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Axial spondyloarthritis (axSpA) is comprised of ankylosing spondylitis (AS) and non-
radiographic axSpA. In recent years, the involvement of the interleukin (IL)-23/IL-17 axis in
the pathophysiology of axSpA has been widely proposed. Since IL-23 is an upstream
activating cytokine of IL-17, theoretically targeting IL-23 should be effective in axSpA,
especially after the success of the treatment with IL-17 blockers in the disorder.
Unfortunately, IL-23 blockade did not show meaningful efficacy in clinical trials of AS. In
this review, we analyzed the possible causes of the failure of IL-23 blockers in AS: 1) the
available data from an animal model is not able to support that IL-23 is involved in a
preclinical rather than clinical phase of axSpA; 2) Th17 cells are not principal inflammatory
cells in the pathogenesis of axSpA; 3) IL-17 may be produced independently of IL-23 in
several immune cell types other than Th17 cells in axSpA; 4) no solid evidence supports
IL-23 as a pathogenic factor to induce enthesitis and bone formation. Taken together, IL-
23 is not a principal proinflammatory cytokine in the pathogenesis of axSpA.
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INTRODUCTION

Axial spondyloarthritis (axSpA) comprised of ankylosing spondylitis (AS) and non-radiographic
axSpA (nr-axSpA) is an inflammatory disease of the axial skeleton. Historically, therapies of AS
have been limited to mainly physiotherapy and non-steroidal anti-inflammatory drugs (NSAIDs),
while conventional immunosuppressants or disease-modifying anti-rheumatic drugs may only be
helpful in concurrent peripheral joint involvement. In the last two decades, the major therapeutic
breakthrough has been the advent of biologic drugs TNF inhibitors (TNFi), which have shown good
efficacy in patients who were non-responders or insufficient responders to NSAIDs, with reduction
of pain, stiffness, and physical handicap. However, up to 40% of axSpA patients do not demonstrate
a meaningful clinical response to TNFi, and some patients lose response during treatment
(secondary therapeutic failure) (1). Further, TNFi may be contraindicated for certain patients. So
there is still a need for an additional class of biologic.

The discovery of the interleukin (IL)-23/IL-17 pathway revealed key molecules involved in the
pathophysiology of axSpA. When IL-23 binds to its receptor IL-23R, the complex recruits JAK2 and
org February 2022 | Volume 13 | Article 8184131
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Tyk, members of the Janus family of tyrosine kinases, which in
turn mediate the activation of the IL-23/IL23R and, eventually,
the phosphorylation of the downstream STAT3 (2). IL-23
stimulates the differentiation and expansion of Th17 cells via
IL-23R and induces the release of molecules such as IL-17 or IL-
22, eventually activating the “effector cells” keratinocytes (3, 4), B
cells, osteoclast precursors, and macrophages (5, 6). Mounting
evidence demonstrates that the IL-23/IL-17 axis appears to be
one of the main pathways involved in the development of axSpA.
It is reasonable that the inhibition of IL-23 and IL-17 should be
an alternative choice for the treatment of axSpA.

Clinical trials performed with the IL-17-blocking monoclonal
antibodies secukinumab, ixekizumab, bimekizumab, and
netakimab have clearly shown significant reductions in the
signs and symptoms of patients with radiographic axSpA or
AS (7–10) and of patients with non-radiographic axSpA (11, 12).
Furthermore, long-term treatment with secukinumab retarded
structural progression in AS (13).

But drugs blocking IL-23 lacked efficacy in the treatment of
axSpA. For instance, ustekinumab, an IL-12/IL-23 inhibitor, was
assessed in axSpA in three trials, but the latter two were
discontinued because of failure in the first trial (14).
Risankizumab, an IL-23p19 inhibitor, failed in AS to meet the
primary endpoint (15). The converse efficacy of IL-17A
inhibition and IL-23 inhibition in AS suggests that IL-17A
rather than IL-23 is the major cytokine mediating disease
pathogenesis in axSpA. Targeting the two members of the IL-
23/IL-17 axis, both anti-IL-17 and anti-IL-23 treatment have
shown beneficial effects in psoriasis and PsA (16–18), while IL-17
inhibitors rather than IL-23 inhibitors are effective in axSpA.
Here, we discussed the possible causes for the therapeutic failure
of IL-23 inhibition in axSpA.
IS IL-23 INVOLVED IN INITIATION RATHER
THAN PERPETUATION OF AXIAL
SPONDYLOARTHRITIS?

