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Tumor immunity is involved in malignant tumor progression. Myeloid-derived suppressor
cells (MDSCs) play an irreplaceable role in tumor immunity. MDSCs are composed of
immature myeloid cells and exhibit obvious immunomodulatory functions. Exosomes
released by MDSCs (MDSCs-Exos) have similar effects to parental MDSCs in regulating
tumor immunity. In this review, we provided a comprehensive description of the
characteristics, functions and mechanisms of exosomes. We analyzed the
immunosuppressive, angiogenesis and metastatic effects of MDSCs-Exos in different
tumors through multiple perspectives. Immunotherapy targeting MDSCs-Exos has
demonstrated great potential in cancers and non-cancerous diseases.
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INTRODUCTION

Malignant tumors are considered a major threat to human health (1). Studying the contribution of
tumor immunity in tumor progression may improve the extremely narrow therapeutic strategy
regarding cancer. Myeloid-derived suppressor cells (MDSCs) are immature cells consisting of
myeloid progenitor cells, immature macrophages, immature granulocytes and immature dendritic
cells. They are closely related to patients’ poor prognosis due to its powerful effects on tumor
immune suppression, tumor angiogenesis, drug resistance, and tumor metastases (2–4). For
example, The interaction between MDSCs and macrophages can reduce the production of IL-12
by macrophages and increase the production of IL-10 by MDSCs, which promotes tumor
progression (5).

Exosomes are 40- to 100-nm small vesicles that are released by the vast majority of cells and
distributed in all body fluids (6, 7). Exosomes derived from different cells perform variable
Abbreviations: Bv8, bombina variegata peptide 8; C4B-bp, C4B-binding proteins; CSCs, cancer stem cells; MDSCs, Myeloid-
derived suppressor cells; MDSCs-Exos, exosomes released byMDSCs; G-MDSCs, granulocytic MDSCs; M-MDSCs, monocytic
MDSCs; mRNAs, messenger RNAs; ncRNAs, noncoding RNAs; MIF, migration inhibition factor; PF-4, platelet factor-4;
STAT, signal transducer and activator of transcription; TDEs, tumor-derived exosomes; PGE2, Prostaglandin E2; TGF-b1,
transforming growth factor-b1; Th17, helper T cell 17; TME, tumor microenvironment; Tregs, regulatory T cells; NSCLC, in
non-small cell lung cancer; G-CSF, granulocyte colony–stimulating factor; VEGF, vascular endothelial growth factor;
Tsp1, thrombospondin1.
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functions. Exosomes carry proteins, DNA, messenger RNAs
(mRNAs), noncoding RNAs(ncRNAs), and lipids (8).
Exosomes exert cancer-inhibiting or cancer-promoting effects.
For example, exosomal miR-19a is delivered to osteoblasts to
promote bone metastasis in breast cancer (9). While human
umbilical cord mesenchymal stem cell -derived exosomal miR-
320a inhibits lung cancer cell growth via SOX4/Wnt/b-catenin
axis (10). In addition, emerging studies have shown that
exosomes have potential clinical applications as biomarkers for
disease diagnosis and prognosis (11–14).

The exosomes derived from MDSCs (MDSCs-Exos) are
involved in the function of immunosuppression, promoting
tumor angiogenesis, tumor metastasis, drug resistance of
malignant tumors (15–17). Here, we summarized linkages and
differences between MDSCs-Exos and parental cells, as well as
regulatory roles and possible diagnostic and prognostic values in
tumor immunity.
MDSCs IN TUMOR IMMUNITY

MDSCs are a special kind of cells that have important tumor
immunomodulatory effects, composed of several immature
heterogeneous cells originating from myeloid cells (18).
Normally, immature myeloid cells differentiate into mature
immediately after entering the peripheral organs (19). Under a
variety of pathological conditions, MDSCs expand and can be
detected in blood, cancer tissue, inflammatory sites, lymph nodes
and spleen (20). In the tumor microenvironment (TME), the
differentiation and amplification of MDSCs is mediated by a
variety of molecules, such as: granulocyte-macrophage colony–
stimulating factor, granulocyte colony–stimulating factor (G-
CSF), macrophage colony–stimulating factor, stem cell factor,
vascular endothelial growth factor (VEGF), and polyunsaturated
fatty acids (21–23). Activation of MDSCs is dependent on the
following cytokines: IFN-g, IL-1b, TNF, IL-4, IL-6, IL-13 and high
mobility group box protein 1 which function through NF-kB,
STAT1 and STAT6 pathways (24). According to different surface
markers, MDSCs are divided into two subtypes: granulocytic
MDSCs (G-MDSCs, CD11b+Ly6G+Ly6Clow) , termed
polymorphonuclear MDSCs (PMN-MDSCs) simultaneously,
and monocytic MDSCs (M-MDSCs, CD11b+Ly6G-Ly6Chi) (23,
25, 26). The number of G-MDSCs is far outweighed by that of M-
MDSCs, and a majority of current studies have focused on
investigating the capabilities of G-MDSCs, while the role of M-
MDSCs remains to be further investigated (27). Their
immunosuppressive abilities and mechanisms also differ (23,
28). G-MDSCs inhibit T-cell responses mainly through the
production of reactive oxygen species (ROS) by antigen-specific
methods. M-MDSCs produce large amounts of NO, arginase 1
(Arg-1) and immunosuppressive cytokines, such as IL-10, which
inhibit both antigen-specific and non-specific T-cell responses.
M-MDSCs have a higher inhibitory activity than G-MDSCs
(29–33).

