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Although rejection or tolerance can occur in liver transplantation (LT) patients, there are no
reliable non-invasive methods for predicting immune homeostasis. In this study, we
developed a humanized mouse model to predict liver immune homeostasis in patients
who underwent LT. The patient-derived avatar model was developed by injecting
peripheral blood mononuclear cells from healthy controls (HCs) or LT patients with
stable, rejection, or tolerance into NOD.Cg-PrkdcscidIL2rgtm1Wjl/SzJ (NSG) mice,
followed by injection of human hepatic stellate cells and Carbone tetrachloride (CCl4).
After 7 weeks, the patient’s T-cell engraftment and liver inflammation in the avatar model
were evaluated and compared with the liver histology of LT patients. Changes in liver
inflammation following treatment with tacrolimus and/or biguanide derivatives were also
examined. The C-X-C Motif Chemokine Receptor 3 (CXCR3)-dependently engrafted
patient T cells led to differences in liver inflammation in our model according to the
status of LT patients. The livers of avatar models from rejection patients had severe
inflammation with more T helper 17 cells and fewer regulatory T cells compared to those of
models from tolerance and HCs showing only mild inflammation. Moreover, our model
classified stable post-LT patients into severe and mild inflammation groups, which
correlated well with liver immunity in these patients. Our models revealed alleviation of
inflammation after combination treatment with tacrolimus and biguanide derivatives or
monotherapy. Consequently, using our new patient-derived avatar model, we predicted
liver immune homeostasis in patients with stable LT without biopsy. Moreover, our avatar
model may be useful for preclinical analysis to evaluate treatment responses while
reducing risks to patients.
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INTRODUCTION

Liver transplantation (LT) is an eventual treatment for patients
with end-stage liver disease and hepatocellular carcinoma.
However, the use of long-term immunosuppressants (ISs) is
associated with risks of cancer, cardiovascular events, and renal
complications (1, 2). Even after long-term maintenance, the
reduction or withdrawal of IS carries a risk of rejection in
some patients, whereas others may show graft tolerance.

In the long term, patients with normal liver function tests after
LT exhibit a risk of rejection, particularly in cases when ISs are
tapered, and not all patients can achieve minimization of IS or
tolerance. Liver function tests alone cannot definitively represent
liver immunity in LT patients. To overcome this limitation,
researchers have attempted to document the immune status of
patients with LT by analyzing peripheral blood mononuclear cells
(PBMCs). Recent studies revealed the importance of regulatory T
(Treg) and T helper 17 (Th 17) cells in both rejection and
tolerance in LT patients (3, 4). An early reduction in the
number of Treg cells and an increase in the number of Th17
cells after LT are associated with acute rejection; reciprocally, an
increase in the number of Treg cells and a decrease in the number
of Th17 cells during tapering of ISs are related to successful
tolerance in patients with LT (5–7). However, as shown in our
previous study, the possibility of minimization or tolerance
represented as an increase in the Treg/Th17 cell ratio could be
differentiated only after and not before tapering of ISs (6).

Whether liver immunity is balanced, particularly in long-term
stable patients, and whether a patient is likely to minimize ISs
successfully or experience rejection before adjusting the IS dosage
areunclear.Analysisofblood tests andPBMCsmaynotbe sufficient
for predicting liver immunemicroenvironmentsunder the effects of
ISs. Liver biopsy remains the gold standard for assessing liver
immunity and guiding IS management (3). Recently, in situ
multiplex immunofluorescence analysis of renal allograft
histology was introduced to quantify the inflammatory burden
and characterize the alloimmune response in patients with kidney
allograft rejection (8). Nevertheless, there are limitations to
performing biopsy, specifically in stable patients, because of its
invasiveness and potential risk of complications (9). Therefore,
non-invasivebiomarkers ormodels forpredicting liver immunity in
LT patients, particularly in stable patients, must be developed.

Recent advances in the development of mice with human
immune systems (humanized mice), which are immunodeficient
mice engrafted with human cells or tissues, have led to various
preclinical studies of the molecular pathways and response to
chemotherapy in cancer human immune system models (10, 11).
In transplant immunology, humanized mouse models with
Abbreviations: ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST,
aspartate aminotransferase; ELISPOT, enzyme-linked immunosorbent spot; EM,
effector memory; GVHD, graft-versus-host disease; HAI, Histology Activity Index;
HC, healthy controls; H&E, hematoxylin and eosin; HIS, human immune system;
hHSCs, human hepatic stellate cells; IS, immunosuppressant; LT, liver
transplantation; MIS, mild inflammation in stable; MT, Masson’s trichrome;
PBMC, peripheral blood mononuclear cell; RAI, Rejection Activity Index; SEM,
standard error of the mean; SIS, severe inflammation in stable; Th1, T helper 1;
Th17, T helper 17; Treg, regulatory T.
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allografts of skin, islets, cardiac tissues, and pluripotent stem
cells have been developed and used to study human immune
responses (12). However, there are no reliable models that can
reflect the real liver immunity of LT patients and give clinicians
the opportunity to assess liver immunity and guide future
treatment plans. Furthermore, preclinical methods are needed
to examine and predict treatment responses to various drugs in
LT patients without the risk of complications in these patients.

