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Regulatory B cells (Bregs) have been highlighted in very different pathology settings
including autoimmune diseases, allergy, graft rejection, and cancer. Improving tools for
the characterization of Bregs has become the main objective especially in humans.
Transitional, mature B cells and plasma cells can differentiate into IL-10 producing Bregs in
both mice and humans, suggesting that Bregs are not derived from unique precursors but
may arise from different competent progenitors at unrestricted development stages.
Moreover, in addition to IL-10 production, regulatory B cells used a broad range of
suppressing mechanisms to modulate the immune response. Although Bregs have been
consistently described in the literature, only a few reports described the molecular aspects
that control the acquisition of the regulatory function. In this manuscript, we detailed the
latest reports describing the control of IL-10, TGFb, and GZMB production in different
Breg subsets at the molecular level. We focused on the understanding of the role of the
transcription factors STAT3 and c-MAF in controlling IL-10 production in murine and
human B cells and how these factors may represent an important crossroad of several key
drivers of the Breg response. Finally, we provided original data supporting the evidence
that MAF is expressed in human IL-10- producing plasmablast and could be induced in
vitro following different stimulation cocktails. At steady state, we reported that MAF is
expressed in specific human B-cell tonsillar subsets including the IgD+ CD27+ unswitched
population, germinal center cells and plasmablast.

Keywords: regulatory B cells, molecular drivers, c-MAF, STAT3, B-cell differentiation
INTRODUCTION

B cells with immunosuppressive function (Bregs) have been highlighted for the first time in the
murine experimental autoimmune encephalomyelitis (EAE) model (1). Although the induction of
the disease was not influenced by the absence of B cells, B-cell depleted mice exhibited no substantial
recovery suggesting a regulatory role. During the past decade, various studies have reported this
regulatory B cell-induced immune response suppression in very diverse pathophysiological settings
org March 2022 | Volume 13 | Article 8188141
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like autoimmune diseases, transplantation, virus immunity, and
cancer. The heterogeneity of the Breg subsets is a subject of
interest for many years (2–5) and consensus opinions suggest
that Bregs may arise from multiple progenitors depending on the
microenvironment. Beyond their phenotypic status, Bregs used
different immunosuppressive mechanisms such as the
production of interleukin (IL)-10, granzyme B (GZMB), and
transforming growth factor (TGF) b to regulate other immune
cells (3, 6, 7). IL-10 has become the most documented
suppressive mechanism by B cells and in many cases, IL-10
can be often co-expressed with other regulatory molecules such
as TGFb or IL-35 (8). New studies are now starting to clarify the
different molecular mechanisms that may control the acquisition
of the Breg function. In this review, we described the last reports
establishing new insights into the molecular control of TGF b,
GZMB, and IL-10 producing B cells (B10) with a specific focus of
an understudied transcription factor (TF) in B cells: the avian
musculoaponeurotic fibrosarcoma oncogene c-MAF (MAF).
MOLECULAR CONTROL OF THE
PRODUCTION OF TGFΒ AND GZMB
IN B CELLS

TGFb -Producing Regulatory B Cells
TGFb-producing B cells with regulatory properties were first
described in cancer, especially in lung metastasis from breast
cancer in mouse models (9). TGF-b+ Bregs that exhibited a
particular phenotype (CD19+, CD25high, IgDhigh, CD21low,
CD23low, CD43-, IgMint, and CD62Llow) were able to decrease T
cell proliferation and induce de novo regulatory T cells (Tregs)
(Foxp3+) in vivo and in vitro. In this study, they demonstrated that
the tumor-microenvironment was necessary to both mouse and
human Breg development. These TGFb-expressing Bregs
expressed high levels of phosphorylated-STAT3 (pSTAT3). The
same group further demonstrated that the inhibition of STAT3
phosphorylation by resveratrol (phytoalexin found in some plants
as mulberries or peanuts) induced the decreased expression of
TGFb by Bregs leading to the reduced expansion of Tregs in vivo
and in vitro (10). Inhibitory effect of the resveratrol as a potent
inhibitor of STAT3 phosphorylation and acetylation is mostly
mediated by the Sirtuin 1 protein (SIRT1) an NAD+-dependent
class III histone deacetylase (HDAC). Although SIRT1/STAT3
axis has been extensively studied in cancer cells (11, 12), there are
few reports on its role on B-cells. However, it was recently
demonstrated that B-cell specific SIRT1 deficient cells displayed
an increase of IL10 expression in vitro following LPS stimulation
(13). Moreover, SIRT1 is highly expressed in resting naïve mouse
B cells but dramatically reduced following cell activation and
immunization. In this context, SIRT1 suppressed AICDA
expression and the class switch DNA recombination through
the regulation of the acetylation of STAT3 and the NFkB p65,
another important target of SIRT1 (14). Underlying mechanisms
of these different interactions with other molecular drivers of
TGFb are still unclear, especially in B cells.
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Some studies highlighted the role of the different TGFb
isoforms in the regulatory properties of B cells. A first mouse
study revealed the co-expression of TGFb1 and TGFb3 at similar
levels in resting B cells but in IgM-activated B cells, TFGb1 was
increased and TGFb3 was highly reduced. In a coculture model
with resting B cells and T cells, Treg expansion was only
dependent on the TGFb3 isoform (15). However, in the EAE
mouse model, TGFb1-deficient B cells led to increased EAE score
level and the disease severity was linked to the expansion of T cell
helper (Th)1 in conserved non-coding sequences (CNS) (16). So,
the two isoforms TGFb1 and TGFb3 seem to be implicated in
Breg properties but with microenvironment-dependent
mechanisms. Unlike in mice, the activation of human B cells
upon BCR and Toll-like receptor (TLR) 9 induced decreased
expression of TGFb1 (highly expressed in resting B cells) but an
increase of IL-10 expression (17). Unfortunately, in most of the
studies on TGFb-expressing Bregs, the nature of the isoform
involved is still elusive.

The co-expression of TGFb and IL-10 by Bregs is frequently
reported in the literature but the role of TGFb is controversial.
One study demonstrated that B cells infiltrating tumors expressed
TGFb and IL-10 and inhibited T cell proliferation and the
generation of interferon (IFN)g-CD8+ T cells. This mechanism
was TGFb-dependent (18). However, in the model of low-dose
methotrexate-induced tolerance in mice, the generated Bregs co-
expressed TGFb and IL-10, but only IL-10 seemed to be
implicated in the tolerance mechanism (19). Two additional
studies performed in humans demonstrated the role of TGFb in
Bregs-mediated regulation. In the first study, in vitro Bregs were
induced following a CD40 ligand (CD40L), CpG, and IL-4
stimulation and were able to decrease T-cell proliferation and
induce the Tregs expansion. FoxP3 expression and Tregs
generation were reduced in the presence of the anti-TGFb
blocking antibody (Ab) but not after IL-10 blocking (6). We also
demonstrated that in vitro-induced Bregs used a TGFb-dependent
mechanism in controlling T -cell proliferation whereas the
decrease of IFNg-Th1 cells was IL-10-dependent (20).

Other information puzzled the understanding of the
generation of TGFb-producing-Bregs because TGFb was first
described as able to inhibit B cell proliferation and Ig production
(21). Moreover, a recent study highlighted the synergy between
IL-10 and TGFb3 to inhibit B-cell proliferation and Ig
production after TLR4 or TLR7 activation by decreasing
energy metabolism of B cells such as glycolysis. Interestingly,
pSTAT3 was also expressed in these B cells (22). However, the
synergistic role of IL-10 and TGFb in controlling Bregs function
remains to be explored.

Expression of GZMB in B Cells
Initially, the GZMB had been described as a compound of the
cytoplasmic granules of cytotoxic cells that induced targeted cell
death when accompanied by perforin (23). However, over the
last decade, the secretion of GZMB by B cells, Tregs, or
plasmacytoïd dendritic cells, has been found to exert an
immunosuppressive effect through performing-independent
mechanisms. This GZMB-expressing Breg subset has been
March 2022 | Volume 13 | Article 818814
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detected in a variety of pathological contexts: chronic
lymphocytic leukemia (CLL) (24), solid tumor infiltration (7),
autoimmune diseases such as Systemic Lupus Erythematosus
(SLE) (25), viral infections (26) and in the context of the
transplantation (27). Although GZMB-expressing B cells were
found to be enriched in differentiated B cells like plasmablasts
(PB), less than 3% of circulating B cells seemed to express GZMB
in healthy individuals (28).