MDSCs exert their immunosuppressive effect by promoting
the expansion of regulatory T cells (Tregs) (34–36), promoting
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the production of helper T cell 17 (Th17) (35), inducing
macrophage differentiation into the M2 phenotype (2, 37, 38)
and inhibiting of immune response of NK cells (39) and B
cells (40). In addition to suppressing the immune response,
MDSCs also accelerate tumor progression by remodeling
tumor microenvironment (22). MDSCs promote tumor
angiogenes is through up-regulat ing VEGF, matr ix
metallopeptidase 9 (MMP9) and bombina variegata peptide 8
(Bv8) (41). MDSCs also promote tumor metastases by
infiltrating primary tumors and facilitating the formation of
premetastatic niches (42).

In conclusion, MDSCs exhibit great prospect in the treatment
of cancer by blocking T cells, B cells and NK cells activity and
bolstering Tregs expansion and mobilization.
EXOSOME

Extracellular vesicles (EVs) were initially considered to be
“platelet dust” by Peter Wolf in 1967 (43). EVs transport
proteins, nucleic acids, lipids, cytokines, metabolites, and
enable intercellular information communication (44).
Depending on their origin, markers, properties and functions,
EVs are classified into two main groups: ectosomes and
exosomes (45). Ectosomes are vesicles formed by outward
budding of the plasma membrane, whereas exosomes are
intraluminal vesic les formed by plasma membrane
invagination, the release of the latter involves the fusion of
multivesicular bodies with the plasma membrane (46–48).
Recent studies suggest that CD63 is the signature exosome-
specific protein, while CD9 and CD81 are not specific (49).
Statistically, the cargoes that have been identified in exosomes
include 9769 proteins, 3408 mRNAs, 2838 miRNAs and 1116
lipids [data from http://www.exocarta.org (a database collecting
many studies)]. These components are involved in cellular
signaling pathways, regulation of lipid metabolism, tumor
progression, recurrence and metastasis (50–53).

After exosomes are released outside the cell, they participate
in information transmission with the target cells through
membrane fusion, endocytosis and binding to the receptors on
the surface of the target cells (54). Currently, it is becoming
increasingly evident that exosomes play an essential role in
disease, especially in tumors by promoting the reprogramming
of receptor cells (55–57). In non-small cell lung cancer(NSCLC),
tumor-derived exosomes(TDEs) polarize macrophages to an
immunosuppressive phenotype that increases programmed
death ligand-1 expression through NF-kB-dependent,
glycolysis-dominated metabolic reprogramming, triggering the
formation of pre-metastatic niche (58). Exosomal lncARSR
propagates sunitinib resistance through competitive binding of
miR-34/miR-449 in renal cell carcinoma (59).

In briefly, exosomes participate in the physiopathological
processes of coagulation, inflammation, angiogenesis and
immune response (12). Exosomes are widely distributed and
easy to modulate, can be used as a promising minimally invasive
tool for diagnosis and treatment (7, 60–62).
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CHARACTERIZATION OF EXOSOMES
DERIVED FROM MDSCs

It is now known that exosomes carry proteins, DNA, messenger
RNAs(mRNAs), noncoding RNAs(ncRNAs), and lipids.
MDSCs-Exos exert a unique function due to the specificity of
the cargoes carried. MDSCs-Exos are also rich in proteins, RNA
and DNA. We next discuss the properties of exosomes in
five dimensions.

Protein Differences Between MDSCs and
Their Exosomes
It is well known that protein is the material basis of life activities
(63). The same protein exists in different structures and performs
different biological functions due to post-translational
modifications (64). Current studies have shown that the
cargoes carried by MDSCs-Exos are mainly involved in the
immunosuppressive effect of MDSCs (65). S100A8/A9
(calcium binding protein, with chemotactic activity) is present
in both MDCSs and MDSC-EXO. Chronic inflammation
increased S100A8/A9 content in MDSCs (66), with insignificant
changes in exosomes (65). At present, numerous studies on
exosomes in tumor-bearing mice are mainly focused on the
differences of cargoes (especially ubiquitination protein (67),
glycoprotein (68, 69) and RNA (70, 71) carried by exosomes
and parental cells.