IL-23 is primarily secreted by antigen-presenting cells such as
macrophages and dendritic cells and along with other cytokines
including IL-1 and IL-6 in tissues like the skin, intestinal mucosa,
lungs, synovium, and brain. IL-23 expression is induced by
stimulation of myeloid-derived cells with pathogen ligands, as
well as other mediators such as prostaglandin E2 and
proinflammatory cytokines. IL-23 is a pleiotropic cytokine
critical for the differentiation, survival, and expansion of
conventional (ab) T cells and unconventional (gd) T cells (19),
which regulate a plethora of immune responses, and it can
promote the polarization to IL-17-expressing cells.

Some researchers believed that one of the possible reasons
why IL-23 inhibitors are ineffective in axSpA may be that IL-23 is
pivotal for the initiation of disease but not involved in ongoing or
persistent inflammation (6, 20–22). The HLA-B27/Hub2m
transgenic rats were immunized with heat-inactivated
Mycobacterium tuberculosis to induce an experimental
Frontiers in Immunology | www.frontiersin.org 2
SpA model. By using the SpA model, van Tok et al. (20)
reported that treatment with anti-IL-23R before the signs of
arthritis/spondylitis onset could completely inhibit the
development of spondylitis and peripheral arthritis, whereas
treatment with anti-IL-23R 1 week after 50% arthritis
incidence failed to reduce the incidence and the severity of
experimental SpA. In contrast, anti-IL-17 treatment suppressed
arthritis/spondylitis in both the initiating phase and established
phase of the same SpA model and inhibited the periosteal new
bone formation (23, 24). So these data seem to support that
axSpA might be IL-23-dependent in the initiation of the disease
but IL-23-independent once the disease is established, which is
different from IL-17.

Collagen-induced arthritis (CIA) is a classical model of
experimental arthritis mimicking rheumatoid arthritis (RA),
which is characterized by synovitis, cartilage destruction, and
bone erosion. In CIA mice, IL-23p19 knockout protected the
mice to develop clinical signs of disease and completely inhibited
the development of joint and bone pathology (25). Neutralizing
anti-IL-23p19 antibody (anti-IL23p19) treatment before the
signs of arthritis onset significantly decreased arthritis score
and histological severity in CIA mice, but the treatment lost
the inhibitory effects when given after the onset of arthritis (26).
These data also indirectly support that IL-23 only plays a
pathological role in the initiating phase of inflammatory
arthritis. However, IL-23p19 knockout did not prevent the
onset of joint inflammation in a murine model of antigen-
induced arthritis (27). Polyclonal anti-IL-23 antibody
treatment after the onset of arthritis significantly decreased
paw volume, synovial tissue inflammation, and bone
destruction in CIA rats in a dose-dependent manner (28).
These data do not support the above hypothesis that IL-23
may only play a pathogenic role in initiating arthritis.