One of the key inducers of the production of GZMB in B cells
is IL-21. Jahrsdörfer’s group first reported that IL-21 directly
induced the secretion of enzymatically active GZMB by human B
cells. The effect of IL-21 is synergically enhanced by CpG-ODN
or BCR engagement (24, 29). Moreover, they demonstrated that
GZMB and IL-21 serum levels are highly correlated in SLE and
that CD5+ B cells from SLE and Sjögren syndrome patients,
which constitutively expressed GZMB, displayed higher
expression of IL-21 receptor (30). IL-21 is mainly secreted by
activated CD4+ T cells, especially Th17 and follicular helper T
cell (Tfh) subsets and natural killer T cell (NKT) (31). A study
has shown that macrophages-derived IL-15 synergized with IL-
21 to promote GZMB expression and B cell differentiation into
CD38+ CD20- PB. While IL-21 alone induced a quick and
massive transcription of GZMB mRNA but a minimal
production of the protein, the addition of IL-15 allowed
efficient translation and/or secretion of the GZMB protein (32).

Little is known about the molecular control of GZMB
production in B cells and the generation of GZMB+ Bregs
remains to be understood. Besides, the inability of mouse B
cells to secrete GZMB further complicates addressing this
question (33). Nevertheless, it would appear that pSTAT3
signaling is implicated in GZMB expression. IL-21 signaling is
known to activate JAK/STAT pathways, especially pSTAT1 and
pSTAT3, and to a lesser extent pSTAT5a and pSTAT5b (34). An
up-regulation of pJAK1, pJAK3, and pSTAT3, but not pTYK2 or
pSTAT1, was observed in B cells stimulated with IL-21 and anti-
BCR, and the use of a JAK inhibitor abrogated the GZMB
production (29). The use of STAT1, STAT3, or STAT5
inhibitors confirmed the involvement of STAT3 signaling but
not STAT1 and STAT5, in GZMB synthesis. Moreover, B cells
failed to produce GZMB in patients with the autosomal-
dominant hyper-IgE syndrome which exhibit heterozygous
STAT3 mutations, confirming the unique role of STAT3 in
GZMB production (32).

Recently, Sophie Brouard’s group has developed an expansion
mixture containing IL-21, anti-BCR, CpG ODN, IL-2, and
CD40L, to induce GZMB expression in more than 90% of B
cells. While the presence of IL-21 and anti-BCR seemed
indispensable to induce a strong expression of GZMB, the
presence of CpG ODN and IL-2 seemed to be necessary for
the maintaining of B-cell survival in culture (28). To better
characterize GZMB-producing Bregs, they performed RNAseq
analysis of sorted in vitro-expanded GZMB-positive and GZMB-
negative B cells (35). Thirty-six genes were found to be
differentially expressed between these two populations,
including the top differential expressed genes (DEGs) GZMB,
LAG3, and FASLG, which were already described for their role in
Frontiers in Immunology | www.frontiersin.org 3
immune regulation. They revealed a higher frequency of LAG-3+

cells but a similar expression of IL-10 in GZMB-positive Bregs
when compared to GZMB-negative B cells . In this
transcriptomic analysis, SOX5 was the only gene encoding a
TF found to be differentially expressed. While SOX5was found to
be downregulated during the proliferation of B cells, its high
expression might limit proliferation allowing PB differentiation
(36). However, as an autocrine production in GZMB+ Bregs, the
GZMB stimulates the proliferation of these cells (28). At this
point, it is difficult to say whether the SOX5 down-regulation
may play a role in the generation and function of GZMB-positive
Bregs or whether it is only a consequence of the autocrine
production of GZMB itself.
STAT3 AND ITS PARTNERS IN THE
GENERATION OF IL-10- PRODUCING
B CELLS

IL-10 is a pleiotropic cytokine produced by virtually all immune
cell types and possesses immunosuppressive properties. IL-10 is
an inhibitor of a broad spectrum of monocytes/macrophages and
T-cell functions, including cytokine synthesis, effector subset
differentiation, and expression of co-stimulatory molecules
such as CD80/CD86. However, the role of IL-10 on B cells was
described as ambivalent. First reports described IL-10 as a
growth factor for B cells. It promotes B-cell proliferation, Ab
production, and class II MHC expression depending on their
activation state (37). The addition of IL-10 in CD40-activated B
cells results in a very high immunoglobulin production
indicating differentiation of B cells into plasma cells (38, 39).
IL-10 was an essential factor for isotype switching in presence of
anti-CD40 stimulation leading to the production of IgM, IgG,
and IgA (IgA1 and IgA2) in combination with TGFb (40).
Subsequent important reports described the role of IL-10 in
promoting the differentiation of memory B cells into PB and
plasma cells (41, 42).

B cells secrete a very low amount of IL-10 at a quiescent state
however specific stimulatory signals were described to be involved
in the induction of IL-10 producing B cells with suppressive
functions: the BCR, CD40, TLR, and cytokine signaling including
IL-21, IL-6, or TGFb (43–45). Although the time-sequence and
location of these events have to be clarified in vivo, the molecular
signals leading to IL-10 production by B cells have been studied less
thoroughly than in Th cells and macrophages (reviewed in (46)).
Among the key factors involved in the control of IL-10 production,
STAT3 appears to be involved in the different activation cascades
leading to IL-10 secretion by B cells (Figure 1). It was demonstrated
in CD1dhi CD5+ B10 cells, that whilst the absence of the B-cell
linker protein (BLNK) had no consequence on the distribution of
Bregs in tissues, its expression was indispensable to IL-10
production. After TLR4 activation by lipopolysaccharide (LPS),
phosphorylated BLNK interacts with the Bruton tyrosine kinase
(Btk) leading to the phosphorylation of STAT3 that next translocates
to the nucleus to transactivate the IL10 gene (47) (Figure 1).
March 2022 | Volume 13 | Article 818814
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In SLE patients, CD24high CD38high Bregs exhibited a defect in
CD40 signaling with impairment of STAT3 phosphorylation and
IL-10 production (48). Similar results were described in patients
with systemic sclerosis where TLR9-induced IL-10 production by
B cells was impaired because of a defect in p38MAPK and STAT3
signaling (49, 50). Various cytokines increased in vitro the
generation of human B10, often in combination with TLR
activation in a STAT3-dependent manner including APRIL
(51), IFNa (52, 53), IL-35 (54), IL-21 (55), IL-6, or IL-1b (56).
Interestingly mice with the specific deletion of STAT3 in B cells
developed a severe experimental autoimmune uveitis and
displayed exacerbated EAE (57). In both diseases, the deficiency
of STAT3 in B cells induced a defect not only in the induction of
B10 cells but also in the generation of Tregs. Moreover, the
authors demonstrated that expression of the CD80 and CD86
costimulatory molecules was markedly upregulated on B cells in
STAT3-deficient mice, suggesting that STAT3 signaling may also
contribute to restraining excessive activation of T cells.

