estimated that 1% of people over the age of 60 suffer from PD (2, 3).
About 5 to 10 percent of patients are diagnosed before the age of 50 (4, 5). Overall, about 10 million
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people around the world currently suffer from PD (6), and up to
80 percent of PD patients will eventually develop dementia (7).

The pathological hallmarks of PD are a-synuclein
aggregation and Lewy body formation, resulting in the gradual
loss of dopaminergic neurons in the substantia nigra (8).
Increasing studies have shown that immune system
dysfunction plays a critical role in PD pathophysiology (9).
Specific variants in the HLA region are associated with PD (10,
11), and a-synuclein specific T cells were found to be involved in
the pathogenesis of PD (12, 13). The levels of activated T cells are
increased both in the blood and cerebrospinal fluid (CSF) of PD
patients (14, 15), and T cells can also be detected in the
midbrains of PD patients (16). The potential role of B cells in
PD is also emerging (17). Chronic and acute MPTP
administration alleviated DA neuronal loss and behavioral
disorders in RAG2 knockout mice lacking both T and B cells
(16, 18). IgG deposits on dopaminergic neurons has been
observed in PD patients, and Lewy bodies were also coated
with IgG, indicating that dopaminergic neurons might be the
targets of these immunoglobulins (19). In addition, elevated
levels of anti-a-synuclein antibodies can also be detected in the
blood and cerebrospinal fluid of PD patients (20, 21). MPTP-
treated mice produced natural and nitrated a-synuclein
antibodies (22). IgG obtained from PD patients caused
selective dopaminergic neuron loss (23). Although these
evidences indicate that humoral immunity plays a potential
role in PD, the relative contribution of peripheral B cell
subtypes to the etiology of PD is still unclear.

B cells produce antibodies but can also regulate immune
responses. Since infiltrating B cells have not been detected in the
brains of PD patients (16), B cells may participate in central
inflammation through their activities in the periphery. In this
study, we conducted single-cell RNA and BCR sequencing
to systematically characterize the cellular composition,
immunoglobulin isotypes, preferential V and J gene segments
and clonal expansion of peripheral B lymphocytes in PD
patients. This large-scale single-cell expression and immune
profiling data of B cells can be used as valuable resources to
study the basic humoral immune response in the disease
pathogenesis and potentially guide the effective diagnosis and
immunotherapy strategies for PD.
RESULTS

Single-Cell RNA and BCR Profiling of B
Cells in Parkinson’s Disease
We comprehensively analyzed the single-cell RNA and BCR
profiling of B cells in the blood of patients with PD and healthy
controls (Figure 1A). Detailed information of PD patients was
described in Supplementary Table S1. Peripheral blood
mononuclear cells (PBMCs) were isolated from fresh blood of
8 PD patients and 6 healthy controls. CD19+ B lymphocytes
were sorted by flow cytometry, and single-cell 5’ gene-expression
libraries and V(D)J enriched libraries were prepared using a
10x Genomics single-cell immune profiling workflow.
Frontiers in Immunology | www.frontiersin.org 2
After removing low-quality cells, we finally obtained single-cell
expression data for 10,466 B cells, comprising 6,681 cells (mean:
835 cells) for PD patients and 3,785 cells (mean: 631 cells) for
healthy controls (Supplementary Table S1). In addition, we
obtained 13,957 single-cell paired BCRs, comprising 8,704 BCRs
(mean: 1088 BCRs) from PD patients and 5,253 BCRs (mean:
876 BCRs) from healthy controls (Supplementary Table S1).
10,206 B cells have paired gene expression and BCR profiles
(Supplementary Table S1).