Herein, we developed an avatar mouse model for predicting
the status of liver inflammation in LT patients by using PBMCs
from these patients. This avatar mouse model enables the
classification of LT patients reflecting real liver inflammation
without liver biopsy. Moreover, our avatar model shows
potential as a preclinical model for evaluating treatment
responses in various drugs without putting patients at risk.
MATERIALS AND METHODS

Patients
A total of 41 patients were prospectively enrolled from a single
LT clinic at Seoul St. Mary Hospital between January 2018 and
October 2020. PBMCs and, if possible, the liver histopathological
status of each patient were collected, analyzed, and used to
generate a patient-derived avatar model. Among them, 12
patients were in the rejection group, three were in the
tolerance group, and the remainder (n = 26) were in the stable
group. Rejection was defined according to the Banff criteria (13,
14), and tolerance was defined as patients who withdrew ISs
safely and were stable for more than 1 year (3). The stable group
included long-term post-LT patients (>5 years from LT)
administered ISs with normal liver function. Healthy controls
(HCs; n = 7) without any medical diseases were also recruited.
Written informed consent was obtained from all included
patients. This study was approved by the institutional review
board of Seoul St. Mary’s Hospital (KC19TESI0612) and
performed in accordance with the Declaration of Helsinki.

Mice
Female NOD/scid/IL-2Rg−/− mice (NOD.Cg-PrkdcscidIL2rgtm1Wjl/
SzJ; abbreviated as NSG) at 6–8 weeks of age were obtained from
The Jackson Laboratory (Bar Harbor, ME, USA). The mice were
maintained under specific pathogen-free conditions in an animal
facility and given autoclaved food and water. A high efficiency
particulate air (HEPA) filter system was used to exclude bacteria
and viruses from the air in the facility. The protocols used in this
study were approved by the Animal Care and Use Committee of
the Catholic University of Korea (CUMC- 2020-0355-02).

Animal Experimental Design
To develop the patient-derived model, freshly isolated human
PBMCs (5 × 106/mouse) from HCs or LT patients were
intravenously injected into NSG mice. To emphasize the immune
response of T-cells that can lead to enhanced liver inflammation
and fibrosis, infusion of human hepatic stellate cells (hHSCs) and
CCl4 was performed. Specifically, NSG mice were intravenously
injected with hHSCs [LX-2 cell line from Merck Millipore
March 2022 | Volume 13 | Article 817006
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(Darmstadt, Germany)] on day 1 followed by intraperitoneal
injections with a low dose of CCl4 [6 ml in corn oil 100 ml/mice
(0.3 ml/kg)] twice per week for 7 weeks (Figure 1A). This avatar
model was compared with other experimental designs as follows:
type 1, only injected with PBMCs; type 2, injected with PBMCs
followed by injections with CCl4; and type 3, injected with PBMCs
followed by injections with hHSCs (Supplementary Figure S1).

In the drug treatment groups, at 4 weeks after induction of
humanized mice, recipient mice were administered SD282
(N-ethyl-N-[4-fluorophenyl] biguanide derivatives, 50 mg/kg),
biguanide derivatives, and/or tacrolimus (0.5 mg/kg) every 3 weeks.
Control mice were administered the vehicle control (dimethyl
sulfoxide diluted in saline) in the same manner as the
treatment group.
Frontiers in Immunology | www.frontiersin.org 3
Measurement of Serum AST and ALT
Levels in Avatar Models
Serum samples were prepared by centrifugation (8,000 rpm for 5
min) and analyzed for biochemical parameters. The serum
aspartate aminotransferase (AST) and alanine aminotransferase
(ALT) levels were determined using commercial kits (Asan
Pharmaceutical Co., Hwangseong-gi, Gyeonggi-do, Republic
of Korea).

Flow Cytometry and Enzyme-Linked
Immunosorbent Assay
For flow cytometric analysis, whole spleens were macerated into
single-cell suspensions of splenocytes by using the frosted ends of
two microscope slides. Cell suspensions were passed through a
A

B

FIGURE 1 | Generation of patient-derived avatar models in LT patients. (A) To develop the humanized mouse model from patient-derived PBMC, PBMCs were
isolated from whole-blood samples obtained from LT patients or HCs. Freshly isolated PBMCs (5 × 106) were injected intravenously into NSG mice. At 1 day after
intravenously transplanting hHSCs to engraft, mice were injected with CCl4 twice weekly at various time points as indicated. At 49 days after induction of humanized
mice, recipient spleens and peripheral blood were collected to analyze the engraftment levels of human CD4+ and CD8+ T-cell populations in the spleen and blood
by using flow cytometry. (B) Histologic analysis of infiltration of human CD4+ and CD8+ T cells and CD19+ B cells in mouse liver tissue by immunohistochemistry
staining. Data were obtained from three independent experiments, and values are represented as the mean ± SEM. LT, liver transplantation; PBMC, peripheral blood
mononuclear cell; NC, negative control; HC, healthy control; hHSC, human hepatic stellate cell. *P < 0.05; **P < 0.01; ****P < 0.0001.
March 2022 | Volume 13 | Article 817006
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cell strainer (40 µm) (Corning, Inc., Corning, NY, USA) to
eliminate clumps and debris, followed by lysis of red blood
cells with Ammonium–Chloride–Potassium (ACK) lysis buffer.
Mononuclear cells from the peripheral blood and spleen of the
avatar models and PBMCs from patients were stained with
various combinations of fluorescent antibodies against human
CD4, CD8, CD19, CD25, CD45RA, chemokine receptor 7
(CCR7), Interleukin 17 (IL-17), Interferon (IFN)-g, and FoxP3
(Supplementary Table S1). Prior to intracellular staining, the
cells were restimulated for 4 h with phorbol myristate acetate
(25 ng/ml) and ionomycin (250 ng/ml) in the presence of
GolgiSTOP (BD Biosciences, San Diego, CA, USA). Intracellular
staining was performed using a kit (eBioscience, San Diego, CA,
USA) according to the manufacturer’s protocol. Flow cytometry
wasperformedonaFACSCalibur instrument (BDBiosciences).We
defined Treg cells as CD25+FoxP3+CD4+T cells, Th1 cells as IFN-
g+CD4+T cells, Th17 cells as IL-17+CD4+T cells including
IL-17+pSTAT3+CD4+T cells, central memory (CM)-Th17 cells as
IL-17+CD4+CD45RO+CD45RA-CCR7+cells, andeffectormemory
(EM)-Th17 cells as IL-17+ CD4+CD45RO+CD45RA-CCR7- cells
(15–18).