Cooperation of BLIMP1 and IRF4 in the
Generation of IL10 Producing B Cells
Once activated, STAT proteins can directly bind on a single
motif on the Il10 promoter (58) or may interact with other TF to
Frontiers in Immunology | www.frontiersin.org 4
induce IL-10 expression. The mouse Il10 locus has been
extensively studied in naive and differentiated T cells (59–61)
mostly using DNase I hypersensitivity approaches highlighting at
least nine genomic regions with potent high transcriptional
activity. These several conserved noncoding sequences (CNS)
presented a great homology between mice and humans. Together
with the promoter, the CNS-9, CNS-4.5, located at 9 kb and 4.5
kb, respectively, upstream the Il10 gene transcription start site
(TSS), and the CNS+3, and CNS+6.5 Kb, located downstream
the TSS, have been described as the main activator sites of the
Il10 transcription in T-cell subsets (62, 63). In Th1 cells, the B-
lymphocyte-induced maturation protein 1 (Blimp-1) binds the
CNS-9 site in a STAT4-dependent manner, and mice with a T-
cell-specific Blimp-1 deficiency had a severe inflammatory
response during T. gondii infection, suggesting that Blimp-1
was involved in the IL-10–dependent control of Th1 immune
responses (64)

However, the role of Blimp-1 in the generation of B10 is
conflicting. In a recent study, Prdm1 mRNA expression was
shown upregulated in IL10-positive compared to IL-10-negative
B cells following LPS stimulation. This was then confirmed in
vivo using a Prdm1-EYFP reporter mouse model. This group also
demonstrated that the deletion of Prdm1 led to the increased
FIGURE 1 | IRF4/Blimp-1/STAT3 activation pathways on Il10 gene regulation in Bregs. The phosphorylation of STAT3 could be activated following different
microenvironment signals such as different cytokines (APRIL, IL-21, IL-6, IL-1b and IFNa), the antigen or TLR ligands. Phosphorylated STAT3, translocates to the
nucleus and could bind IRF4 to induce the transcription of the Prdm1 gene. The translation of Prdm1 gene leads to the production of the Blimp-1 protein supporting
the binding of STAT3 on the Il10 gene promoter. The binding of Blimp-1 together with NFAT2 could induce repression of the Il10 gene transcription. The different
AP1 proteins such as BATF, Jun B and Jun D could bind the AICES motifs on the Il10 gene to promote its transcription through the cooperation of IRF4. IL,
Interleukin; IFNa, Interferon alpha; APRIL, A Proliferation inducing ligand; SOCE, Store operated calcium entry; TLR, toll-like receptor; CNS, conserved non-coding
sequence; TLR, toll-like receptor BCR, B-cell receptor; BtK, Bruton tyrosine kinase; BLNK, B-cell linker protein; MAPK, Mitogen-activated protein kinase; Syk, Spleen
associated tyrosine kinase; STAT3, Signal transducer and activator of transcription 3; NFAT, Nuclear factor of activated T-cells; STIM, Stromal interaction molecules;
CaCN, active calcineurin A; Myd88, Myeloid differentiation primary response protein; Blimp-1, B lymphocyte-induced maturation protein 1; Prdm1, PR domain zinc
finger protein 1; AP1, Activator protein 1; IRF, Interferon regulatory factor; AICEs, AP1-IRF-composite elements.
March 2022 | Volume 13 | Article 818814
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frequency of B10 cells following LPS injection suggesting a
negative role of Blimp-1 on the Il10 transcription. Using
luciferase reporter assays and chromatin immunoprecipitation
(ChIP), these authors demonstrated that the CNS-0.45 kb site on
the Il10 gene was the major Blimp-1 suppressive site of the Il10
transcription (Figure 1). They further demonstrated that STAT3
needed the Blimp1 DNA-binding domain to efficiently
transactivate the Il10 promoter indicating that Blimp1 could
exhibit alternatively a positive role and negative role depending
on the presence or absence of its molecular partners (65).
However, these binding sites were not reported in primary
studies identifying the pattern of regulatory regions within the
Il10 gene in T cells suggesting a B cell-specific regulation of the
Il10 transcription (46, 59, 61).

The Blimp-1 regulated genes have been extensively studied
during the B-cell differentiation, revealing that Blimp1 could act
as both transcriptional repressor and activator. Using
streptavidin-mediated chromatin precipitation coupled with
deep sequencing (Bio-ChIP), the Il10 gene was robustly
identified among the 93 genes potentially directly activated by
Blimp-1 (66, 67). Regulatory plasma cells producing IL-10 have
been reported in mice in EAE and during the Salmonella
Typhimurium infection (3, 4) In EAE, the PB (CD138+

CD44high) subset was the main IL-10 producer population,
generated through a germinal center (GC) independent
pathway as the EAE course remained unchanged in Bcl6yfp/yfp

knock-out mice. By investigating the mechanisms by which PB
produced IL-10, it was demonstrated that B cells lacking IRF4
but not Blimp-1 have an impairment of IL-10 production. The
TF IRF4 binds to the Il10 CNS-9 enhancer site in mouse PB as
previously described in T cells (68). This region highly conserved
in the vertebrate genome has been also described as a major site
of fixation of the nuclear factor of activated T cells (NFAT1 also
named NF-ATc2) (69). The involvement of different CNS in the
regulation of Il10 transcription was significantly studied in
different Th cell populations. Whereas the CNS-9 seemed to be
potentially active in both Th1 and Th2 lineages, the CNS+6.45
and CNS-26 are specific for Th2 cells (68), where the CNS+6.45
region is a binding site for the activator protein 1 (AP1) proteins
JunB, and c-Jun. However, such distinctions are not yet clearly
established in human B10 compared to other B-cell subsets.
Furthermore, the TF IRF4 itself binds to the DNA in a weak-
dependent manner due to its carboxy-terminal auto-inhibitory
domain. IRF4 has to form a complex with AP1 family proteins
like BATF or JunB to increase its binding affinity and thus
regulates genes expressing the AP1–IRF consensus motif
elements (AICEs) (70, 71). In B cells, IRF4 through the
cooperation with BATF, JunB, and JunD was described to
bound to AICEs of Il10 and Ebi3 (coding for an IL-35 subunit)
loci (70, 72). In T cells, Blimp-1 expression was required in a
subset of IL-10 expressing Tregs localized at mucosal sites (73).
In this subset, IRF4 directly regulated Blimp-1 expression at the
transcriptional level. These data were also observed in B cells
following IL-21 stimulation showing that STAT3 and IRF4
cooperate to promote Prdm1 expression (74) (Figure 1). More
recently an elegant study investigated the IL27-driven
Frontiers in Immunology | www.frontiersin.org 5
transcriptional network highlighting several key IL-10
molecular regulators (63) suggesting that Prdm1, Irf4, and Irf8
may have a suppressive role in the production of IL-10 in type 1
Tregs (Tr1). Interestingly, IRF4 and IRF8 antagonized during B-
cell activation and differentiation (75) suggesting opposite roles
in the control of B-cell-specific Il10 transcription.

We thus could hypothesize that IRF4 by utilizing distinct
binding partners could mediate cell-type and stimulus-specific
IL-10 production in different lymphocyte subsets. Furthermore,
the time-frame of the molecular control of IL-10 is crucial and
may explain contradictory relationships. The molecular
mechanisms required for the induction of Il10 in B cells may
change throughout time to ensure its maintenance leading to
important modification in the cooperative binding factors.
Further studies, especially kinetics studies have to be designed
to identify how the core triad including BLIMP-1, IRF4 and
STAT3 may cooperate or act independently in the generation of
B10 cells (Figure 1).

STAT3 and the NFAT Family in the
Generation of IL-10 Producing B Cells
STAT3 signaling is involved in the early activation of B cells,
especially in the BCR signalosome recruitment and the STAT3
deficiency led to reduction of pAkt and pErk1/2 and both
mTORC1 and mTORC2 activity following BCR stimulation
(76) Furthermore, STAT3 has also a non-canonical function
and its localization to the endoplasmic reticulum (ER) modulates
ER-mitochondria calcium (Ca2+) release by interacting with the
Ca2+ channel IP3R3 (77).

The implication of the BCR signaling in the generation of B10
is still discussed. Although in vitro activation of splenic B cells
with anti-IgM Ab failed to induce IL-10 production compared to
TLR signaling, there is a dramatic decrease of B10 cell numbers
in the MD4 transgenic mice with a fixed BCR rearrangement
suggesting that BCR diversity may direct B10 development (43).
A report using TgVH3B4 mice that express a VH derived from
an actin-reactive natural Ab, 3B4 revealed that B10 cells mainly
targeted self-antigens (Ag). This study also suggest that B10
could be positively selected by self Ag and that high BCR
signaling could promote B10 development and IL-10
production (78). In contrast to the MD4 model where there is
no virtually Ag recognition, the interaction with the Ag seems
mandatory for the maintenance and generation of B10. This
study is in agreement with others showing that B10 induction is
negatively or positively modulated in CD19-/- and CD22-/- KO
mice, respectively where BCR signaling is directly altered.