Altered B Cell Composition and
Transcriptome in Parkinson’s Disease
In order to reveal the internal cellular composition and functional
status of peripheral blood B cells, different B cell populations were
identified using an unsupervised clustering approach embedded in
Seurat (24, 25). B cells were visualized in t-distributed stochastic
neighbor embedding (t-SNE) based on the gene expression
profiling. In total, we identified 9 distinct clusters representing
different B cell subtypes (Figure 1B). B cells were annotated by
manually checking the cell-identity marker expression and their
global similarity with the gene expression of reference datasets (26–
30) by SingleR (31). Spearman correlation between single cell and
bulk RNA-seq expression profiles were computed, and the cell labels
were transferred from bulk RNA-seq datasets to every single cell.
Each dataset was used separately to calculate the correlation. In
most cases, a cluster was annotated by the labels of majority of cells
from that cluster (Supplementary Figure S1). We identified the
major cell types of B cells, including: naïve B cells (IgD+CD27-)
(Naïve1, Naïve2, Naïve3, Naïve4 clusters), unswitched memory B
cells (IgD+CD27+) (USM1, USM2 clusters), switched memory
B cells (IgD-CD27+) (SM1, SM2 clusters) and plasmablast/plasma
cells (IgD-CD27hi) (PC cluster) (Figures 1B, C). For unswitched
memory B cells, compared to USM1 subset, USM2 overexpressed
several marker genes related to B cell activation, proliferation, and
differentiation, such as FCRL5 (32), EGR1 (33) and CD86 (34)
(Supplementary Figure S2A). For switched memory B cells, SM1
and SM2 had distinct gene expression patterns (Supplementary
Figure S2B). SM1 overexpressed CD24, which induces apoptosis in
human B cells through interactions with glycolipid-enriched
membrane domains (35), while SM2 highly expressed CD99, an
activation-associated molecule that is upregulated in recently
activated lymphocytes (36) (Supplementary Figure S2B). Overall,
the USM2 and SM2 subsets of memory cells appear to be activated
B cell populations, and we will focus on their composition and
functional status in patients with Parkinson’s disease. To further
understand the relationships among B cell subsets, we used
Monocle (37) to perform pseudo-time ordering for these cells and
visualize them on the first two principal components (Figure 1D).
A process of transformation from naïve B cells to unswitched and
switchedmemory B cells followed by plasma cells is clearly observed
(Figure 1D). And this lineage directionality was further confirmed
by RNA velocities (Figure 1D).

In order to understand the composition of B cell populations
in PD patients, we compared the percentage of B cell subsets in
PD patients and healthy controls. B cells exhibit a specific
composition in PD patients (Figure 1E). We observed
February 2022 | Volume 13 | Article 814239
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significant increase of unswitched memory B cells (Wilcox test,
two-sided, p = 0.0027) and significant decrease of naïve B cells
(Wilcox test, two-sided, p = 0.0047) in PD patients compared to
healthy controls (Figure 1F). In PD patients, naïve B cells
accounted for 39% of the total B cells, while in healthy
controls, this proportion rose to 64% (Figure 1G). While,
unswitched memory and switched memory B cells accounted
for 60.1% of total B cells in PD patients, which was nearly twice
of that in healthy controls (Figure 1G).