A study identified 1726 proteins in MDSCs and their
exosomes, of which 58% were identified in MDSCs and their
exosomes simultaneously. Regardless of inflammation, 30% of
the proteins in MDSCs are enriched in their exosomes, especially
those involved in exosome formation and protein sorting as well
as proteins that load miRNAs into exosomes. Through this
selective sorting mechanism, MDSCs-Exos may mediate some
functions different from those of MDSCs (15). Similar to other
exosomes, MDSCs-Exos enrich many characteristic components,
such as tetraspanins (including CD9, CD177), Hsp70, Hsp90a,
Hsp90b, Alix, and the ESCRT complex, which are involved in
exosome formation and protein sorting. Compared with parental
cells, the abundance of CD9 was 89-fold increased regardless of
inflammatory status (15, 65). MDSCs-Exos also contain many
other protein cargoes, including many nucleic acid binding
proteins, numerous histone variants and several elongation
factors. It has been reported that these proteins can bind to
nucleic acids and induce changes in nucleic acids expression and
the protein spectrum of receptor cells (72). Some chemotactic
proteins are enriched in MDSCs-Exos, such as the pro-
inflammatory proteins S100A8/9, CD47 and thrombospondin-
1. These proteins mediate the aggregation of MDSCs and
enhance the immunosuppressive function of MDSCs. The
relative abundance of the pro-inflammatory proteins S100A8/9,
which are secreted by MDSCs and mediate >90% of the
chemotactic effect on MDSCs, are not affected by inflammatory
conditions. The cytokine macrophage migration inhibition
factor and the chemokine platelet factor-4 are also enriched in
exosomes, and these proteins exhibit chemotactic activity on
leukocytes (15). Regardless of inflammatory conditions,
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transforming growth factor-b1(TGF-b1) is 4.3-fold more
abundant in the exosomes compared with parental cells (15).
TGF-b1 participates in the expansion of T cells and the
inhibition of NK cells (73, 74). Immunoglobulins, complement
regulatory factor H and C4B-binding proteins(C4B-bp) are
enriched in exosomes. They may also be involved in the
regulation of immune system by MDSCs and their
exosomes (15).

The above results indicated that the cancer-promoting effects
of MDCSs are partially achieved by exosomes. Targeting
MDSCs-Exos holds a bright future for cancer treatment.

Differences Roles of the Exosomes
Released by G-MDSCs and
M-MDSCs in Tumor
As we mentioned earlier, MDSCs are distinguished into two
subtypes. Interestingly, the exosomes derived from different
subtypes of MDSCs also differ in their impacts on tumor.
Rab27a controls exosomes biogenesis (75). The expression of
Rab27a was significantly reduced by transfecting siRNA. In a
tumor sphere formation assay, after inhibiting of exosome
derived from G-MDSCs, the tumor sphere numbers, CD44+
cell percentages and CD133+ cell percentages were decreased.
But the CD44+ cell percentages was not decreased when
exosomes were inhibited in M-MDSCs (76). This indicated
that G-MDSCs-Exos and M-MDSCs-Exos have different effects
on cancer cell stemness.

Currently, researchers have mainly focused on investigating
the role of G-MDSCs-Exos on tumor progression, and studies on
M-MDSCs-Exos are very rare. Although there is an evidence that
M-MDSCs-Exos affects tumor immunity. However, researchers
have mainly focused on investigating the role of G-MDSCs-Exos
on tumor progression, and studies on M-MDSCs-Exos are very
rare. To some extent, an insight into the role of M-MDSCs-Exos
may lead to new immunotherapeutic approaches. Distinguishing
the role differences between M-MDSCs-Exos and G-MDSCs-
Exos may be a new research hotspot.

Differences in Proteins Carried by
MDSCs-Exos Under Different
Inflammatory Conditions
As inflammation increases, an increasing number of MDSCs
were identified, and stronger immunosuppressive effect was
observed (77). MDSCs play a key role in the control of
experimental necrotizing small intestinal colitis in neonatal
mice by suppressing T-cell function (78). Immunosuppressive
proteins and miRNAs are increased in EVs during chronic
inflammation and aging (79). In one study, the researchers
identified 412 proteins, of which the abundance of 63 proteins
changed greater than 2-fold in an inflammatory environment. It
is worth noting that there was no obvious difference in quantity
of exosomes shed per MDSC isolated from low-inflammation or
high-inflammation environments. Compared with conventional
conditions, inflammatory conditions reduced the abundance of
33 proteins, such as C4B-bp, complement C3 and ficolin-1,
which participate in the innate immune response. Several
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cytoskeletal proteins and chemotactic proteins are found to be
reduced in an inflammatory environment, which are related to
the migration of exosomes. In addition, a highly inflammatory
environment increased the abundance of 30 proteins, including
Leukocyte elastase inhibitor A, DBF4-type zinc finger-containing
protein 2 homologue and Cathepsin G, etc (65).