Histological Analysis and Chemotaxis
Experiments
At 7 weeks after cell transfer into NSGmice, the liver tissues were
harvested, cryoembedded, and sectioned. The tissue specimens
were fixed in 10% formalin buffer and embedded in paraffin. At
least three slices (6-mm-thick) were prepared from each sample
and stained with hematoxylin and eosin (H&E), Masson’s
trichrome (MT), and Sirius red. The histological scores were
blindly examined using an established scoring system including
the Histology Activity Index, Rejection Activity Index, and
fibrosis, without knowing the clinical status of each model, and
the results were compared between the rejection and tolerance
groups (13, 19). The liver histology of patients (n = 25) was also
evaluated and compared to that of their own avatar mice to verify
this avatar model.

For immunohistochemistry (IHC) staining, the sections were
stained with antibodies against human CD4, CD8, CD19, CK-19,
IL-17, and FoxP3 (Supplementary Table S2). For chemotaxis
experiments, the sections were stained with several chemokine
ligands (CXCL9, CXCL10, CXCL11, CCL2, and CCL3) and
chemokine receptors (CXCR3 and CCR2) overnight at 4°C,
followed by addition of a biotinylated secondary antibody with
a streptavidin peroxidase mixture for 1 h (Thermo Fisher
Scientific, Waltham, MA, USA).

Migration assays were performed in a 24-well Transwell unit
with 3-mm pores (Corning Costar, Cambridge, MA, USA). Th17
cells at a density of 2 × 105 cells in 100 ml of medium (1% fetal
bovine serum) were seeded into the upper chamber of the
Transwell assembly. LX-2 cells (1 × 105) in the lower chamber
containing 600 ml of medium were used to attract human Th17
cells in a classical chemotaxis assay. After incubation at 37°C and
5% CO2 for 24 h, the upper surface of the membrane was scraped
gently to remove non-migrating cells and washed with
phosphate-buffered saline. Migrated cells were fixed in 4%
Frontiers in Immunology | www.frontiersin.org 4
paraformaldehyde for 15 min and stained with 0.5% crystal
violet for 10 min.

Confocal Microscopy and Immunostaining
Mouse and human liver tissue cryosections (7-mm-thick)
were fixed in 4% (v/v) paraformaldehyde and stained using
fluorescein isothiocyanate-, phycoerythrin-, PerCP-Cy5.5-, or
allophycocyanin-conjugated monoclonal antibodies against
human CD4, CD25, Foxp3, IL-17, CXCR3, phophoSTAT3 (Tyr
705), and 4',6-diamidino-2-phenylindole (DAPI) (Invitrogen,
Carlsbad, CA, USA) (Supplementary Table S3). After overnight
incubation at -4°C, the stained sections were visualized by confocal
microscopy (LSM 510 Meta; Zeiss, Göttingen, Germany).

Statistical Analysis
The patients’ baseline characteristics are presented as the mean ±
standard deviation or counts (percentage), as appropriate.
Experimental data are expressed as the mean ± standard error
of the mean (SEM). Differences between groups were analyzed
using Student’s t-test or Mann–Whitney U test for categorical
variables and chi-square test or Fisher’s exact test for continuous
variables, as appropriate. One-way analysis of variance followed
by Bonferroni’s post-hoc test or Kruskal–Wallis H test was used
to compare differences between three or more groups where
appropriate. Statistical significance was set at P < 0.05. All
statistical analyses were performed using Prism (standard
version 5.01; GraphPad, Inc., San Diego, CA, USA) and R
version 4.0.4 (http://cran.r-project.org; The R Project for
Statistical Computing, Vienna, Austria).
RESULTS

Baseline Characteristics of the
Study Population
The mean age of patients was 58.7 years, and 32 patients (78.0%)
were men. Among the 41 patients, 38 (78.0%) underwent living
donor LT, with liver cirrhosis (n = 24, 58.5%) and hepatocellular
carcinoma (n = 9, 22.0%) as the major reasons for LT. Most
patients (n = 29, 70.7%) were treated with tacrolimus at a mean
dose of 2.1 mg/day. The mean time from LT in all groups was
more than 10 years (10.9 ± 4.6 years). The rejection group had
significantly higher levels of AST, ALT, and alkaline phosphatase
than those of the other groups. The tolerance group had normal
liver functions, including the levels of AST, ALT, and alkaline
phosphatase, and marginally older age (63.7 years) with a longer
time from LT (13.6 years) compared to the other groups (Table 1).