B cells from mice that are deficient for the ER calcium sensors
stromal interaction molecules 1 and 2 (STIM1 and STIM2) have
normal B-cell development but display defective activation of
NFAT1 and aberrant calcium (Ca2+) signaling following BCR
ligation (79) (Figure 1). In these mice, the BCR-induced
dephosphorylation of NFAT1 was markedly impaired in B cells
leading to a defect in IL-10 production, observations that were
recapitulating with NFAT1 inhibitors such as cyclosporine or
Tacrolimus (FK506). The authors further demonstrated that the
double STIM1/STIM2 KO mice developed an exacerbated EAE
March 2022 | Volume 13 | Article 818814
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due to a dramatic depletion of B10. These data support that a
Store Operated Calcium (SOC) influx induced by BCR
stimulation drove IL-10 expression in a STIM-dependent
NFAT1 activation manner. Several years later, the same group
demonstrated that the transfection of active calcineurin A
markedly increased BCR-induced IL-10 production through
activation of NFAT1 in B cells using an Il10-GFP reporter
mouse model. Furthermore, they showed that this induction is
repressed in Irf4 KOmice suggesting that NFAT1-dependent IL-
10 production required IRF4 and was dependent on the Ca2+

influx (3).
On the other hand, another report showed that mice with an

NFAT2 deficiency in the B-cell compartment have two-fold
more B10 cells compared with wild-type B cells and lead to the
amelioration of EAE (80). More recently, similar results showed
that NFAT2 ablation in B cells suppressed the induction of skin
inflammation by an increase of B10 (CD1d+ CD5+ and CD138+

PB) in the spleen, the lymph nodes, and the blood (81) They have
further shown that NFAT2 binds directly to the Il10 gene in vivo
and suppresses its transcription. However, the role of NFAT1
and NFAT2 in IL-10 production by B cells remains complex and
differs between normal and malignant B cells. We previously
demonstrated that the CD5 molecule, overexpressed in CLL B
cells, promoted IL-10 expression and cell survival through a
STAT3 and NFAT2-dependent pathway (82) and that IL-10
expression by B cells was directly connected with the aggressivity
of the disease (83). These studies were further extended,
demonstrating that NFAT2 controls multiple anergy-associated
genes, BCR expression, and Ca2+ response in CLL B cells (84)
and that knockdown of STAT3 significantly impaired the ability
of CLL B cells to produce IL-10 and reverse T-cell dysfunction
(85). Interestingly similar observations were made in diffuse large
B-cell lymphoma (DLBCL) showing that STAT3 and NFAT2
interaction induced an immunoregulatory phenotype in
malignant B cells with the upregulation of IL-10 and
programmed Death-Ligand 1 (PDL1) (86).

This fine-tune regulation of Ca2+ signaling in B cells by its
different partners including the balance between NFAT1 and
NFAT2 and their interaction with STAT3 may be an important
crossroad in the generation of B10 in normal and malignant
B cells.

STAT3 and Metabolic Pathways in the
Generation of IL-10 Producing B Cells
The STAT3 dimers translocate to the nucleus and regulate promoter
genes with STAT3-binding elements exhibiting a broad range of
cellular processes (87).Among the different STAT3 responsive genes,
STAT3 induces the transcription of the Hypoxia-inducible factor
(HIF) 1a in BCR and LPS-activated B cells through the ERK and
NFkB-dependent pathways, respectively (88, 89) (Figure2).HIFs are
heterodimeric TF, consisting of an oxygen-labile alpha subunit (HIF-
a) and a stable beta subunit (HIF-b). Three O2-sensitive HIFa
proteins have been described so far, HIF-1a, HIF-2a -also known as
EPAS1, andHIF-3a (90). The B-cell-specific deletion ofHIF-1a, but
not HIF-2a, resulted in a defect in IL-10 production by B cells (88).
Except for an important decrease of the B1a population in the
Frontiers in Immunology | www.frontiersin.org 6
peritoneum observed in Mb1creHif1af/f mice, no other defect in the
B-cell maturation was observed. This group further demonstrated
that in BCR-stimulated B cells, HIF-1a cooperated with pSTAT3 to
bind to hypoxia-responsive element (HRE) I and HRE II regions on
the Il10 promoter under hypoxic conditions. These authors showed
that HIF-1a controlled the glycolytic metabolism required for the
normal expansion of CD1dhigh CD5+ Bregs in vivo. This report was
supported by an additional studydemonstrating that the suppression
of HIF-1a in B cells led to exacerbated colitis through CD11b and
IL-10 downregulation (89). The hypoxic microenvironment has
been described in the physiological situation as during the GC
reaction in secondary lymphoid organs (91), but also in solid
tumors, transplantation, or inflammatory diseases. The fine
characterization of Bregs in normal or pathophysiological tissues
promises new stimulating insights in the better comprehension of
these pathophysiological mechanisms.

Beyond the control of the glycolysis pathway, anothermetabolic
driver involved in the control of IL-10 expression in B cells was
recently described implying lipid metabolism through the multi-
step process of transformation of Acetyl CoA to Cholesterol. The
abrogation of the HMG-CoA reductase enzyme activity by
atorvastatin led to the suppression of TLR9-induced regulatory
capacities of human B cells (92). It was further demonstrated that
IL-10 production was dependent on the geranylgeranyl transferase
(GGTase) I (GGTi) that catabolizes conversion of Geranyl-
Geranyl-PP (GGPP) toward the isoprenylation pathway. By
controlling the downstream Ras-dependent PI3K-AKT signaling
following TLR9 stimulation, the GGTase via inhibitory
phosphorylation on the Serine 9 prevented the activity of the
glycogen synthase kinase 3 (GSK3b) and the subsequent Il10
transcription inhibition (Figure 2). GSK3 was already described
as an important repressor of Il10 among the Th1, Th2, and Th17
subsets (93, 94) and indendritic cells (95) at the epigenetic level. The
comparative RNA-sequencing analysis of TLR9 stimulated B cells
in the presence or absence of GGTi revealed the strong
downregulation of several TF including Prdm1, Batf (Basic
Leucine Zipper ATF-Like Transcription Factor), and the Aryl-
hydrocarbon receptor (AhR). Finally, the siRNA-knockdown of
Blimp-1 in vitro led to the reduction of the TLR9-mediated IL-10
production by B cells. This study is, so far, the only report that
established the direct involvement of Blimp-1 in the generation of
B10 cells.

In B cells, different studies have shown the AhR implication in
IL-10 production in collaboration with numerous transcriptional
cofactors (96) (Figure 3). The AhR is an environmental sensor
that binds on a variety of ligands such as exogenous toxins
(dioxin), xenobiotics, and endogenous derivatives metabolites
from cells or microbiota. Mauri’s group has established the
involvement of the AhR in the control of Il10 transcription in
the immature CD19+ CD21high CD24high B cell population in
mice. In vivo, B cell-specific deletion of AhR caused exacerbated
arthritis and promoted excessive inflammation by depleting B10.
The AhR binding site seems to be located at -3.5 kb upstream of
the TSS on the Il10 gene in a non-CNS region suggesting putative
difference with human Bregs (97). This study was further
extended by demonstrating that change in the short-chain fatty
March 2022 | Volume 13 | Article 818814
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acid (SCFA) butyrate levels influenced the generation of IL10+