Reducing inflammation may expand new horizons for cancer
treatment by weakening MDCSs in TME. In the future, the
majority of cancer patients may be able to benefit from this.

Ubiquitin Proteins and Glycoproteins
Carried by MDSCs-Exos
Ubiquitin is a common post-translational modification (80),
which affects protein function by influencing protein stability,
turnover, cellular localization, and regulating cellular signaling
cascade responses (81). The imbalance between ubiquitination
and deubiquitination is closely related to the occurrence of
human immune diseases, cancer, infection and neuropathy
(82). In NSCLC, deubiquitination of PDL-1 promotes immune
escape by suppressing CD8+T cell responses (83). NLRC3, a
member of the innate immune receptor, impaired CD4+ T cell
signaling and metabolism by limiting NF-kB activation, reducing
glycolysis and oxidative phosphorylation via decreased K63-
linked ubiquitination of TNF-receptor-associated factor 6 (84).
Therefore, it is urgently needed to investigate whether MDCSs
and MDSCs-Exos carry ubiquitin protein, which will help to
develop new treatment strategies based on exosomes. Protein
blot analysis demonstrated that the parental cells and their
exosomes contained different ubiquitinated protein profiles
(85). Initially, 10 ubiquitinated proteins in MDSCs-Exos were
identified (65). With the application of mass spectrometry-based
bottom-up proteomics technology, scholars isolated and
identified 50 ubiquitinated proteins from MDSCs-Exos (86).
Specifically, the ubiquitinated nuclear proteins include several
histones, ribosomal proteins and nucleic acid binding proteins.
The ubiquitinated histones in these exosomes may possess active
pro-inflammatory properties (87, 88). Interestingly, the pro-
inflammatory high mobility group box protein 1 is
ubiquitinated, promotes the accumulation of MDSCs, and
enhances the immunosuppressive effect of MDSCs (89).
Sorting nexin 13 has been identified to be involved in
endosomal transport of ubiquitinated proteins (90). Two
ubiquitinated keratins were revealed to play an active role in
plasma membrane invagination during the initial phase of EVs
formation (91, 92). Other ubiquitinated proteins leucine zipper
EF hand-containing transmembrane protein 1 and endoplasmin,
which participate in the formation of endosomes and
exosomes (65).

Similarly, glycosylation is an important protein modification
that determines protein folding and transport and is crucial for
mammalian survival (93, 94). Until 2018, 21 N-glycoproteins on the
surface of MDCS-Exos exosomes were identified using proteomic
methods, including CD44, CD47, CD321, CD157, CD11b, CD97,
thrombospondin1 (Tsp1), fibronectin, cytoskeletal krt, fibrinogen,
etc (95). Of special interest is CD47, donor CD47 plays an
important role in the control of T cell allogeneic response and
Frontiers in Immunology | www.frontiersin.org 4
tolerance induction after hepatocyte transplantation (96, 97).
It mediates the chemotaxis and migration of MDSCs by
combining with Tsp1 on MDSCs. When CD47 on tumor cells
binds to CD172a (signal regulatory protein a or SIRP a), it
can prevent macrophages from phagocytosing tumors (98)
and maintain acquired immune tolerance (97). Therefore,
CD47 is a potential drug target (99). In addition, it is worth
noting that MDSCs-Exos may transport immunosuppressive
cargoes to T cells through the binding of CD321 to TLFA-1 of
T cells (95).

Both ubiquitinated and glycosylated proteins are present in
MDSC and its derived exosomes, respectively, which supports
the idea that exosomes have an analog to parental cells.

mRNAs and miRNAs Carried by
MDSCs-Exos
In addition to carrying protein cargo, MDSCs-Exos also carry a
large number of RNAs, including mRNAs and miRNAs (15),
similar to the results of previous studies, almost no ribosomal
RNA was found (100–102). The mRNAs carried by exosomes is
also transferred to recipient cells and translated into functionally
active proteins, which produces more lasting effects than
proteins. Compared with parental cells, 45% of mRNA
transcripts in exosomes exhibited statistically differences in
abundance regardless of the inflammatory conditions. The
transcripts of these mRNAs took part in several signaling
pathways including “calcium signaling pathway”, “cAMP
signaling pathway” and “hippo signaling pathway”. In addition,
only approximately 3.5% of the mRNA transcripts differ in
abundance under inflammatory conditions compared with
parental cells. These mRNA transcripts played role in the
signaling pathway associated with TGF-b and VEGF.
Compared with conventional exosomes, several biological
processes were identified enriched in inflammatory exosomes,
including “cell-cell signaling”, “macrophage differentiation” (15).