Immunoglobulin Isotypes and Class-
Switching Events of BCRs in PD Patients
To explore B cell immunoglobulin (Ig) repertoire, we
investigated Ig heavy-chain isotypes for PD patients and
healthy controls. Four main types of Ig were detected from
scBCR-seq data, including IgD, IgM, IgA and IgG. IgM had
the largest proportion in naïve B cells and unswitched memory B
cells, while IgG and IgA were mainly distributed in switched
memory B cells and plasma cells (Figure 2A). In PD patients,
Frontiers in Immunology | www.frontiersin.org 3
IgM accounted for 57% of the total BCR isotypes, while in
healthy controls, this proportion rose to 67% (Figure 2B). In
addition, IgG accounted for 22% of total BCR isotypes in PD
patients, which was 1.8 folds of that in healthy controls
(Figure 2B). The ratios of IgG to IgM/D and IgA to IgM/D in
PD patients were almost twice of those in healthy controls
(Figure 2C). Chi-squared test further confirmed the significant
association between disease and different BCR isotypes
(Pearson’s chi-squared test, X-squared = 244.06, df = 8,
simulated p < 2.2E-16, Figure 2D). The isotypes IgG1 and
IgG3 were significantly associated with PD patients, while IgM
and IgD was significantly associated with healthy controls
(Figure 2D). Since antibodies that undergo Ig class switch
recombination (CSR) and somatic hypermutation (SHM) have
higher affinity and longer-lasting protection (38), we assigned
BCRs to clonotypes and performed comparison analysis of CSR
events in each clonotype between PD patients and healthy
controls. Clonotypes were defined by clustering Ig sequences
using the DefineClones function in Change-O toolkit (39). We
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FIGURE 1 | Landscape of Peripheral blood B cells in Parkinson’s disease revealed by single-cell transcriptome sequencing. (A) Overview of experimental design.
CD19+ B cells were sorted by FACS and then subjected to single-cell RNA and V(D)J sequencing. (B) tSNE projection of 10,466 single B cells, showing 9 distinct
clusters. (C) Heatmap shows the average logCPM of classical marker genes for all 9 cell clusters. (D) The velocities are visualized on the first two principal
components calculated by monocle. (E) Bar chart shows the percentages of four major types of B cell in each sample. (F) Bar plot shows the average percentages
of four major B cell types in PD patients and healthy controls. Error bars represent the standard deviation. (G) Pie charts show the percentage composition of B cells
in PD patients and healthy controls.
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observed more CSR events in PD patients, especially IgM to IgG
and IgA to IgG (Figure 2E). These changes suggest an activated
humoral immune response in the peripheral blood of
PD patients.

Preferential V and J Gene Segments of
BCRs in PD Patients
In order to search for the evidence of convergent antibody
evolution in PD, we compared the preferential gene segment
usage in V(D)J rearrangements between PD patients and healthy
controls. B cells undergo V(D)J recombination of variable (V)
and joining (J) gene segments in the light (L) chain (k and l),
and of variable (V), diversity (D), and joining (J) gene segments
in the heavy (H) chain in order to generate diverse repertoires of
B cell receptors capable of recognizing a wide range of pathogen
epitopes (40).

For VH gene segments, the frequencies of 18 VH gene
segments were significantly different between PD patients and
healthy controls, of which, 7 VH gene segments (IGHV2-5,
IGHV1-3, IGHV4-61, etc.) increased in PD patients, while 11
Frontiers in Immunology | www.frontiersin.org 4
VH gene segments (IGHV4-59, IGHV3-34, IGHV1-18, etc.)
increased in healthy controls (Figure 3A). For VL gene
segments, 10 VL gene segments were significantly different
between PD patients and healthy controls, of which 5 VL gene
segments (IGLV3-1, IGKV6-21, IGLV2-8, etc.) increased in PD
patients and 5 VL gene segments (IGLV1-51, IGLV1-44, etc.)
increased in healthy controls (Figure 3B). For JH gene segments,
only IGHJ3 was significantly increased in PD patients
(Figure 3C). For JL gene segments, IGKJ2 and IGLJ3 were
significantly increased in PD patients, while IGLJ2 and IGKJ3
were significantly increased in healthy controls (Figure 3D).

Then, we further compared the VJ pairing of heavy and light
chains separately. For heavy chain, 6 VJH pairs (IGHV6-1/
IGHJ6, IGHV4-34/IGHJ3, etc.) were significantly increased in
PD patients, while 9 VJH pairs (IGHV1-18/IGHJ5, IGHV3-11/
IGHJ3, etc.) were significantly increased in healthy controls
(Figures 3E, G). For light chain, 3 VJL pairs (IGLV2-11/IGLJ3,
IGKV3D-15/IGKJ4 and IGKV3D-20/IGKJ1) were significantly
increased in PD patients, while 6 VJL pairs (IGKV1D-13/IGKJ2,
IGKV3-15/IGKJ5, etc.) were significantly increased in healthy
A
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FIGURE 2 | Immunoglobulin isotypes and class-switching events of BCRs in PD patients and healthy controls. (A) Immunoglobulin isotype distribution in each B cell
subsets. (B) Pie chart shows the percentage composition of Ig isotypes in PD patients and healthy controls. (C) The ratio of IgG to IgM/D and IgA to IgM/D between
PD patients and healthy controls. (D) Bubble chart shows the Pearson’s residuals of sample groups from Ig isotypes. Red circles indicate an over-representation,
and blue circles indicate an under-representation. (E) Class-switching events in PD patients and healthy controls. The thickness of the line indicates the number of
sharing clonotypes between two Ig isotypes.
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controls (Figures 3F, G). Of all the heavy-light VJ pairs, 20
heavy-light VJ pairs were significantly different between PD
patients and healthy controls, of which 7 heavy-light VJ pairs
increased in PD patients, others decreased (Figure 3H).