Although animal models are widely used to test potential new
therapies, there is no ideal animal model with high predictive
values of therapeutic efficacy in human axSpA. It is easier for a
compound/agent to exert beneficial efficacy in experimental
arthritis than human arthritis. Moreover, it is easier to show
the efficacy of protective treatment than therapeutic treatment in
animal models of arthritis. For example, there are a huge amount
of compounds to be demonstrated to have prophylactic
efficacy to inhibit the development of arthritis in CIA models,
including dietary ingredients/supplements (e.g., resveratrol,
docosahexaenoic acid, and salmon proteoglycan) (29–31),
countless herb extracts (e.g., Acanthopanax senticosus Harms
extract, aqueous extract of Trachyspermum ammi seeds, and
Glycine tabacina ethanol extract) (32–34), anti-inflammatory
agents (e.g., ibuprofen, celecoxib, etodolac, indomethacin, and
dexamethasone) (34–36). Vascular endothelial growth factor
(VEGF) is a growth factor with important pro-angiogenic
activity. Neutralizing anti-VEGF mAb was demonstrated to
have prophylactic but not therapeutic actions in CIA mice
(37). We cannot take for granted that these data support that
VEGF is only involved in the initiation rather than persistence of
RA. Since other studies demonstrated that expression levels
of VEGF mRNA and protein were associated with severity of
February 2022 | Volume 13 | Article 818413
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arthritis in CIA mice (38), clinical data supported that VEGF
plays a pivotal role in the pannus formation/angiogenesis in
rheumatoid synovium (39).

Evidence shows that a compound’s therapeutic efficacy rather
than prophylactic efficacy in both CIA and adjuvant-induced
arthritis (AIA) models has a more predictive value of clinical
efficacy in patients with RA than efficacy from either model alone
(40). IL-17 deficiency markedly suppressed joint inflammation
and destruction in both CIA and streptococcal cell wall-induced
arthritis models (41, 42). IL-17A gene transfer exacerbated
synovial inflammation and bone loss before noticeable joint
swelling was established in CIA mice (43). Both preventive and
therapeutic treatments with IL-17 blockers (i.e., neutralizing
anti-IL-17 antibody, IL-17 receptor IgG1 Fc fusion protein,
and vaccination against IL-17) resulted in reduced chronic
inflammation and cartilage degradation in both CIA and AIA
models (44–47). Based on these data from the 3 animal models,
can we draw a conclusion that IL-17 plays a pivotal role in both
initiating phase and ongoing phase of RA? Of course, it is not
true, since numerous clinical studies confirmed that RA patients
failed to exhibit a satisfactory response to neutralization of IL-17/
IL-17 receptor (i.e., secukinumab, ixekizumab, and brodalumab)
(48–51).

Taken together, the available data from one animal model are
not able to support that IL-23 is involved in an initiating rather
than ongoing phase of axSpA.
TH17 CELLS ARE NOT PRINCIPAL
INFLAMMATORY CELLS IN THE
PATHOGENESIS OF AXIAL
SPONDYLOARTHRITIS

In 2005, two groups independently discovered a new specific
subset of CD4+ T cells, Th17 cells, which mainly produce IL-17
(52, 53). Except for IL-17, Th17 cells also produce IL-22 and
certain other proinflammatory cytokines.

IL-23 significantly enhanced IL-17 secretion (54), and Th17
cells were absent in IL-23-knockout mice (55). These data imply
that IL-23 is critical for Th17 cell development or survival. Later
studies discovered the combination of IL-6 and transforming
growth factor (TGF)-b induced transcription factor RORgt in
naïve T cells and upregulated IL-23R expression (56). IL-23/IL-
23R signaling plays an important role in the stabilization of the
Th17 phenotype and expansion of Th17 cells (56). In human
CD4+ T cells, IL-1b induced differentiation of Th17 cells, and IL-
6 further enhanced the differentiation (57). So the differentiation,
expansion, and stabilization of human Th17 cells depend on the
presence of TGF-b, IL-23, IL-6, and IL-1b (58). Thereafter, the
IL-23/IL-17 axis has been attracting a lot of attention in
inflammatory disorders, including axSpA (59).