Simultaneously, the study identified approximately 1500
differentially expressed miRNAs in MDSCs-Exos, and
approximately half of them exhibited increased abundance in
inflammatory exosomes. According to the prediction of these
miRNA targets, if these miRNAs are transferred to the target
cells and bind to mRNA targets, they will affect the proliferation,
differentiation and apoptosis of target cells. These miRNAs can
regulate the immune system and tumor microenvironment and
thus affect tumor progression and metastasis.

The miRNAs enriched in inflammatory exosomes include
miRNA-704, miRNA-5134, miRNA-7022 and miRNA-7062,
which bind to the target mRNA taking part in the apoptosis
pathway, including Fas. Compared to parental cells, miRNA-690
and miRNA-155 are enriched in exosomes and may be delivered
to MDSCs. MiRNA-690 promotes MDSCs expansion through
regulating the cell cycle of myeloid cells. MiRNA-155 increases
the production of IL-10. IL-10 induces the proliferation of
regulatory T cells and causes the transformation of macrophages
to tumor growth-promoting M2-Mf. Interestingly, miR-146a
negatively regulates the activation of the NF-kB pathway and
subsequently controls inflammation by targeting the IL-1
January 2022 | Volume 13 | Article 817942
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receptor-associated kinase 1 and TNF receptor-associated
factor 6 mRNAs (15, 103). In contrast to miRNA-690 and
miRNA-155, miR-146a suppresses the development of
malignant tumors (15).

We have realized that MDSCs-Exos regulate the signaling
pathways and biological processes of target cells through the
carried proteins and RNAs. At present, it is necessary to further
clarify the type and abundance of cargoes contained in MDSCs
and their exosomes, and compare the similarities and differences
of cargoes carried by MDSCs and exosomes under different
conditions. It is helpful to predict the function of MDSCs-Exos
according to the existing research on the composition and
function of MDSCs.
EFFECTS OF MDSCs-EXOS ON TUMOR
IMMUNITY IN VARIOUS CANCERS

Tumor immunosuppression is a feature of malignant tumors
(104). MDSCs-Exos play an irreplaceable role in tumor
immunity, similar to parental MDSCs. Here, we summarized
the role of MDSCs-Exos in cancer immunity.

Immune Suppression Induced by
MDSCs-Exos in Cancers
MDSCs are one of the components of TME and are involved in
tumor progression mainly by suppressing the function of T cells
(26). MDSCs-Exos, as the immunosuppressive factor in the
TME, carry many bioactive substances from MDCSs. In
tumor-bearing mice, MDSCs-Exos were significantly higher in
tumor tissue than at the spleen and bone marrow. MDSCs-Exos
activate CD8+ T cells and drive them to produce more IFN-g, but
MDSCs-Exos increase ROS production, activate the Fas/FasL
pathway in T cells, and trigger so-called activation-induced cell
death (AICD) (105, 106). In tumor patients, this process is
induced by the high expression of S100A8/9 (20). TDEs-
provided membrane-associated Hsp72 triggers the activation of
TLR2/MyD88-dependent STAT3 pathway in MDSCs through
autocrine IL-6, which triggers significant immunosuppressive
activity (107). The miRNAs carried by TDEs are also involved in
enhancing the expansion and immunosuppression of MDSCs.
For example, hypoxia-inducible miRNA-21 in TDEs enhances
MDSC expansion and activation by targeting RORa and
PTEN (108).

MDSCs-Exos regulate tumor immunity by carrying
differential bioactive contents that mainly act on MDSCs and
other target cells in the immune system. The pro-inflammatory
S100A8/9 heterodimer carried by MDSCs-Exos is chemotactic
for MDSCs and plays the primary role in promoting the
aggregation of MDSCs to the tumor tissue and pre-metastatic
niche (109). Other chemotactic proteins enriched in MDSCs-
Exos include CD47 and TSP1, which mediate the
immunosuppressive function of MDSCs together with S100A8/
9 (65). Similar to MDSCs, MDSCs-Exos can also transform
macrophages into tumor growth-promoting M2 macrophages
by reducing the production of IL12 from macrophages (65).
Frontiers in Immunology | www.frontiersin.org 5
TGF-b1 enriched in MDSCs-Exos induces Tregs or Th17 cells
and impair the cytotoxicity of natural killer (NK) cells, which
enhances the immunosuppressive effect of MDSCs-Exos (15).

Contribution of MDSCs-Exos to Tumor
Progression and Metastasis
MDSCs and their exosomes participate in the entire process of
tumor progression through immunosuppression, angiogenesis,
invasion and metastasis, the formation of a premetastatic niche
and the stemness of tumor cells. G-MDSCs gathered in lung
cancer tissue secreted a large amount of miRNA-143-3p.
MiRNA-143-3p promotes tumor cell proliferation by inhibiting
integral membrane protein 2B and activating PI3K/Akt
pathway (110).