A Marked Clonal Expansion of Memory B
Cells in PD Patients
In order to better understand the activated B cell types in PD, we
conducted a comparison analysis of the B cell clonal expansion
between PD patients and healthy controls. In total, we detected
13,957 BCRs, forming 12,938 unique clonotypes, of which 357
clonotypes detected in at least two cells, indicating clonal
expansion of peripheral blood B cells. 7.2% (5.4% + 1.8%) of B
Frontiers in Immunology | www.frontiersin.org 5
cells were clonally expanded in PD patients, which was higher
than 5.2% (3.8% + 1.4%) in healthy controls (Figure 4A). The
UMAP plot shows that clonal expansion mainly occurs in
memory B cells, especially the unswitched memory B cell
cluster USM2 (Figure 4B). Fisher’s exact test further
confirmed the significance of the clonal expansion of
unswitched memory B cell cluster USM2 (Fisher’s exact test,
two-sided, FDR = 1.29E-12) (Figures 4B, C). In PD patients, B
cell cluster USM2 tend to have much larger clonotypes with 416
clonotypes detected from 626 B cells (an average of 1.5 B cells per
clonotype), while in healthy controls the average clone size was 1
(106 clonotypes out of 109 B cells) (Figure 4D). Antibodies
produced by unswitched and switched memory B cells from the
A B
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G H

C

FIGURE 3 | Preferential variable (V) and joining (J) gene segments in the heavy and light chain of BCRs in PD patients. (A) Differential usage (Fisher’s exact test) of
VH gene segments between PD patients and healthy controls. (B) Similar to A, differential usage of VL gene segments. (C) Similar to A, differential usage of JH gene
segments. (D) Similar to A, differential usage of JL gene segments. (E) Volcano plot shows the significant different frequency of heavy chain VJ pairs of PD patients
compared to healthy controls. (F) Similar to E, volcano plot shows the significant different frequency of light chain VJ pairs. (G) Circos plots show the differential
heavy (left) and light (right) VJ pairs in PD patients and healthy controls. Red links represent PD specific VJ pairs, and blue links represent healthy control specific VJ
pairs. (H) Sankey diagram shows significant different frequency of heavy-light VJ pairs in PD patients and healthy controls. Red links represent PD specific pairs, and
blue links represent healthy control specific pairs.
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same clonotypes retain affinity for the same antigens (41). Since
antibody class switching diversifies the effector properties of
antibodies (41), clonal expansion of memory B cells (especially
unswitched memory B cells) in PD patients may be a strategy to
cope with the increasing central nervous system inflammation.