Generation of a Patient-Derived
Avatar Model
We generated a patient-derived avatar model as described in the
Materials and Methods section. At 7 weeks after injection with
human PBMCs, we evaluated the engraftment levels of human
CD4+ and CD8+ T cells in the spleen and PBMCs of the avatar
models. In both avatar models injected with PBMCs from HC
and LT patients, CD4+ (40%–60%) and CD8+ (10%–20%) T cells
March 2022 | Volume 13 | Article 817006
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were engrafted well without significant differences (Figure 1A).
In histological evaluation of avatar model livers on day 49 after
human PBMC injection, CD4+, CD8+ T, and CD19+ B cells were
engrafted well in both avatar models injected with PBMCs from
HC and LT patients and significantly differed from the negative
controls (Figure 1B).

After engraftment of human CD4+ cells, CD8+ T cells, and
CD19+ B cells in our avatar model, inflammation and fibrosis were
induced in the liver. However, in the other type of experimental
design injected with PBMCs, minimal inflammation was observed.
The other types injected with PBMCs followed by CCl4 or hHSCs
also showed less inflammation compared to our avatar models,
although these types showed greater inflammation than the model
only injectedwithPBMCs (SupplementaryFigureS1).Noneof the
experimental designs, including our avatar model, showed
significant inflammation in the spleen or gut (data not shown).
Verification of Patient-Derived Avatar
Model by Comparing Liver Transplantation
Patients With Their Avatar Models:
Immunological Classification of Stable
Liver Transplantation Patients
We used our generated patient-derived avatar models to evaluate
and compare inflammation in LT patients and their avatar models
by analyzing immune markers and histology. First, we performed
histology analysis of the patients to determine their long-term
Frontiers in Immunology | www.frontiersin.org 5
stability and rejection after staining with H&E (Figure 2A).
Interestingly, although all long-term stable patients had normal
liver function, some patients (n = 11) showed high levels of
inflammation (SIS group, severe inflammation in the stable
group) comparable to those in the rejection group; however,
other patients (n = 15) showed only mild inflammation (MIS
group, mild inflammation in the stable group). We further
evaluated the phenotypes of the inflammatory cells infiltrating the
liver in each group. As shown in Figure 2B, infiltration of CD4+IL-
17+CXCR3+ T cells and CD4+IL-17+pSTAT3+ T cells was
significantly higher in the rejection and SIS groups than that in
the MIS group. Similarly, analysis of T-cell subsets in PBMCs of
patients from the three groups showed that Th17 cells were
significantly increased, whereas Treg cells were decreased in the
rejection and SIS groups compared to those in the MIS group
(Figure 2C and Supplementary Figure S2).

To characterize and compare inflammatory cells in the patient-
derived avatar models, we first analyzed the engraftment level of
human T-cell subsets in the blood and spleen of each patient-
derivedmouse group at 49 days after injectionwith human PBMCs
(Figure 3A and Supplementary Figure S3). Similar to the results
observed in LT patients, avatarmodels from stable LT patients (n =
26) demonstrated different severities of inflammation and could be
classified into SIS (n = 11) and MIS (n = 15) groups. Th17, central
memory Th17, and effector memory cells were significantly
increased in the SIS and rejection groups compared to those in
theMIS andHC groups. However, Treg cells were decreased in the
TABLE 1 | Baseline characteristics of the entire population.

Variables Total (N = 41) Rejection group
(n = 12)

Stable group (n = 26) Tolerance group (n = 3) P-
value

MIS group (n = 15) SIS group (n = 11)

Age, years 58.7 ± 8.0 57.3 ± 9.0 57.1 ± 7.9 60.9 ± 6.7 63.7 ± 9.2 0.539
Male sex (n, %) 32 (78.0%) 10 (83.3%) 11 (73.3%) 8 (72.7%) 3 (100%) 0.859
LDLT 38 (92.7%) 12 (100%) 13 (86.7%) 10 (90.9%) 3 (100%) 0.565
Cause of LT
- LC/HCC/ALF 24 (58.5%)/9 (22.0%)/8

(19.5%)
5 (41.7%)/1 (8.3%)/6

(50.0%)
9 (60.0%)/4 (26.7%)/2

(13.3%)
8 (72.7%)/3 (27.3%)/0

(0.0%)
2 (66.7%)/1 (33.3%)/0

(0.0%)
0.1

- HBV/others 25 (61.0%)/16 (39.0%) 1 (8.3%)/11 (91.7%) 11 (73.3%)/4 (26.7%) 10 (90.9%)/1 (9.1%) 3 (100.0%)/0 (0.0%) <0.001
Type of IS 0.049
- Tacrolimus 29 (70.7%) 12 (100.0%) 9 (60.0%) 8 (72.7%) –