The finding from genome-wide association studies (GWAS)
was a major stimulus to consider the importance of Th17 cells in
axSpA or AS, which demonstrated that polymorphisms in
multiple genes of those cytokines and their signaling pathways
are involved in the Th17 pathway, such as IL-23R, IL-12B
Frontiers in Immunology | www.frontiersin.org 3
(encoding p40 of IL-23 and IL-12), IL-1R2, IL-6R, and RUNX3
(60, 61). In 2008–2009, increased proportions of Th17 cells in
peripheral blood were found in AS patients (62, 63). Moreover, the
protective effect to developASwas found in the carrierswithR381Q
IL23 receptor polymorphism, resulting in a lower percentage of
circulating Th17 cells (64, 65). All these data indirectly support that
Th17 cells play an important role in the pathophysiology of AS.
However, the evidence from clinical trials to block the cytokines in
the differentiation or expansion of Th 17 cells is disappointing. As
discussed above, IL-23 inhibition with both ustekinumab targeting
IL-23p40 and IL-12p40, and risankizumab targeting IL-23p19,
failed to exert significant efficacy in AS (14, 15). Neither
tocilizumab, a humanized monoclonal antibody against IL-6
receptor, nor sarilumab, a fully human monoclonal antibody anti-
IL-6R, showed satisfactory efficacy in patientswith activeASor SpA
(66, 67). IL-1 inhibitionwith anakinra, a recombinant IL-1 receptor
antagonist, failed to show satisfactory improvement in AS
either (68).

These data imply that Th17 cells are not principal
inflammatory cells in the pathogenesis of axSpA, which does
not mean that IL-17 is not a principal proinflammatory cytokine
in axSpA, because Th17 cells are not the sole cell source of IL-
17 (3).
IL-17 CAN BE PRODUCED BY SEVERAL
IMMUNE CELL TYPES OTHER THAN TH17
CELLS IN AXIAL SPONDYLOARTHRITIS
INDEPENDENTLY OF IL-23

The IL-17 superfamily consists of six members (IL-17A to IL-
17F). IL-17A and IL-17F are the two members with the highest
sequence homology to each other (50%) and share similar
actions. IL-17 acts on many cell types including T cells
themselves. In inflammatory arthritis, IL-17A can induce the
production of IL-1b, IL-6, TNF-a, C-C motif chemokine ligand 2
(CCL2), matrix metalloproteinases (MMPs) (including MMP1,
MMP9, and MMP13), and receptor activator of nuclear factor-
kB (NF-kB) ligand (RANKL) from target cells, thereby
perpetuating the inflammation, driving the degradation of
extracellular matrix, and inducing bone erosion within the
joint. IL-17 also promotes angiogenesis, thus increasing blood
flow and facilitating the influx of inflammatory cells into the
inflamed joint [reviewed in (69)].

Increased expression of IL-17A was found in the synovial
fluid and/or serum from patients with active AS (70). In AS facet
joints, the significantly increased frequency of IL-17-secreting
cells was demonstrated (71). These data suggest that IL-17 might
participate in the pathophysiology of AS.

However, immunohistological analysis further revealed that
the majority of IL-17(+) cells in AS facet joints were neutrophils,
while CD3+ T cells and AA-1+ mast cells were less often IL-17-
positive (71). No significant difference in the frequency of Th17
cells in the blood was found between axSpA patients and healthy
controls (71). These data suggest that Th17 cells might be not the
February 2022 | Volume 13 | Article 818413
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major source of IL-17 in axSpA/AS, although IL-17 was first
thought to be secreted by CD4+ Th17 cells.

Recently, IL-17 has been demonstrated to be produced by
lymphocytes of both the adaptive and innate immune systems.
Aside from Th17 cells, IL-17-producing CD8+ T cells (Tc17) also
produce IL-17 (72). During an inflammatory response, much of
the IL-17 is produced by innate immune cells, including gd T
cells (73), mucosal-associated invariant T (MAIT) cells (74),
natural killer (NK) cells (75, 76), invariant NK T (iNKT) cells
(77), type 3 innate lymphoid cells (ILC3) (78), lymphoid tissue
inducer (LTi) cells (79, 80), and neutrophils (81). RORgt, the
master transcriptional regulator of Th17 cells, is also expressed
by IL-17-producing innate-like T cells, such as iNKT and gd T
cells (82).