CD19+ CD24high CD38high B cells in patients with rheumatoid
arthritis. By using an antigen-induced mouse model of arthritis,
the authors established that the butyrate supplementation was
sufficient to suppress the disease by increasing Bregs suppressive
ability through an AhR dependent-manner (98) Moreover, AhR
seems to also regulate the inhibitory receptor TIGIT and Il10
expression in TIM1+ B cells (99). Several years before, the fatty
acid palmitate was demonstrated in synergy with CXCL12 able to
induce IL-10 production in adipose B cells through the PI3K and
NFkB signaling (100). News studies have recently demonstrated
the role of SCFA in controlling B10 generation with some
discrepancies mainly due to the different in vitro stimulation
cocktails used for the B10 induction. The SCFA acetate, known
to influence the lipid and the tricarboxylic acid (TCA) cycle, was
demonstrated directly promoting the differentiation of IL-10
producing B cells from B1a progenitors in mice or from
CD24high CD27+ B cells in humans with a more potent activity
than the butyrate (101). The inhibition of the conversion of
acetate to acetyl-CoA by the repression of acetyl-CoA synthetase
member 2 (ACSS2) decreases the IL-10 production suggesting
that acetate is an essential regulator fueling the energy
production necessary to B10 differentiation. In another report,
when B cells were pre-activated with CD40, LPS, or CpG, the
addition of butyrate, and pentanoate, but not acetate, increased
Frontiers in Immunology | www.frontiersin.org 7
the percentage of B10 cells (102). They demonstrated that the
molecular mechanisms of butyrate-dependent B10 expansion are
independent of the mammalian G-protein-coupled receptor pair
activity but acted through HDAC inhibitory action via a p38
MAPK and PI3K-dependent pathway. However, the precise role
of histone acetylation in B10 generation remains to be
established. To note, the epigenetic regulation of Il10
expression especially in B cells is still an unresolved field
of research.

Overall, these reports about metabolism control of regulator B
cells have opened an exciting new area of investigation, recently
reviewed by the Mauri’s group and ours (103, 104).
C-MAF AS A KEY DRIVER OF THE B-CELL
IMMUNOREGULATORY FUNCTION?

The Transcription Factor c-MAF
c-MAF (MAF) is a basic region-leucine zipper (bZIP) TF belonging
to the AP-1 superfamily and more specifically to the large MAF
family proteins. Large MAF proteins include MafA, MafB, MAF,
and Nrl, which possess a transactivation domain and activate
transcription by forming a homodimer. MAF contains basic
regions allowing the recognition of a palindromic sequence
FIGURE 2 | Implication of the metabolic pathways in the regulation of the Il10 gene in Bregs. Phosphorylated STAT3 could induce metabolic pathways such as the
Hypoxia sensing by the transcription of Hif-1a. The Hif1a protein binds on the HRE sites located on the Il10 gene to induce its transcription and its production by
Bregs. In parallel, another metabolic driver implicated in the multi-step transformation of acetyl-CoA to cholesterol, the geranylgeranyl transferase I (GGTi) catalyses
the conversion of geranylgeranyl-PP (GGPP) to drive the isoprenylation process. This mechanism controls the Ras-dependent downstream signal of the PI3K-Akt
pathway, leading to the restriction of the inhibitory GSK3 activity and thus activation of the Il10 transcription. The GGP-dependent pathway via the regulation of the
PI3K downstream signaling regulated the Prdm1 gene translation and the Blimp-1 translation directly promoting Il10 production. TLR, toll-like receptor; BCR, B-cell
receptor; Myd88, Myeloid differentiation primary response protein; Syk, Spleen associated tyrosine kinase; STAT3, Signal transducer and activator of transcription 3;
Blimp-1, B lymphocyte-induced maturation protein 1; PI3K, Phosphoinositide 3 Kinase; Erk, Extracellular signal-regulated kinase; GSK3, glycogen synthase kinase;
Akt, Protein kinase B; Ras, Rat sarcoma virus protein; FPP, Farnesyl pyrophosphate; GGPP, Geranylgeranyl pyrophosphate; GGTase, geranylgeranyl transferase;
HIF1a, hypoxia inducible factor 1 subunit alpha; NFkB, Nuclear factor kappa B; p50, p50 protein; p65, p65 protein; HRE, hypoxia response element.
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namedMAFRecognition Element (MARE) in the promoter region
of target genes of which there are two types: a 13-bp T-MARE
(TGCTGAG/CTCAGCA) with a TPA-Responsive Element (TRE)
and a 14-bpC-MARE (TGCTGAGC/CGTCAGCA)with anAMP-
Responsive Element (CRE). The MAF gene is located on
chromosome 16q23.2 in humans and on chromosome 8 in mice,
on the reverse strand for both (105).

Two forms of MAF mRNA have been described in humans,
the variant MAF-201 referred to as the small transcript and the
MAF-202 variant referred to as the long transcript. The small
transcript MAF-201 (2 646 bases) was made up of the 2 exons
of the MAF gene after splicing of the intron (4 231 bases) which
was not spliced in the long MAF-202 transcript (Figure 4A).
The intron retention in MAF-202 has resulted in the
introduction of a premature stop codon in the open reading
frame leading to the production of a short protein isoform (c-
MAF b), whereas the small transcript MAF-201 encoded a
longer protein isoform (c-MAF a). The c-MAF a and c-MAF b
proteins from these transcripts comprised 403 and 373 amino
acids, respectively. A putative third protein and mRNA
(referred to as medium variant MAF-203) have been
described in the Ensembl database, however, neither the
mRNA nor the protein have been reported in experimental
data. The c-MAF a protein is only found in humans whereas the
c-MAF b is present in both murine and human species. The
different constitutive domains of the c-MAF proteins are highly
Frontiers in Immunology | www.frontiersin.org 8
conserved between the different isoforms (Figure 4B). The
basic domain is requisite for DNA binding while the leucine
zipper allows dimerization. The EHR domain (extended
homology region) is specific for the MAF proteins and is also
required for MAF binding to DNA. Finally, the transactivation
domain which is rich in acidic residues responsible for protein’s
transcriptional activator functions is separated from the bZIP
domain by a Hinge region (106).

The c-MAF proteins are subject to some post-translational
modifications that could modulate their activity (Figure 4C). In T
cells, the phosphorylation of c-MAF by the tyrosine-protein kinase
Tec or by the CARMA1-dependent activation of the IkB kinase (via
IKKb) was required for c-MAF nuclear translocation and DNA
binding (107–109). The serine-threonine protein kinase GSK3b-
dependent c-MAF phosphorylation has been described with
antagonist outcomes. GSK3b mediated c-MAF-phosphorylation
and subsequent degradation through the ubiquitin-proteasome
pathway in multiple myeloma. However, in presence of a
coactivator complex, the phosphorylation and possibly its mono-
ubiquitination may also result in the increase of its transcriptional
activity (110, 111). At least nine phosphorylation sites located
specifically in the activation domain of c-MAF (Figure 4C) were
described, supporting their essential role in c-MAF activity. The
SUMOylating, a post-translational modification resulting in the
covalent binding of one or more SUMO proteins to a lysine motif
was reported on the c-MAF protein at the lysine 33 leading to a
FIGURE 3 | Metabolites action on the Il10 gene regulation in Bregs. Metabolites such as acetate, palmitate and butyrate can control IL-10 production in B cells
through the activation of the environmental sensor Aryl-hydrocarbon receptor (AhR) known to bind on a variety of derivative metabolites. Palmitate in synergy with
CXCL12 induces IL-10 production through the PI3K and NFkB pathways. Acetate through its conversion into acetyl-coA could act as a regulator of the TCA cycle,
fueling the differentiation of murine B1a cells or human CD24high CD27+ into IL-10 producing B cells (B10). Butyrate can mediate B10 expansion via the p38 MAPK
and PI3K pathways using the histone deacetylases (HDACs). PI3K, Phosphoinositide 3 Kinase; ErK, Extracellular signal-regulated kinase; Akt, Protein kinase B;
MAPK, Mitogen-activated protein kinase; NFkB, Nuclear factor kappa B; AhR, Aryl hydrocarbon receptor; TCA, tricarboxylic acid; Acetyl-CoA, Acetyl-coenzyme A;
SCFA, short-chain fatty acid; HDACs, histone deacetylases; p50, p50 protein; p65, p65 protein.
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decrease of the c-MAF transcriptional activity on the IL-4 and IL-21
genes (112, 113).