- Cyclosporine 9 (22.0%) 0 (0.0%) 6 (40.0%) 3 (27.3%) –

Dose of IS (mg)
- Tacrolimus 2.1 ± 1.0 2.3 ± 1.2 1.9 ± 1.2 2.1 ± 0.6 – 0.671
- Cyclosporine 61.1 ± 25.3 – 66.7 ± 30.3 50.0 ± 0.0 – 0.762

Level of IS (ng/ml)
- Tacrolimus 4.5 ± 2.5 4.8 ± 2.8 3.2 ± 2.4 5.4 ± 1.9 – 0.744
- Cyclosporine 54.0 ± 33.3 – 64.0 ± 36.6 34.1 ± 13.4 – 0.225

AST (U/L) 70.4 ± 186.9 185.1 ± 326.7 24.1 ± 6.8 22.0 ± 5.6 20.3 ± 1.5 0.003
ALT (U/L) 94.9 ± 273.6 268.8 ± 474.3 26.7 ± 17.1 20.0 ± 13.9 14.0 ± 3.0 0.002
ALP (mg/dl) 82.9 ± 35.8 101.0 ± 41.7 80.2 ± 23.7 63.2 ± 14.0 96.7 ± 82.0 0.048
r-GTP (mg/dl) 117.5 ± 125.9 231.6 ± 145.7 92.9 ± 96.5 47.5 ± 35.1 28.0 ± 9.5 <0.001
Total bilirubin
(mg/dl)

2.7 ± 7.9 6.7 ± 14.2 1.0 ± 0.4 1.2 ± 0.7 0.9 ± 0.8 0.588

Albumin (g/dl) 4.2 ± 0.5 3.9 ± 0.6 4.2 ± 0.3 4.4 ± 0.3 4.2 ± 0.5 0.087
PT INR 1.0 ± 0.1 1.1 ± 0.2 1.0 ± 0.0 1.0 ± 0.1 1.1 ± 0.1 0.253
Platelet (×109/L) 180.7 ± 69.2 151.7 ± 47.9 181.6 ± 60.0 202.5 ± 64.1 193.7 ± 159.8 0.091
Post-LT, years 10.9 ± 4.6 9.1 ± 3.8 11.2 ± 4.9 11.6 ± 5.0 13.6 ± 4.6 0.096
March 2
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MIS, mild inflammation in stable; SIS, severe inflammation in stable; LDLT, living donor liver transplantation; LT, liver transplantation; LC, liver cirrhosis; HCC, hepatocellular carcinoma; ALF,
acute liver failure; IS, immunosuppressant; AST, aspartate aminotransferase; ALT, alanine aminotransferase; ALP, alkaline phosphatase; r-GTP, gamma glutamyl transferase; INR,
international normalized ratio; PT INR, Prothrombin time international normalized ratio.
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SIS and rejection groups, and Th1 cells decreased in the rejection
groupat a similar level inboth theMISandSISgroups.TheCD8+T-
cell populations did not significantly differ between theMIS and SIS
groups, with amild increase in the rejection group (Supplementary
Figure S4).Next,we analyzed thehistopathology of the liver in each
patient-derived avatar mouse. Similar to the results for the blood
and spleen of the patient-derived avatarmodel, histological analysis
of each patient-derived avatar group demonstrated severe
inflammation and fibrosis in the SIS and rejection groups
compared to those in the MIS and HC groups, which correlated
well with the liver of their LT patients (Figure 3B). The levels of
Cytokeratin-19 (CK-19), a marker for liver progenitor cells,
hepatocyte differentiation, and bile ductular reaction (20–22),
were also significantly increased in the SIS and rejection groups
(Figure 3C). Based on these results, our model could reflect and
predict liver immunity and immune homeostasis in patients and
differentiate clinically stable LT patients.
Frontiers in Immunology | www.frontiersin.org 6
Subtypes of Infiltrated Inflammatory Cells
in the Liver of Avatar Model and Their
CXCR3-Dependent Migration Into the
Liver of Avatar Model
To further verify our model, we identified the type and amount
of infiltrated inflammatory cells in the liver of the avatar model.
IHC staining with anti-IL-17 and FoxP3 antibodies showed that
the rejection group had more IL-17+ cells and fewer FoxP3+ cells
than those in the HC group. Moreover, even in stable LT
patients, the SIS group showed many more IL-17+ cells and
fewer FoxP3+ cells than those in the MIS group and comparable
to those in the rejection group, whereas the MIS group was
similar to the HC group (Figure 4A). Similar trends were
observed in confocal microscopic analysis of Th17 cells in the
liver of each avatar model group. Infiltration of CD4+IL-17+T
cells, CD4+IL-17+pSTAT3+ T cells, and CD4+IL-17+CXCR3+ T
cells was significantly higher in the rejection and SIS groups than
A