Increased levels of conventional CD8+ Tc17 cells were found
in the blood of AS patients, and the proportion of Tc17 cells
positively correlated with the disease severity of AS. AS patients
had a lower frequency of gd T cells and MAIT cells in the
peripheral blood but had an elevated frequency of IL-17A+
MAIT cells in blood as compared with healthy controls (83–
85). Compared with RA, there are more enriched IL-17A+MAIT
cells in the synovial fluid of AS (83, 84). Expression of a MAIT
cell activation marker CD69 on IL-17A+ MAIT cells was
correlated with the Ankylosing Spondylitis Disease Activity
Score (ASDAS) in patients with AS (84). In normal human
spinous processes, entheseal soft tissue, and peri-entheseal bone,
entheseal gd T cells with the phenotype of Vd1 and Vd2 subsets
were confirmed immunohistochemically (86). IL-17-producing
ILC3 cells were expanded in the blood, synovial fluid, gut, and
bone marrow of patients with AS (87). Increased IL-17+ NK, gd
T, and ILC3 cells in peripheral blood and synovial fluid were
found in patients with reactive arthritis, enteropathic SpA, and
undifferentiated SpA (88, 89). All these data support that the IL-
17-producing cells may be involved in the pathophysiology of
SpA. Furthermore, upregulation of IL-17 in AS MAIT cells was
not dependent on priming with IL-23 (83). In gd T cells, the
production of IL-17A was also IL-23-independent (86, 90).

Taken together, IL-17 may be produced independently of IL-
23 in the immune cells other than Th17 cells in axSpA.
IL-23 OVEREXPRESSION IS NOT
SUFFICIENT TO INDUCE ENTHESITIS
AND BONE FORMATION

IL-23 plays a key role in amplifying and maintaining IL-17
production in many cells. Monocytes and dendritic cells are the
primary cells releasing IL-23. A CD14+ myeloid population
(monocytoid cells) in the human enthesis was found to
produce IL-23, IL-1b, TNF, and CCL20 (91). In the facet joints
of patients with AS, IL-23-positive cells were found to be
increased in the subchondral bone marrow, but not increased
in fibrous tissue (92). In 2007, IL-23R gene polymorphisms were
first revealed as risk factors for developing AS (93). In 2012, IL-
12B (encoding p40 of IL-23 and IL-12) gene polymorphism was
found to be associated with the development of AS (94). Elevated
Frontiers in Immunology | www.frontiersin.org 4
serum IL-23 levels in AS were found in 2 pilot studies (95, 96).
These data indirectly suggest the pathogenic role of IL-23 in AS.
But there were also conflicting data regarding the higher
susceptibility of IL-23R gene polymorphisms (97, 98) and a
higher serum IL-23 level in active AS (99).

In 2011, Adamopoulos et al. (100) reported that the
phenotype of the animal model with systemic overexpression
of IL-23 was characterized with chronic arthritis and severe bone
loss. The animal model with systemic overexpression of IL-23
was induced by hydrodynamic delivery of an IL-23 minicircle
DNA into the tail veins of B10.RIII mice, and serum IL-23 was
stably expressed for at least 90 days. Histological analysis of the
inflamed paws and knees revealed synovitis, pronounced
neovascularization/panus, myelopoiesis in the bone marrow,
and extensive erosion with numerous osteoclasts. IL-23-
mediated structural damage to the skeleton and extensive
erosion of cortical bone were also noted by micro-CT.
Compared with wild-type mice, although there were equal
numbers of osteoclast precursors in bone marrow monocytes
isolated from IL-23p19−/− mice, the IL-23p19−/− osteoclast
precursors had impaired ability to differentiate into mature
osteoclasts and had impaired ability of dentine resorption
(100). In vitro , IL-23 was demonstrated to promote
osteoclastogenesis in a lot of studies (56, 101–105), and IL-23
might indirectly inhibit osteoclast differentiation via activated T
cells (106, 107). These findings cannot account for the
pathophysiological role of IL-23 in axial SpA and did not catch
enough attention. On the contrary, in 2012, the findings from
another study with the same animal model satisfied our
expectation (108) and rapidly attracted numerous scientists’
attention (109, 110).