MAF Regulation of the IL-10 Locus
MAF binds directly the MARE sequences of the Il10 promoter in
human macrophages (114), mouse B cells (115), Tr1 cells (96), or
Th17 (116). However, several reports suggested that c-MAF
could not induce Il10 or even bound the Il10 locus in the
Frontiers in Immunology | www.frontiersin.org 9
absence of other co-regulatory factors like BATF or IRF1 as
described in Tr1 cells (117). The protein c-MAF binds the CNS
-9 together with BLIMP-1 and STAT4 and induces Il10 in Th1
cells, but the binding of MAF is independent of BLIMP-1
expression (64). Although Il10 represents a main target of the
MAF gene, this target is far from being the only gene regulated by
c-MAF. Indeed, c-MAF regulates a broad range of immune
molecules as described for RoRa, Il21, Il2, Il22 in Th17 (118),
A

B

C

FIGURE 4 | Schematic representation of the MAF gene, transcripts and proteins. (A) Schematic representation of the MAF gene and transcripts. The scale used is
1 cm for 500 bases (b) or base pairs (bp). The blue rectangle represents the exon 1 (1 953 bp) and the green rectangle represents the exon 2 (716 bp). The only
intron (4 231 bp) is represented by a black line. The two transcripts, MAF-201 (2 646 b) and MAF-202 (6384 b) are represented below, keeping the color code of the
exons. The retained intron in the long transcript MAF-202 is represented by a grey rectangle. The untranslated parts of the exons are identified by dotted borders
and the length of the open reading frame of each transcript is indicated in red. These open reading frames are delimited by “start” codons (AUG) and “stop” codons
(UGA). (B) Schematic representation of c-Maf protein isoforms. The scale used is 1 cm for 50 amino acids (AA). The long protein (c-MAF a) is composed of 403 AA
and the small protein (c-MAF b) is composed of 373 AA. The entire bZIP (basic leucine zipper) domain is indicated on each isoform within violet, the basic motif of 25
AA, and in orange the leucine zipper of 21 AA. All these data are extracted from databases “Ensembl” (ensemble.org) and “Uniprot” (uniprot.org). (C) Schematic
representation of post-translational modifications of the c-MAF proteins, using the long protein as template. Post-translational modification sites are indicated by
arrows: the sumoylation sites are in yellow, GSK3 phosphorylation sites are in blue, other phosphorylation sites are in dark blue, and ubiquitination sites are in red.
There are three sites of sumoylation located on the lysine 29, lysine 328, and lysine 33 which is the dominant site. There are two sites of phosphorylation by GSK3
located on tyrosines 58 and 62. Three other sites of phosphorylation are indicated in dark blue located on the tyrosines 21, 92 and 131. Two sites of ubiquitination
are located on the lysines 297 and 350 and indicated in red.
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colony-stimulating factor 1 receptor (Csf-1r), and metabolic
pathways in macrophages (119) or Tbx21 (encoding the TF T-
bet) in group 3 innate lymphoid cells (120) underlined its crucial
regulatory role in the immune system (121).

MAF Expression in IL-10 Producing
T Cells and Macrophages
In T cells, extensive literature exists on the role of c-MAF and its
relationship with IL-10 production [recently reviewed in (122)].
One recent elegant study underlined the context-specificity of the
role of MAF in the T-cell response across different diseases
model demonstrating that beyond the control of IL-10
expression, MAF acted as a negative regulator of Il2 (123). One
study has examined the role of both isoforms in the modulation
of IL-10 production in human stimulated Th17 cells (116). Only
the overexpression of c-MAF b (short protein) led to
upregulation of IL-10 production suggesting a unique specific
function of the different isoforms. Interestingly, extensive ChIP-
sequencing studies revealed that c-MAF binding domains are
mostly localized outside the promoters and may target enhancer
sequences. Furthermore, c-MAF overexpression alone was not
sufficient to convert Th17 IL-10- cells into Th17 IL-10+

highlighting its primary role as a co-activator or co-repressor
factor. The availability or competition of other cooperating
factors together with the epigenetic accessibility of regulatory
regions seem to be crucial for the c-MAF activity supporting its
highly versatile broad range of action in many immune cells.

c-MAF is also essential during innate immunity and was first
reported as a key element in macrophage polarization leading to
IL-10 production and establishing the immunoregulatory M2
program (124). A recent report demonstrated that c-MAF
contributes to the tumor-associated macrophages (TAMs)
dampening T-cell effector function during lung cancer (119).
Through ChIP-sequencing analysis, c-MAF was shown to
directly regulate Csf-1r transcription and control important M2
markers as Il12, Il1b, Il6, Arg1, Il10, Tgfb, Irf4, and Ccr2. This
study further demonstrated that c-MAF may act as a metabolic
switch in macrophage inhibiting the glycolysis and promoting
the TCA cycle and UDP-GlcNAc activity to favor macrophage
conversion into immunosuppressive M2 within the tumor
suggesting an important role of MAF on cell metabolic
activity (119).

MAF in B Cells
The role of MAF in B cells is very less documented and a large
gap in knowledge remains regarding the intrinsic function of c-
MAF in B cells. Two recent papers suggested that c-MAF could
exert an activity by controlling the IL-10 production in murine
and human B cells suggesting an underestimated role in
Breg function.

The first study demonstrated that MAF was constitutively
expressed in B220+ B cells isolated from the spleen and could be
upregulated following LPS stimulation together with IL-10
expression (115). ChIP-PCR identified that c-MAF directly
bound a MARE sequence located at the CNS-0.5 on the Il10
gene. The knockdown of MAF using specific shRNA in LPS-
Frontiers in Immunology | www.frontiersin.org 10
stimulated B cells resulted in the decrease but not a complete
abrogation of Il10 production. A second group has more recently
suggested the role of c-MAF in regulating B10 during EAE. The
B-cell specific deletion of the signaling lymphocytic activating
molecules (SLAM)F5 (CD84) led to an important amelioration
of the disease with delayed onset and attenuate clinical score
(125). This disease improvement is accompanied by an increase
in the different IL-10 producing Breg populations (CD5+

CD1dhigh, T2-MZP, and CD138+ PB) in the spinal cord but
also the spleen and lymph nodes. Using the Vert-x mice which
express a GFP reporter on the Il10 gene, they analyzed the
transcriptome of CD19+ GFP+ cells in mice treated or not with a
SLAMF5 blocking Ab revealing that SLAMF5 downmodulation
increased c-MAF and AhR expression. Interestingly, these
observations were also confirmed in humans showing that c-
MAF is upregulated in vitro following SLAMF5 inhibition in
total B cells. Although indirect, these results suggest that MAF
could exert a key role in regulating Breg populations both in
humans and mice. One interesting point is that MAF expression
seems not restricted to a specific Breg subset but is broadly
associated with Il10 expression whereas AhR was demonstrated
as specific to the T2/MZP subset (97). Interestingly, SLAMF5
(CD84) was also found to be downregulated in the human
signature of GZMB+ B cells (35), suggesting maybe a broad
inhibitory role in multiple Breg populations.

We recently developed an in vitromodel of B-cell polarization
to induce pro-inflammatory B (Be1) cells and Bregs suppressing
CD4+ T cell proliferation (126). In vitro-induced Breg cells
included mostly activated B cells (IgM+ CD38+ CD27-) and
unswitched PB (CD19+ IgM+ CD27low CD38+ CD20+) able to
simultaneously produce IL-10 and IgM. To further characterize
the co-cultured B-cells, we performed RNA-sequencing (RNA-
seq) transcriptional analyses on three pooled samples of B cells
sorted from the two different co-culture conditions. We assessed
the differential expressing genes (DEGs) between Bregs and Be1
(Figure 5A). We observed 953 DEGs (P-value < 0.01) and 223
genes with a FC > │1.5│ (Figure 5A). We underlined a
significant up-regulation of genes involved in immune
regulation and PB differentiation including IL-10, ELL2, IgJ,
PRDM1, and the transcription factor MAF (Figure 5B). We
also highlighted several key molecules that could contribute to
the immunoregulatory phenotype observed in vitro such as
BATF, FOSL2, GATA3, CTLA4, TIGIT, or EPAS1 (HIF2-a).
Interestingly, FOSL2 (also called Fra-2, an IL-2 regulator), and
BATF are AP1 family transcription factors that have already
been described as able to interact with MAF proteins (118). We
confirmed at the protein level that c-MAF is upregulated
together with BLIMP-1 and IRF4 in Bregs induced in our co-
culture, suggesting that in these conditions c-MAF is associated
with IL-10+ regulatory PB (Figure 5C).