B C

FIGURE 2 | Liver histologic and T-cell subset analysis of LT patients. (A) Representative liver histology of LT patients stained with H&E. (B) Representative confocal
images of CD4-IL-17, CXCR3, and STAT3 in liver histology of LT patients. The number of positive cells was counted in five independent liver tissues. (C) Plots from
representative experiment show the frequencies of IL-17+ (Th17), IFN-g+ (Th1), and CD25+FoxP3+ (Treg) cells among CD4+ T cells in PBMCs of LT patients. Values
represent the mean ± SD for six mice per group from at least three independent experiments. *P < 0.05, **P < 0.01, ****P < 0.0001. H&E, hematoxylin and eosin; LT,
liver transplantation; MIS, mild inflammation in stable; SIS, severe inflammation in stable; HC, healthy control; PBMC, peripheral blood mononuclear cell.
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FIGURE 3 | Characterization of patient-derived avatar models by immune profiling of human lymphocytes and analysis of liver histology in the model. (A) Representative
flow cytometric plot expressing the proportion of CD4+ T-cell subtypes in the spleen of each humanized mouse group. At 7 weeks after induction of humanized mice, the
engraftment levels of human T-cell subset in the spleen of each patient-derived avatar group were analyzed using flow cytometry. The percentage of each cell population
among CD4+ T cells is shown in the right upper panel. (B) Representative liver histology stained with H&E, MT, and Sirius red in paraffin-embedded avatar models. Liver
tissue sections were harvested from humanized mice at 7 weeks after adoptive transfer with PBMC preparations from HC or LT patients. Inflammation and fibrosis scores
are shown in the right panel. (C) Representative images of IHC with CK19 antibodies. Bars indicate the percentages of positive areas per field. Data are the means ± SEM
of two replicates. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. H&E, hematoxylin and eosin; MT, Masson’s trichrome; NC, negative control; HC, healthy control;
LT, liver transplantation; IHC, immunohistochemistry; MIS, mild inflammation in stable; SIS, severe inflammation in stable; CM, central memory; EM, effector memory.
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FIGURE 4 | Comparative analysis of infiltrated T-cell subtypes and chemotaxis in the liver of each avatar model group. (A) Representative images of IHC with anti-
IL-17, FoxP3 antibodies. Bars are percentages of positive areas per field. (B) Representative confocal microscopy analysis of Th17 cell localization in liver tissues.
Cells were stained with fluorescence-tagged antibodies to determine the counts of CD4+IL-17+, CD4+pSTAT3(tyr 705)+, and CD4+IL-17+CXCR3+ cells in liver tissue
sections (×100, original magnification). (C) Representative images of IHC with anti-CXCL9, CXCL10, CXCL11, CCL2, CCL3, and CCR2 antibodies. Bars indicate the
percentages of positive areas per field. Data are the means ± SEM of two replicates. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. IHC, immunohistochemistry;
MIS, mild inflammation in stable; SIS, severe inflammation in stable; NC, negative control; HC, healthy control.
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those in the MIS and HC groups (Figure 4B). These findings
support that our model can classify patients with stable LT.

Interestingly, the expression of CXCR3, a crucial chemokine
for recruiting Th17 cells, was significantly increased in both the
SIS and rejection groups, indicating severe inflammation in our
models. To recheck the CXCR3-dependent migration of
infiltrated inflammatory cells in our model, we investigated the
expression of CXCR3 ligands such as CXCL9-11 (Figure 4C).
The expression of CXCL9-11 was significantly increased in the
SIS and rejection groups compared to those in the HC and MIS
groups. CCL2-3 and CCR2 expression was also higher in the SIS
and rejection groups. Furthermore, in in vitromigration analysis,
the migration of Th17 cells toward activated LX-2 cells was
significantly decreased in anti-CXCR3-treated Th17 cells
compared to Th17 cells without anti-CXCR3 antibody
(Supplementary Figure S5). These results suggest that CXCR3
and its ligands contribute to infiltration of engrafted
inflammatory cells into the liver in our patient-derived
mouse model.

Patient-Derived Avatar Model in Tolerant
Patients: A Well-Designed Humanized
Mouse Model
Next, we generated an avatar model from tolerant patients to
evaluate whether our model reflected real liver immunity. After
generating the avatar models, the avatar’s liver tissue sections
were stained with H&E, MT, and Sirius red at 7 weeks after
injection of PBMCs. As depicted in Figure 5A, the tolerance
group showed only mild inflammation and fibrosis compared to
the rejection group and was similar to the HC group.
Furthermore, confocal microscopic analysis revealed that the
tolerance group had increased Treg cells and decreased Th17
cells compared to the rejection group, which agrees with the real
liver immunity of tolerant patients (Figure 5B). These findings
suggest that our patient-derived avatar model may reflect liver
inflammation in each patient.

Patient-Derived Avatar Model Treated
With Tacrolimus and SD282 (Biguanide
Derivatives): A Preclinical Model for
Evaluating Treatment Responses
Finally, we performed a pilot study to evaluate the potential of
our preclinical model for evaluating treatment responses in
advance. To determine the effects of each treatment on
inflammatory cells using PBMCs from stable LT patients, we
first monitored the changes in immune markers such as Treg and
Th17 cells after treatment with SD282 and/or tacrolimus under
anti-CD3 stimulation. Compared with the results of tacrolimus
monotherapy, the combination treatment of SD282 and
tacrolimus led to a decrease in Th1 and Th17 cells and an
increase in Treg cells (Figure 6A).