To investigate the function of B cell populations in PD, we
conducted differentially expressed analysis for each B cell cluster
between PD patients and healthy controls (Supplementary Table
S2). Gene Ontology and KEGG pathway enrichment analyses of
the differentially expressed genes (DEGs) were performed
(Supplementary Table S2). DEGs enriched in B cell receptor
signaling pathway (hsa04662), antigen processing and
Frontiers in Immunology | www.frontiersin.org 6
presentation (hsa04612) and cell adhesion molecules (hsa04514)
were selected to further view their expression profiles in each
cluster (Figure 4E). We observed that MHC II genes (HLA-DRB5,
HLA-DQA2 and HLA-DPB1) were significantly overexpressed in
B cells of PD patients, especially in memory B cells and plasma
cells, indicating their antigen presentation function were enhanced
in PD patients (Figure 4E). It is generally believed that B cells as
APCs are less effective than dendritic cells and other myeloid cells,
but when the antigen recognized by BCR is presented to T cells
that recognize the same antigen, the antigen presentation
efficiency of memory B cells increases (42–44). In addition,
memory B cells and plasma cells in PD patients also up-
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FIGURE 4 | Clone expansion of B cells in Parkinson’s disease. (A) Pie charts show the distribution of clonotypes grouped by clone size (NA, = 1, = 2, >2, NA
represents cells with no BCR sequence detected). (B) tSNE plot shows the distribution of clonally expanded B cells. (C) Bar plots show the distribution of
clonotypes grouped by clone size in PD patients and healthy controls. (D) Clonotype diversity of unswitched memory B cells (USM2) in PD patients and healthy
controls. (E) A global view of the differentially expressed genes related to B cell receptor signaling pathway in each cluster. The size of the dot represents the
percentage of cells expressing the gene in each cluster, while the color represents the average gene expression value. Background heatmap shows the log-
transformed fold-change of DEGs between PD patients and healthy controls. (F) Box plots show the percentages of B cells expressing TNF and CXCR3 in PD
patients and healthy controls. Each dot represents a sample.
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regulated activator protein 1 (AP-1) transcription factors (JUN
and FOS) (Figure 4E), which controls a number of cellular
processes including differentiation, proliferation, and apoptosis
during B-cell activation (45). These results suggest that the antigen
presentation capacity of B cells was enhanced and B cells were
activated in PD patients.
DISCUSSION

Recently, neuroinflammation has attracted increasing attention due
to its potential in the development of novel molecular biomarkers
and targeted therapies (46, 47). In has been shown that both innate
and acquired immunity play important roles in neuroinflammation
in the progression of PD (48, 49). Previous studies have shown that
acquired immunity, especially T cell immunity, plays a key role in
the immune system dysfunction of PD (50–52), but the function of
B cells in PD is still not fully understood (17).

In this study, we comprehensively characterized the B cell
population in patients with PD. Although some studies have
reported that the level of total B cells remains unchanged or even
decreased inpatientswithPD(53–55), our study shows that theB cell
subpopulation structure has changed significantly. We observed
significantly decreased naïve B cells and significantly increased
unswitched memory B cells (especially USM2 subset) in PD
patients compared to healthy controls. Notably, the two
unswitched memory B cell clusters, USM1 and USM2, both
harbored IGHD and highly expressed the memory marker CD27,
but had distinct gene expression patterns (Figure S2A). USM2
overexpressed several B cell activation-related genes, such as
FCRL5, EGR1 and CD86. FCRL5+ memory B cells are optimally
responsive cells (32), have more extensive proliferative history (56),
andare committed tobecomingplasmablasts (57). EGR1participates
in B cell maturation as a positive regulator (33). CD86 is usually
upregulatedafterBcell activation,whichcan thenbe further activated
and in turn activate T cells (34). It is reported that unswitched
memoryBcells show faster and stronger re-stimulationpotential and
are involved in early inflammatory response (58). In this study, the
USM2 subset has strong activation features and high proliferative
potential.We speculate that itmay be an important participant in the
humoral immune response of Parkinson’s disease, and may
eventually contribute to the production of infiltrating antibodies in
the brain of PD patients. Their potential role in Parkinson’s disease
deserves further investigation.

We also discovered increased IgG and IgA isotypes and more
frequent CSR events in PD patients compared to healthy controls. B
cells have not been detected in the brains of PD patients (16), but
IgG deposition had been observed around dopaminergic neurons
and Lewy bodies (19). Increased circulating IgG and IgA isotypes
may contribute to the IgG detected in the brain of PD patients.
Moreover, the preferential V and J gene fragments of B cell
receptors in PD patients found in this study also further provide
the evidence of convergent selection in PD. HLA-DRB5 (59, 60),
HLA-DQA2 (60, 61) and HLA-DPB1 (62) have been reported to be
associated with PD, which were all up-regulated in memory B cells
of PD patients compared to healthy controls in this study,
Frontiers in Immunology | www.frontiersin.org 7
suggesting the enhanced capacity of antigen presentation in B
cells of PD patients.