To examine the conditions required for c-MAF induction, we
stimulated peripheral B cells with CpG and IL-2 and or anti-
CD40 Ab for two days, both simulations described as potent IL-
10 inductors (127, 128). Whereas c-MAF is low expressed in
resting peripheral B cells, c-MAF could be induced following
stimulation with an optimal response through the combination
March 2022 | Volume 13 | Article 818814
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of TLR9 with IL-2 or CD40 signaling (Figure 5D). As previously
described, the western blotting analysis revealed different sizes of
proteins recognized by anti-MAF Ab suggested some post-
translational modifications (107, 129). The main form (47
kDa) observed in resting peripheral B cells was preferentially
increased after stimulation. Two other c-MAF isoforms of 50 and
Frontiers in Immunology | www.frontiersin.org 11
54 kDa were absent in resting B cells but induced following
stimulation. The higher form (63 kDa) could correspond to the
SUMOylated c-MAF described in mice (Figure 5D) (112, 113).
Further investigations will be necessary to elucidate the post-
translational modifications and the transcripts implicated in
different c-MAF proteins. We further confirmed these results
A B
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FIGURE 5 | MAF is upregulated in in vitro-induced human B10. (A) Differential expressing genes between pro-inflammatory B (Be1) cells and Bregs. RNA-sequencing
transcriptional analysis was performed on three pooled samples of in vitro induced Be1 and Bregs. Left: Volcano plot reporting p value (-log10[P], y axis) as a function of log2
fold change (FC) between samples (x axis). Transcripts that were identified as significantly differentially expressed are represented above the dotted line. On the right, the circle
chart shows numbers of differentially expressed genes (DEGs) with a p value < 0.01 and a FC > ǀ1.5ǀ. (B) Differential expression of genes implicated in immunoregulation
between Breg and Be1. Expression of genes is represented in z score with a color gradient from dark blue for down-regulated expression to red for up-regulated expression.
The MAF gene highlighted in red is the transcription factor more differentially expressed between Be1 and Breg. Other genes related to immunoregulation appear upregulated
in Breg compared to Be1. (C) Left: Assessment of the differentiation state of Be1 and Breg using IRF4 and Blimp-1 expression. Black gates indicate IRF4high BLIMP-1+

differentiated B cells. Right: Representative histogram of MAF expression in gated differentiated IRF4high BLIMP-1+ (dark red) and IRF4+ BLIMP-1- (light red) cells from in vitro
generated Bregs. The expression of MAF is higher in regulatory plasmablasts than in IRF4+ Blimp-1- Bregs. (D, E) c-MAF protein expression in unstimulated or two-days
stimulated B cells assessed by western blotting (D) or flow cytometry (E). (D) Western Blot showing the c-MAF expression in resting unstimulated peripheral B cells (D0) and
in stimulated B cells simulated (D2) by CpG with IL-2 or anti-CD40 for two days. GAPDH expression was used as an endogenous control. Black arrows indicate the
calculated sizes of the protein recognized by the anti-c-MAF antibody. (E) Left: Representative histograms of c-MAF protein expression in unstimulated (grey) or stimulated B
cells by CpG/IL-2 (green) or CpG/anti-CD40 (brown) for two days. Right: Plot representing differential expression of c-MAF between unstimulated and stimulated B cells (N =
4). The c-MAF expression is represented in fold change of unstimulated B cells. The difference of MAF expression between unstimulated and stimulated B cells have been
evaluated using Kruskal Wallis test combined with Dunn’s multiple comparison test. *p-value < 0,05. (F) Assessment of the simultaneous expression of c-MAF and IL-10
expression production in stimulated B cells. Representative dot plots of c-MAF and IL-10 expression in the two-days stimulated B cells by CpG/IL2 (green) or CpG/anti-CD40
(brown). Black rectangles indicate the c-MAF+ IL10+ B cells. The percentage of this population is indicated below the rectangles.
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by flow cytometry, with an expression 10 to 100 times higher (p-
value < 0,05) compared with resting B cells (Figure 5E). We
finally analyzed the production of IL-10 together with the c-MAF
expression in stimulated B cells (Figure 5F). IL-10 intracellular
detection was shown to be associated only with MAF-expressing
B cells but was not observed in MAF-negative B cells. However,
such observation only suggested a correlative phenomenon and
further experiments are mandatory to understand the precise
role of MAF on IL-10 production.

We next addressed whether MAF could be preferentially
induced from a specific mature B-cell population (Figure 6A)
and could be associated with B-cell differentiation. We thus
sorted four B-cell populations according to IgD and CD27
expression and stimulated them for three days following BCR,
TLR9, and IL-2 stimulation. We observed that c-MAF was
Frontiers in Immunology | www.frontiersin.org 12
upregulated in all mature B-cell subsets, however, we showed
that the co-expression of c-MAF and BLIMP-1 expression is
mainly observed in CD27+ mature differentiated B cells. Finally,
as c-MAF was weakly expressed in circulating resting B-cells but
could be induced following activation, we hypothesized that c-
MAF could be expressed in the secondary lymphoid tissues as
described in mice. We then examined MAF expression in human
tonsils, showing that MAF was barely detectable in naive B cells
but was found significantly increased in IgD+ CD27+ unswitched
memory, GC cells, and PB(Figure 6B).

Although preliminary and mostly correlative, our analyses
emphasized that the TF MAF is expressed in human mature B
cells and could be observed in IL-10+ producing B cells as well as
in BLIMP-1+ PB. We also showed that c-MAF could be
physiologically observed in secondary lymphoid organs open
A

B

FIGURE 6 | MAF is up-regulated following B-cell differentiation and expressed in human tonsils. (A) Expression of BLIMP-1 and c-MAF in differentiated B cells. Up:
Representative expression of c-MAF and BLIMP-1 by flow cytometry in unstimulated B cells or stimulated naive (NA), unswitched memory (USM), switched memory
(SM), double-negative (DN) B cells and total B cells. Black polygons indicate c-MAF+ BLIMP-1 + B cells. Down- Left: Percentage of MAF+ BLIMP-1 + B cells in
unstimulated B cells (light grey) or stimulated total B cells (dark grey), naives (green), unswitched memory (blue), switched memory (purple), double-negative (yellow)
B cells (N = 3). Down – Right: Mean Fluorescence intensity of c-MAF in differentiated B cells (N = 3). (B) Expression of MAF in the different tonsillar B-cell
populations. Left: Gating strategy for defining the different of differentiated B cell subpopulations is presented. Differentiated B-cell populations are determined
delimited according to the expression of CD38, CD27 and IgD in six subpopulations: double-negative cells IgD- CD27- (DN, yellow), naïve IgD+ CD27- (NA, green)
switched memory IgD- CD27+ (SM, purple), unswitched memory IgD+ CD27+ (USM, blue), germinal center cells IgD- CD38high (GC, orange) and CD27high CD38high

plasmablasts (PB, red). Right: Representative expression of c-MAF in the previously described subpopulations of tonsil B cells. Black rectangles indicate c-MAF+ B
cells. The percentage of c-MAF+ B cells in each subpopulation is represented on the associated plot (N = 10). The difference of MAF expression between the
populations have been evaluated using Kruskal Wallis test combined with Dunn’s multiple comparison test. ****p-value < 0.0001; **p-value < 0,001.
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new directions about its putative role in human B-cell
homeostasis. However, further experiments are needed to fully
understand its role in these different B-cell subsets. Furthermore,
as described in T cells, we anticipated that MAF function will
may be highly dependent on its different interacting
molecular partners.
DISCUSSION: MAF ASSOCIATION WITH
OTHER REGULATORS