Thereafter, we generated avatar models using PBMCs from
stable LT patients and treated the model with tacrolimus and/or
SD282. The livers of avatar models treated with drugs were
stained with H&E, MT, and Sirius red at 7 weeks after PBMC
injection. Inflammation and fibrosis of the liver histology were
Frontiers in Immunology | www.frontiersin.org 9
alleviated after treatment with tacrolimus compared with that in
the negative control. Moreover, combination treatment with
tacrolimus and SD282 let to lower inflammation and less
fibrosis than those in the negative control and each
monotherapy group (Figure 6B). Similar trends were observed
in the serum AST and ALT levels of each patient-derived mouse
model, with significantly decreased AST and ALT levels after
combination treatment compared to those in the negative
control and monotherapy groups (Figure 6C). These results
suggest that our model can be used for preclinical analysis of the
effects of potential treatments on the liver of LT patients.
DISCUSSION

We developed a patient-derived avatar model to predict the liver
immune microenvironment in LT patients. By engraftment of
NSG mice with PBMCs from patients followed by several
injections of hHSCs and CCl4, injected human inflammatory
cells were CXCR3-dependently recruited into the liver and
caused liver inflammation. According to the status of LT
patients, the immune markers and liver histology of our
models were quite different from and well-correlated with the
patient’s immune status and liver histology. Interestingly, even
stable post-LT patients had different liver immunities, and these
differences were well-represented by our avatar model.
Moreover, compared to monotherapy and negative control
treatment, inflammation and fibrosis in the liver of avatar
models were alleviated after combination treatment.

This avatar model was developed using NSG mice (NOD.Cg-
PrkdcscidIL2rgtm1Wjl/SzJ) engrafted with human PBMCs. These
models are known to induce engraftment of T cells and have
been used to evaluate T-cell rejection in human allografts,
including skin engraftment (12, 23). Because this model could
eventually develop lethal graft-versus-host disease (GVHD),
inflammation of T cells was examined at 4–6 weeks before lethal
GVHD (12); therefore, we visualized human cells and liver
inflammation in avatar mice at 49 days after engraftment. The
type engrafted only with PBMCs showed minimal inflammation,
whereas our model infusing hHSCs and CCl4 after PBMC
engraftment showed more severe inflammation in the liver
without significant inflammation in the gut and spleen. Infused
hHSCs can migrate to the site of injury, and the interaction of
hHSCs with T cells perpetuate the immune response, leading to
enhanced liver inflammation (24, 25). Moreover, infusion of a low
dose of CCl4 and only half the dose for the conventional fibrosis
model may help cause liver inflammation and fibrosis in engrafted
human T cells. We infused only a small dose of CCl4 to prevent a
conventional fibrosis while simultaneously enhancing inflammation
and fibrosis in our avatar model (24, 25). Thus, stimulation of
hHSCs and CCl4 amplified inflammation, which led to enhanced
inflammation and immune response in the liver of our avatar
models (26). However, although the immune response was
enhanced by the combination of PBMCs, CCl4, and stellate cells,
patient-derived T cells are the main contributor to the immune
response, which can lead to differentiation of the inflammation of
March 2022 | Volume 13 | Article 817006
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the liver of avatar models according to the immune homeostasis of
LT patients.

Indeed, although all avatar models were injected with CCl4
and hHSCs, liver fibrosis and inflammation differed in
Frontiers in Immunology | www.frontiersin.org 10
accordance with the patient’s clinical status and were minimal
in HCs. Avatar models from patients with rejection exhibited
severe inflammation, whereas models from tolerant patients and
HCs had mild inflammation in the blood and liver. As donor-
A

B

FIGURE 5 | Histologic evaluation of patient-derived avatar models generated from tolerant patients. (A) Representative liver histology of avatar models from HC,
rejection, and tolerant patients. Liver tissue sections were harvested from humanized mice at 7 weeks after adoptive transfer with PBMC preparations from HC or LT
patients (rejection and tolerance) and stained with H&E, MT, and Sirius red in paraffin-embedded avatar model (upper panel). Inflammation and fibrosis scores are
shown in the lower panel. (B) Representative confocal microscopic analysis for Treg and Th17 cell localization in liver tissues. Cells were stained with fluorescence-
tagged antibodies to determine the counts of CD4+CD25+Fox3+ (Treg) and CD4+IL-17+ (Th17) cells in liver tissue sections (×100, original magnification). NC,
negative control; HC, healthy control; PBMC, peripheral blood mononuclear cell; LT, liver transplantation; H&E, hematoxylin and eosin; MT, Masson’s trichrome.
*P < 0.05; ***P < 0.001; ****P < 0.0001.
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FIGURE 6 | Change in T-cell subtypes (in vitro analysis) and liver histology of avatar models after combination treatments of tacrolimus and SD282 (biguanide
derivatives). (A) Human CD4+ T cells from PBMCs were cultured in the presence or absence of SD282 or/and tacrolimus under the anti-CD3 stimulation condition
for 3 days. The populations of Th1, Th17, and Foxp3+Tregs were analyzed by flow cytometry. (B) Changes in liver histology of avatar models after SD282 and
tacrolimus combination therapy. Liver tissue sections were harvested from humanized mice at 7 weeks after adoptive transfer with PBMC preparations from liver
transplantation patients. Humanized mice were orally administered vehicle (NC) or SD282 and/or tacrolimus once every day for 4 weeks. Representative images of
H&E, MT, and Sirius red staining of paraffin-embedded mouse liver tissue sections are shown in the upper panel. Inflammation and fibrosis scores are shown in the
lower panel. (C) Serum AST and ALT levels in humanized mouse model. Data are the means ± SEM of two replicates. *P < 0.05, **P < 0.01, ***P < 0.001, ****P <
0.0001. IHC, immunohistochemistry; PBMC, peripheral blood mononuclear cell; SD282, N-ethyl-N-(4-fluorophenyl) biguanide derivatives; H&E, hematoxylin and
eosin; MT, Masson’s trichrome; AST, aspartate aminotransferase; ALT, alanine aminotransferase.
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reactive T cells are reduced in tolerant patients with increased
levels of Treg cells (6, 27), their avatar models may show only
mild inflammation similar to the liver immunity of HCs.
Interestingly, in our study, avatar models from stable long-
term LT patients were divided into severe and mild
inflammation groups, which were correlated well with the
patients’ real liver immunity. These results support that not all
stable patients can achieve tolerance successfully because of
alloreactive liver immunity in some patients (6, 28). Using this
model, we evaluated whether liver immunity is stable, even in
patients with long-term stability, which requires further
verification. In our previous study, we identified patients who
could minimize ISs or tolerance only after tapering ISs by
analyzing PBMCs. To date, no reliable method has been
developed to distinguish patients who are able to minimize ISs
or tolerance before tapering ISs (6). Our developed model,
representing and classifying the liver immunity and immune
homeostasis of stable LT patients, can predict the prognosis of
stable LT patients and facilitate a patient’s treatment plans, such
as the minimization of an IS dose and the possibility of tolerance
without liver biopsy and before tapering ISs.