Angiogenesis is fundamental for the growth and metastasis
of solid tumors (111). Tumors can induce the upregulation
of growth factors, including VEGF, ANG, PDGF, TGF
and EGF, which disrupt the balance between proangiogenic
and antiangiogenic signals. Growth factors also induce the
‘‘angiogenic switch’’ and subsequently promote the proliferation
of vascular endothelial cells and the formation of capillaries (112).
In addition, hypoxia in the tumor microenvironment aggravates
this process by increasing the expression of proangiogenic
factors (113). Several recent studies demonstrated that MDSCs
and their exosomes also participate in tumor angiogenesis by
recruiting MDSCs to the tumor site with several chemokines.
MDSCs can secrete proangiogenic factors, including BV8
(bombina variegata peptide 8), VEGF, and basic fibroblast
growth factor, by activating the STAT3 signaling pathway (41).
MDSCs can also produce MMP-9, a protease that degrades
extracellular matrix, which triggers the release of VEGF
deposited in the matrix and increases its bioavailability (114).
Moreover, the production of CCL2 in the TME is another
important mechanism by which MDSCs promote tumor
angiogenesis (115). Notably, splenic MDSCs can differentiate
into endothelial progenitor cells that directly participate in
tumor angiogenesis (116). It has been reported that miR-126a
+MDSCs induced by doxorubicin (DOX) treatment in breast
tumor-bearing mice interact with IL-13+Th2 cells in a positive
feedback loop manner, increasing the production of Th2 cells
and miR-126a+MDSC-Exo. Consequently, the increased level of
miR-126a+MDSC-Exo lead to lung metastasis by promoting
tumor angiogenesis (17).

One of the negative features of malignant tumors is their
unlimited proliferation ability, and cancer stem cells (CSCs)
endow them with this ability (117). CSCs have been considered
a significant supporter of tumor progression and chemoresistance,
and emerging evidence suggests that MDSCs and their exosomes
exert crucial influence on the stemness of tumor cells. In patients
with ovarian cancer, MDSCs induce ovarian cancer cells to
express microRNA101. MicroRNA101 increases the expression
of stem cell genes, including OCT3/4, SOX2, and NANOG, via
inhibiting the expression of C-terminal binding protein-2 in
ovarian cancer cells. As a result, MDSCs promote the stemness of
ovarian cancer cells (118). In breast cancer patients, MDSCs
promote cancer cell stemness by activating the NO/NOTCH and
January 2022 | Volume 13 | Article 817942
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IL-6/STAT3 signaling pathways (119). New evidence in cervical
cancer patients indicates that MDSCs induced by tumor-derived
G-CSF enhance the stemness of cancer cells via producing
Prostaglandin E2(PGE2) (120). MDSCs infiltrate into PTEN
null prostate cancer cells and induce the stemness of prostate
cancer cells via producing IL-1Ra and blocking the IL-1a/IL-1R
axis (121). In addition, MDSCs promote the stemness and
induce mesenchymal characteristics of pancreatic cancer cells
by upregulating the levels of p-STAT3 (122). In A549
transplantation tumors treated with endostatin, MDSCs and
MDSC-derived TGF-b1 and hypoxia enhanced the stemness of
A549 cells and their resistance to endostatin (123). A new study
of colorectal cancer revealed that hypoxia can promote G-
MDSCs to generate more MDSCs-Exos by up-regulating HIF-
1a. MDSCs-Exos aggravate the stemness of colorectal cancer
cells through exosomal S100A9. Blocking S100A9 expression in
MDSCs-Exos can inhibit the stemness of colorectal cancer cells
and prevent the occurrence of colon cancer in mice with colitis
(76) (Figure 1).

The Role of MDSCs in
Tumor Chemoresistance
Chemotherapy is one of the most important treatments for
malignant tumors, but chemoresistance is a crucial obstacle
impeding clinical treatment (124). At present, the mechanism
underlying chemoresistance has not been well elucidated, but
several emerging lines of evidence suggest that MDSCs induce
reduced tumor cell sensitivity to chemotherapy. In mice with
Frontiers in Immunology | www.frontiersin.org 6
colorectal cancer, oxaliplatin leads to chemoresistance by
restraining the polarization of MDSCs into M1-like
macrophages. In addition, MDSCs and their differentiated M2-
like macrophages promote immunosuppression, angiogenesis
and chemoresistance by producing protumorigenic cytokines
(IL-10, TGF-b, VEGF and proteases) and suppressping the
function of CD8+ T cells (125).