In this attractive study (108), systemic overexpression of IL-
23 in B10.RIII mice was also induced by hydrodynamic delivery
of an IL-23 minicircle DNA into the tail veins, which resulted in
long-term expression of IL-23 and elevated serum IL-23 for at
least 100 days. The mice with IL-23 overexpression developed
severe paw swelling. Histological analysis revealed severe
entheseal inflammation, and such enthesitis was presently
accompanied with new entheseal bone but no synovial joint
destruction (108). The evident new bone formation in the paws
of the IL-23-overexpression mice was further confirmed by high-
resolution micro-CT. In the entheseal cells purified from the
animal model, IL-23 promoted IL-17 and IL-22 expression. IL-22
promoted entheseal and periosteal bone formation by
phosphorylation of STAT3 in osteoblasts (108). IL-23 was
demonstrated to be essential and to act on RAR-related orphan
receptor gt (ROR-gt)+CD3+CD4−CD8− entheseal resident T
cells to induce enthesitis (108). These findings perfectly
interpreted the pathophysiology of SpA to a great extent.
However, the animal model with enthesitis induced by IL-23
overexpression has never been replicated by other research
groups. On the contrary, later studies confirmed that the
animal model with systemic overexpression of IL-23 presented
peripheral arthritis with histological synovitis but no spinal
inflammation or enthesitis (111). In addition, T cells are not
essential for the development of enthesitis in TNFDARE mice
February 2022 | Volume 13 | Article 818413

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Zhang et al. Null IL-23 in axSpA Pathophysiology
(deleting TNF AU-rich elements (ARE) from the mouse genome
on the regulation of TNF biosynthesis) (112) and entheseal
ossification in an aged DBA/1 mouse (113). Furthermore, our
results demonstrated that the mRNA expression of IL-22
receptors and IL-23R was not detectable in 3 osteoblastic cell
lines (i.e., C2C12, MC3T3-E1, and Saos-2 cells) and primary
osteoblasts isolated from bone marrow, even after bone
morphogenetic protein-2 stimulation (114). Neither IL-22 nor
IL-23 showed any significant effects on primary osteoblasts,
including the cell proliferation, alkaline phosphatase activity,
and mRNA expression of alkaline phosphatase, osteocalcin, and
Runt-related transcription factor 2 (Runx-2). The null effect of
IL-23 on osteoblasts was confirmed by other research groups
(107). Up to now, there are no other studies confirming the
stimulatory effects of IL-22 on osteoblasts, which was reported in
2012 (108).

Taken together, there were no solid and replicable data to
demonstrate that IL-23 overexpression could induce enthesitis
and bone formation and that IL-22 could stimulate osteoblasts.
IN SUMMARY

The IL-23/IL-17 axis was widely accepted as an important
pathway in the pathogenesis of axSpA. IL-23 was an upstream
cytokine to facilitate Th17 cell expansion and then to increase IL-
17 production. When good efficacy of IL-17 inhibitors has been
demonstrated in axSpA, it was reasonable to expect that IL-23
Frontiers in Immunology | www.frontiersin.org 5
inhibition would exert similar efficacy with IL-17 inhibition.
Unfortunately, IL-23 inhibitors failed in the treatment of axSpA,
although both IL-17 inhibitors and IL-23 inhibitors succeeded in
the clinical trials of psoriasis. All the blockers of IL-6 and IL-1b,
which also mediate the differentiation of Th17 cells, failed to
exert satisfactory effects in axSpA either. Recently, mounting
evidence shows that gd T cells, MAIT cells, NK cells, iNKT cells,
and neutrophils might produce IL-17 independently of IL-23.
Furthermore, the evidence supporting IL-23 overexpression to
induce enthesitis and bone formation cannot be replicated and is
conflicted with the results of other research groups. Up to now,
there is no solid evidence to support IL-23 is involved in the
pathophysiology of axSpA.
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