It is possible that engrafted human T cells can migrate to the
liver in the avatar model. To verify this mechanism, we examined
the expression levels of chemokine ligands and receptors. In our
avatar models, CXCR3-expressing Th17 cells and their ligands
CXCL9, -10, and -11 were increased in the severe inflammation
and rejection groups. Moreover, migration of Th17 cells toward
activated LX-2 cells was significantly decreased in anti-CXCR-
treated Th17 cells in in vitro migration analysis. Indeed, CXCR3
can activate and recruit T cells, such as Th17 cells, to the liver,
causing liver inflammation and playing a crucial role in the
development of viral-related liver inflammation and non-
alcoholic steatohepatitis (29–33). In the context of CXCR3-
dependent response in our results, CXCR3 may also play a
pivotal role in the development of our new avatar model and
contribute to different inflammations according to the status of LT
patients. Recently, the anti-donor IFN-g enzyme-linked
immunosorbent spot assay was shown to have a predictive
power for graft rejection after kidney transplantation. However,
this assay has limitations in the accurate measurement of cytotoxic
lymphocytes because of the possibility of its secretion by non-
cytotoxic lymphocytes (34, 35). Meanwhile, the development of
our new avatar model enables evaluation of the real liver immunity
directly, even in stable LT patients via the CXCR3-dependent
response of the model.

Furthermore, we examined changes in immunity of the avatar
models after treatment with tacrolimus and/or SD282 (biguanide
derivatives). We previously observed that the combination of
SD282 and tacrolimus may increase immune cellular
homeostasis (36). Our patient-derived avatar models showed
that inflammation and fibrosis were alleviated, particularly after
combination treatment with SD282 and tacrolimus. In onco-
immunology, several mouse models have been developed and
used to evaluate therapeutic agents or immune responses (11,
37). However, in the era of LT, there is an unmet need for
preclinical models to evaluate the treatment response to various
Frontiers in Immunology | www.frontiersin.org 12
drugs and optimal dose of immunosuppressive drugs. Our
results suggest that this model can be used to evaluate immune
homeostasis in LT patients and as preclinical models for
evaluating changes in the immune status following
administration of various therapeutic drugs.

Our study had several limitations. First, it was a single-center
study with a small number of patients. Second, we only
investigated T-cell responses in our models. However, we
created models from more than 40 patients with various
clinical conditions and compared the histological findings and
inflammatory cells in the blood of LT patients with those of
paired avatar mice. We could not evaluate the B-cell response in
our model mainly because of the low engraftment of human B
cells from PBMCs in NSG mice (38). Moreover, considering the
crucial role of T cells, including Treg cells, in the immune
tolerance and rejection of LT patients (28, 39), our model is
suitable for evaluating T-cell responses and predicting liver
immunity without liver biopsy. Third, the immune response in
this model may have been caused by various antigens including
xenogeneic GVHD. There may be a concern that the results of
this model do not reflect real liver immunity. However, in the
clinical setting, it is difficult and unrealistic to elicit an immune
response with the engraftment of liver tissue of stable liver LT
patients in a humanized avatar model. Instead, by infusing the
patient’s PBMCs followed by CCl4 and stellate cells, we observed
the inflammation and immune response of the liver predicting
the real liver immunity of LT patients in an in vivo animal model.
However, avatar liver inflammation is caused not only by
patient-derived T cells but also by a combination of PBMCs,
CCl4, and stellate cells. Histologically confirmed differences in
the immune microenvironments of stable LT patients were
demonstrated using our avatar model, which correlated well
with the patient’s histologic findings of the grafted liver.

In conclusion, we developed a patient-derived avatar model
for predicting the actual liver immunity of LT patients without
biopsy. Moreover, our results provide insights into the possible
use of our model as a preclinical analysis tool for the potential
treatment of the liver in LT patients. This new avatar model may
provide clinicians with a direction for further treatment plans,
including IS adjustment, and preclinical analysis for various
therapeutic drugs.
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