Tumor-derived G-CSF increases the production ofMDSCs and
attenuates the spontaneous apoptosis of MDSCs by activating the
STAT3 pathway. Then, the increased G-MDSCs induce
angiogenesis through Bv8, which leads to chemoresistance in
cervical cancer. The study also showed that treating mice with
depleting MDSCs enhances the effect of chemotherapy for cervical
cancer (126). It has been reported that IL-6 released by drug-
resistant hepatocellular cancer promotes the expansion and
activity of MDSCs, and the interactions between IL-6 and
MDSCs promote the chemoresistance of hepatocellular cancer.
The sensitivity to chemotherapy can be enhanced via depleting
MDSCs or blocking IL-6 (127). Similarly, PMN-MDSCs promote
multiple myeloma survival in response to chemotherapies, such as
doxorubicin and melphalan, and the process is mediated by
soluble factors, including IL-6 (128). Benzyl butyl phthalate
exposure aggravates the resistance of breast cancer to
doxorubicin. Mechanically, it promotes MDSCs to infiltrate into
tumors and increases the secretion of S100A8/A9 by MDSCs
(129). A study shows that MDSCs promote Tregs infiltrate into
lung tumors and trigger CD8T cells depletion, which strongly
induces immunosuppression and chemoresistance (130).
FIGURE 1 | Immunoregulator effects of MDSCs-Exos in cancers.
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In numerous studies, MDSCs-Exos exhibit a highly similar
role to MDSCs, but whether they play a role in tumor drug
resistance has not been explored. In-depth studies on the role of
MDSCs-Exos in drug resistance may provide new perspectives
for anti-cancer treatment strategies.
EFFECTS OF MDSCs-EXO IN
NON-ONCOLOGIC DISEASES

Except in tumors, the massive expansion of MDSCs is always
accompanied by non-oncologic diseases, especially in
autoimmune diseases. Unlike their role in tumors, MDSCs and
MDSCs-Exos can alleviate autoimmune diseases (131). Exosomes
derived from MDSCs carry a variety of bioactive contents,
including proteins and RNAs, which play a similar role as
MDSCs. MDSCs play an irreplaceable role in maternal-fetal
tolerance in normal pregnancy. The isolation and identification
of exosomes from maternal peripheral blood G-MDSCs revealed
that G-MDSCs-Exos inhibited CD4+T cells and CD8+T cells,
induced Tregs production, Th2 cell differentiation, and this
effect was preserved under frozen conditions (132). (Figure 2B).
This is very beneficial for application in clinical treatment. G-
MDSCs-Exos attenuated the damage of inflammatory cell
infiltration and reduced the activity index of DSS-induced colitis
in mice, thus significantly alleviating the severity of the disease.
Frontiers in Immunology | www.frontiersin.org 7
This effect was mainly achieved via repressing the proliferation of
Th1 cells, promoting the expansion of Tregs, and reducing the
levels of serum IFN-g and TNF-a in mice (133) (Figure 2A). In
the mouse model of autoimmune alopecia areata (AA), MDSCs-
Exos reversed the progression of the disease and promoted hair
regeneration. MDSCs-Exos accumulated in the draining lymph
nodes and cells near residual hair follicles. They are absorbed by T
cells, macrophages and NK cells, especially Tregs. As a result,
MDSCs-Exos significantly alleviated the disease by amplifying
Tregs, weakening the cytotoxic activity of T cells, reducing the
proliferation of T helper cells and increasing lymphocyte apoptosis
(134) (Figure 2C). In mice with collagen-induced arthritis, G-
MDSC-derived exosomes attenuated joint destruction efficiently
by reducing the number of Th1 and Th17 cells. Mechanistically,
miR-29a-3p carried by G-MDSCs-Exos targets T-bet to suppress
the differentiation of Th1 cells, and miR-93-5p carried by G-
MDSCs-Exos targets STAT3 to suppress the differentiation of
Th17 cells (16). There is no such ability in M-MDSCs exosomes.
Under hypoxic conditions, the higher levels of miR-29a-3p and
miR-93-5p in G-MDSCs-Exos more effectively inhibited the
proliferation of CD4+T cells and thus more effectively attenuate
arthropathy (135). In addition, PGE2 inMDSCs-Exos upregulated
the phosphorylation levels of GSK-3b and CREB to promote IL-10+
Breg cell production to attenuate CIA in mice. This effect was
blocked by celecoxib (136). (Figure 2D)

Although the understanding of the relationship between
MDSCs and autoimmune diseases has become increasingly
A

B

C D

FIGURE 2 | (A) In DSS-induced colitis, G-MDSCs-Exos inhibited the proliferation of Th1 cells, promoted the proliferation of Treg cells, and decreased serum IFN-g
and TNF-AIN levels in mice. (B) Maternal peripheral blood G-MDSCs-Exos regulated different subtypes of T cell differentiation and function. (C) MDSCs-Exos
inhibited AA progression and promoted hair regrowth. (D) G-MDSCs-Exos attenuated CIA in mice by regulating Th1, Th17 and Breg cells.
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clear, research on the role of MDSCs-Exos in autoimmune
diseases remains limited. Because abundant bioactive molecules
overlap in MDSCs and MDSCs-Exos, the function of MDSCs-
Exos can be predicted and verified according to known research
on MDSCs. Related researches will provide fresh insight into the
diagnosis and treatment of autoimmune diseases.
CLINICAL APPLICATIONS OF
MDSCs-EXOS