We observed BCR-induced activation of the AP-1
transcription factor up-regulated in PD patients, indicating B
cell activated in PD patients. B cells produce antibodies but can
also regulate immune responses. We noted that PD patients had
an increased proportion of TNFa-producing B cells compared
with healthy controls (Wilcox test, one-sided, p = 0.0147,
Figure 4F). High levels of soluble TNFa have been detected in
the cerebrospinal fluid and postmortem brains of PD patients as
well as in animal models of PD (63–66). And the expression level
of TNFa in cerebrospinal fluid is a candidate risk biomarker for
the detection of PD at the prodromal stage (67). Anti-TNFa
therapy protects dopaminergic neurons (68) and reduces the
incidence of Parkinson’s disease (69). These findings suggest that
TNFamay be a mediator of neuronal injury and a feasible target
for the treatment of PD. The relationship between the increased
TNFa production in B cells and the progression of Parkinson’s
disease needs further investigation. In addition, we also found
that the proportion of CXCR3-expressing B cells was
significantly increased in PD patients (Wilcox test, one-sided,
p = 0.0406, Figure 4F), suggesting enhanced chemotaxis of B
cells in PD patients. These B cell abnormalities may contribute to
the development and progression of Parkinson’s disease by
increasing antibody and cytokine infiltration and enhancing
neuroinflammation in the central nervous system (70). Overall,
our study provides a comprehensive characterization of
peripheral B cells in PD patients, which provide novel insights
on the humoral immune response in the pathogenesis of PD.

Although our results suggest that B cells may play a role in
PD, it is not clear whether the observed changes in acquired
immunity are causal or secondary to central nervous system
disorder associated with the pathogenesis of PD. Further studies,
such as whether anti-a-synuclein monoclonal antibody therapy
is beneficial to patients with PD (71), are still needed to
investigate the B cell immunity in the pathogenesis of PD.
MATERIALS AND METHODS

Human Participants
In this study, we recruited eight PD patients (PD1-PD8, 50-70
years) and six healthy controls (HC1-HC6, 51-72 years). All
participants had no obvious somatic disorders, such as cancer,
autoimmune diseases, as well as mental and cognitive disorders.
All participants were recruited from the First Affiliated Hospital
of Harbin Medical University and obtained informed consent.
This study was approved by the Ethics Committee in the First
Affiliated Hospital of Harbin Medical University, and the
approval number is No. 201985.

Blood Sample Collection and Single-Cell 5’
and V(D)J Sequencing
Fresh blood samples were collected from 8 PD patients and 6
age-matched healthy controls. Then, peripheral blood
mononuclear cells (PBMCs) were isolated by Percoll density
February 2022 | Volume 13 | Article 814239
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gradient centrifugation. Next, CD19+ B cells were sorted using
fluorescence-activated cell sorting (FACS). Single-cell 5’ gene
expression libraries and V(D)J enriched libraries were prepared
according to the standard protocols provided by the 10x
Genomics Chromium Single Cell Immune Profiling Solution.
Finally, single-cell 5’ gene expression and V(D)J libraries were
sequenced on Illumina Noveseq 6000, providing 150 bp paired-
end reads.

Preprocessing of Single-Cell 5’ V(D)J
Sequencing Data
Single cell 5’ gene expression and V(D)J data was processed by
Cell Ranger pipeline (version 3.1.0) for each sample. Reference
data files refdata-cellranger-GRCh38-3.0.0 and refdata-
cellranger-vdj-GRCh38-alts-ensembl-3.1.0 downloaded from
10x Genomics official website were used in Cell Ranger
analysis pipelines for single-cell transcriptome and V(D)J data
processing, separately.