Given the crucial role of MDSC-mediated immunosuppression in
tumor progression, several studies have explored a number of
therapeutic strategies by targeting MDSCs. These treatments
mainly include two aspects. On one hand, the number of MDSCs
are reduced by using chemotherapeutic drugs (137), inhibiting the
expansion of MDSCs (138) and promoting the differentiation of
myeloid cells (139). On the other hand, the functions of MDSCs are
suppressed. For example, nitroaspirin is used as an ROS inhibitor
(140), and cyclooxygenase 2 inhibitors are used to restrain the
production of arginase 1 (141). In addition, phosphodiesterase 5
inhibitors are used to suppress the production of iNOS (142).

In recent years, research on the clinical application of exosomes
has become a hot topic. In terms of diagnosis, proteins and ncRNAs
expressed in exosomes can be used as markers for early diagnosis,
drug sensitivity and prognosis of many cancers (143). In terms of
treatment, exosomes are used in tumor immunotherapy and as a
new carrier for loading drugs, proteins and ncRNAs (144). When
exosomes contact with the extracellular matrix or membrane of the
target cells, the exosome contents will be directly transported into
the target cells. According to these phenomena, drugs can be loaded
into exosomes to target specific areas to treat the disease. At present,
there are only a few attempts on the clinical application of MDSCs-
Exos. The level of plasma S100A9 expressed in exosomes in patients
with colorectal cancer is significantly increased compared with that
in normal controls, and the serum level in patients with recurrent
tumors is increased compared with that in patients with successful
resection of colorectal cancer. Consequently, MDSC-Exo S100A9
can be used as a marker to predict the occurrence and development
of colorectal cancer (76). In addition, respiratory hyperoxia inhibits
the stemness of colorectal cancer cells by reducing the production of
G-MDSCs-Exos, which may be used to assist in the treatment of
colorectal cancer. Similarly, breast cancer patients who are resistant
to DOX chemotherapy exhibit high levels of circulating miR-126a+
MDSCs-Exos in their serum. Therefore, miR-126a+MDSC-Exo can
be used as a potential biomarker of chemotherapy resistance to
DOX in breast cancer and to guide the use of DOX in the treatment
of breast cancer patients. Moreover, the systematic application of
miR-126a inhibitor can improve the chemotherapeutic efficiency of
DOX against lung metastasis by inhibiting tumor angiogenesis,
which provides a basis for targeting MDSCs-Exos (17).

Non-steroidal anti-inflammatory drugs, glucocorticoids, and
immunosuppressants have always been the main treatments of
autoimmune diseases, and nowMDSCs-Exos may be used as a new
treatment strategy. Exosomes derived from G-MDSCs relieved
collagen-induced arthritis by inhibiting the proliferation of Th1
and Th17 cells (16) and inducing IL10+Breg cells (136).
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Furthermore, high expression of miR-29a-3p and miR-93-5p
induced by hypoxia in exosomes improved the condition (135).
In addition, the application of G-MDSC-derived exosomes
attenuated DSS-induced colitis by decreasing the percentages of
Th1 cells and promoting the expansion of Tregs (133). MDSCs-
Exos were also used in the treatment of autoimmune alopecia
areata, which reversed the progression of the disease and promoted
hair regeneration (134). Relay transfer of MDSCs protected
pregnant mice from miscarriage, and exosomes exhibited similar
effects, making MDSCs-Exos a possible target for the treatment of
immune pregnancy complications. However, its safety as well as
reliability still need to be further explored in depth (132).

There are still many blank areas in related research, and it is a
demanding task to gain insight. However, future research on the
characteristics, mechanism and clinical application of MDSCs-
Exos will offer promising information.
CONCLUSION

In summary, MDSCs-Exos play multiple roles in the tumor
immunity. MDSCs-Exos exhibit tumor immunosuppressive,
angiogenic and metastatic effects similar to parental cells due
to similar substances to parental cells. However, research on
functions, mechanisms, and contribution rates of MDSCs-Exos
in tumor immunity is limited. Thus, the scientific questions that
require urgent exploration include: 1. What other specific
substances in MDSCs-Exos are highly effective in affecting
tumor immunity? 2. Whether these substances regulate each
other and subsequently affect tumor immunity? 3. How to apply
MDSCs-Exos to advanced cancer patients as soon as possible?4.
How to ensure the safety of MDSCs-Exos in clinical applications?

To conclude, MDSCs-Exos play an essential role in the tumor
immunity. Further investigation of MDSCs-Exos in tumor
immunity will be beneficial for overcoming tumor progression,
recurrence, metastasis and drug resistance, providing potential
biomarkers and targets for immunotherapy of cancers. Therefore,
people no longer turn pale at themention of a “cancer” in the future.
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