Cell Quality Control
We used emptyDrops function in the R package dropletUtils
(72, 73) to detect and remove empty droplets. Doublets were
detected by R package DoubletFinder (74) with default
parameters. After removing empty droplets and doublets,
low-quality cells were identified based on the median absolute
deviation (MAD) using isOutlier function in the R package
scater (75). Three matrics were used to detect low-quality cells:
1) Total UMI counts per cell (library size); 2) Total detected
genes per cell; 3) The proportion of mitochondrial gene counts.
Please see Zhang et al. (76) for details. Finally, genes with more
than 1 transcript in at least two cells were retained for
further analysis.

Dataset Integration and Unsupervised
Clustering
Batch effects were removed, and datasets from each sample were
integrated using the standard Seurat v3 integration workflow.
First, raw counts of each sample were normalized using a global-
scaling normalization method NormalizeData in R package
Seurat (24, 25). This method normalizes the gene expression
values for each cell by the total UMI counts in the sample, then
multiplies this value by a scale factor (10,000 by default), and log-
transforms the result. Then FindVariableFeatures function in
Seurat (24, 25) was used to identify highly variable genes to
further reduce the dimensionality of the data. Next, ‘anchors’
between pairs of samples were identified and used to harmonize
the datasets. Finally, cell cycle effects were calculated by
CellCycleScoring function and regressed by ScaleData function
in Seurat (24, 25).

Cell Type Annotation
Gene expression markers were identified by FindAllMarkers
function in Seurat, which performs Wilcoxon Rank Sum test to
identify differentially expressed genes for each cluster. Then,
SingleR (31) was applied to enhance cell type annotation by
calculating global similarity of gene expression between each cell
Frontiers in Immunology | www.frontiersin.org 8
and the reference datasets. Five bulk RNA-seq datasets of
purified immune cells [The Database for Immune Cell
Expression (26), Monaco Immune Cell Data (27), Human
Primary Cell Atlas (28), BLUEPRINT database (29) and
Novershtern Hematopoietic Data (30)] were selected as
reference datasets for expression similarity based cell
annotation. Spearman correlation between single cell and bulk
RNA-seq expression profiles were computed, and the cell labels
were transferred from bulk RNA-seq datasets to every single cell.
Each dataset was used separately to calculate the correlation.
Cells types were finally annotated by manually checking the cell-
identity marker expression and their global similarity with the
gene expression of reference datasets.

Pseudo-Time Reconstruction
Firstly, single-cell trajectory analysis was conducted by Monocle
2 (version 2.14.0), which reconstructs trajectories based on
tracking expression changes. Given that the direction of
pseudo-time is arbitrary, we selected naïve B cells as the
beginning of the trajectory. A process of transformation from
naïve B cells to unswitched and switched memory B cells
followed by plasma cells is clearly observed (Figure 1D). Then,
RNA velocity was calculated to further characterize cell fate
decisions and lineage relationships. RNA velocity was estimated
by velocyto pipelines (77). Finally, the velocities were visualized
on the first two principal components calculated by monocle.

Differential Gene Expression Analysis
Differentially expressed genes (DEGs) was identified by
FindMarkers function in Seurat (24, 25) using default
parameters. Only genes that were detected in at least 10% of
the cells in one of the two groups were tested. When calculating
the logFC value, the average expression value of each group was
added by 1 (where 1 represents a pseudocount) and then divided,
followed by logarithmic conversion. P values were estimated
using two-sidedWilcoxon test, and FDR was corrected using BH.
DEGs between PD patients and healthy controls as well as gene
expression markers of each cell subtypes were combined to
evaluate the function of B cell subtypes in the humoral
immune response of PD.

Statistical Analysis
All statistical analyses and visualization were performed using R
the statistical programming language (version 4.0.3). Two
sample tests were performed using two-sided Wilcoxon rank
sum test. If multiple tests were performed for a single analysis, we
used BH procedure to correct for FDR.
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