A study providing a highly comprehensive view of the TF
network regulating Th17 has underlined the key role of MAF
in adaptive immunity (118). In Th17, c-MAF was shown as a
negative regulator attenuating expression of several pro-
inflammatory genes such as Rora, Runx1, Il1r1, Ccr6, or Tnf
while upregulating immunoregulatory other ones such as Il10 or
Ctla4 suggesting that its role is not restricted to cytokine
regulation. As a bZIP TF, c-MAF could virtually interact with
all AP1 protein members. We reported as follows the MAF
relationships that may be relevant in B cells (Figure 7).
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STAT3
STAT3 represents a key element in the transcriptional regulation
of MAF expression in all helper T cells, but the mechanism
remains unclear. MAF and SOX5 were demonstrated to be
regulated by IL-6-mediated STAT3 activation driving Th17
expansion (130). Moreover, STAT3 binding on class II IL-6
responsive elements was observed on the MAF promoter in Th2
cells after TCR and IL-6 activation (131). This observation was
also reproduced in CD69+ FOXP3+ Tregs where the treatment of
cells with STAT3 and STAT5 siRNA reduced MAF expression
(132). The TGFb seems to synergically act with IL-6 to induce
MAF expression by sustaining the STAT3 expression (133). IL-
21 and IL-6 are upstream inducers of STAT3 activation and
highly involved in plasma cell differentiation suggesting that they
could also act in inducing MAF in B cells (134). Moreover,
dysregulated STAT3 signaling has been reported in B cells in
autoimmune diseases associated with abnormal GC reaction or
plasma cell expansion (135). Does STAT3 influence B10
generation by regulating MAF expression? It is an ongoing
question and several reports have already suggested that
STAT3 deficient signaling contributes to impair IL-10
production in SLE B cells (48, 53).
FIGURE 7 | Putative molecular factors involved in controlling Il10 transcription in Bregs. STAT3 could induce expression upon IL-6 activation and could also bind on
the class II IL-6 responsive elements present on the c-MAF promoter. BACH2 has been shown to directly repress c-MAF transcription by binding its promoter in Tregs.
BHLHE40 is a major repressor of IL-10 production through the inhibition of c-MAF in T cells and macrophages. BCL6 cooperates with c-MAF to regulate Tfh-
associated genes. Tfh-cell differentiation and BCL6 expression is promoted through the control of c-MAF expression. IRF4 could be induced by c-MAF with the
cooperation of BATF. c-MAF could directly bind on the IRF4 locus but needs a partner to transactivate its promoter. BLIMP-1 may not directly interact with c-MAF but
seems to form a complex with it in T cells and both seem to have compensatory roles. Positive regulations are represented by black arrows, negative regulation by red
lines and partners by orange lines. IRF, Interferon regulatory factor; Blimp-1, B lymphocyte-induced maturation protein 1; NFAT, Nuclear factor of activated T-cells;
HIF1a, hypoxia inducible factor 1 subunit alpha; pSTAT3, Phosphorylated signal transducer and activator of transcription 3; AhR, Aryl hydrocarbon receptor; NFkB,
Nuclear factor kappa B; AP1, Activator protein 1; IL, Interleukin; BHLHE40, basic helix-loop-helix transcription factor 40; BACH2, Broad complex-tramtrack-bric a brac
and Cap’n’collar homology 2; BCL6, B-cell lymphoma 6 protein; FOSL2, Fos-related antigen 2; BATF, Basic leucine zipper activating transcription factor-like.
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BACH2
BACH2 is a TF involved in B cell differentiation and is controlled
in human B cells by the IL-2 signaling (136, 137). BACH2 was
mostly described as able to form heterodimers with small c-MAF
proteins (136) binding to MARE domains. BACH2 interacts with
MAFK to negatively regulate the immunoglobulin heavy chain
gene 3’ enhancer and the PRDM1 gene (138) controlling B cell
differentiation and isotype switching. The BACH2 and the large
MAF proteins interaction was not reported in B cells but BACH2
deletion in T cells led to an increase of the generation of Tfh-
producing IL-4 and subsequent generated humoral
autoimmunity (139). In this study, BACH2 was shown to
directly repress MAF transcription by binding its promoter.
BACH2 inhibits the differentiation of mature Tregs by
competition with IRF4-recruiting AP-1 complexes for MARE
genomic binding sites resulting in the decrease of Treg-
associated genes such as Il10, Tigit, and, Maf. Interestingly, our
previous data have shown that B-cell differentiation is associated
with an upregulation of a similar pattern of genes suggesting that
BACH2 could also repress MAF and IRF4 expression in B cells.

BHLHE40
The basic helix-loop-helix transcription factor 40 (Bhlhe40) is a
member of the basic helix-loop-helix transcription factor family.
BHLHE40 is a central mediator of both inflammation and
pathogen control in T cells and macrophages (review in (140)).
BHLHE40 was found as a major repressor of Il10 in IL-27 driven
Tr1 or Th1 cells through the inhibition of MAF (63, 141). During
Mycobacterium tuberculosis infection, BHLHE40 was shown to
bind directly to the +6kb (CNS3) enhancer of the Il10 locus in T
cells and myeloid cells (142). BHLHE40 also named DEC1,
STRA13, or Clast5, was first described as a negative regulator
of B-cell activation and is downregulated following LPS or BCR
stimulation (143). BHLHE40 overexpression led to cell cycle
arrest in WEHI231 B lymphoma cells. By studying Bhlhe41–/–

mice, and DKO Bhlhe41–/– Bhlhe40–/–, it was demonstrated that
compared to BHLHE41, BHLHE40 contributes slightly to B1
development and it is still not clear whether BHLHE40 possesses
intrinsic action on murine B-cell development (144). However, it
was shown that BHLHE40 was induced in human B cells
following BCR or TLR9 stimulation restraining proliferating
capacities (145). Moreover, BHLHE40 is overexpressed in
anergic CD21low B cells of patients with hepatitis C virus, a
subset recently underlined as pathogenic in autoimmune
diseases. The role of BHLHE40 in controlling Breg expansion
has to be determined and interestingly, we recently underlined
that BHLHE40 is a common factor downregulated during the PB
differentiation (67).

BCL6
The BCL6 protein was first described as a master regulator of B
cells during the GC reaction (146, 147). There exists a reciprocal
regulatory loop between Blimp-1 and BCL6 during the B-cell
differentiation, whereby both TF antagonize the expression of
each other (148, 149). This antagonism between BCL6 and
BLIMP-1 was also described as a critical mechanism regulating
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the development of Tfh (150). BCL6 and c-MAF cooperate to
regulate the expression of Tfh-associated genes like PD1 or
CXCR5 (151). Furthermore, T cells lacking MAF expression
failed to develop into Tfh after immunization (152). More
recently the regulatory circuit between c-MAF, BLIMP-1, and
BCL6 during the Tfh differentiation was examined in Thpok
(encoded by the Zbtb7b gene) deficient mice (153). Thpok
promoted Tfh cell differentiation and Bcl6 expression through
controlling MAF expression but independently of the repression
of BLIMP-1.

IRF4
IRF4 is a key factor in the induction of regulatory plasma cells.
Through a multi-layer -omics approach, c-MAF was suggested to
interact with IRF4 in normal and myeloma plasma cells although
no experimental data supported this idea (154). In T cells BATF
and c-MAF cooperated to induce IRF4, to promote IL-4
production, and it was observed that c-MAF could bind to the
IRF4 locus although it could not transactivate the promoter
alone (155). To note, the action of c-MAF and IRF4 was also
described in the M12 B cell lymphoma line acting in synergy with
NFAT1 to enhance the IL-4 transcriptional activity (156)

BLIMP-1
The relationship between MAF and PRDM1 has been studied
with attention in Th1 and Th17. Although both factors seem to
be required for Il10 expression in both subsets, there are
contradictory reports about their putative interaction as
previously discussed (64). Whereas some reports suggested no
physical interaction between both TFs, another study using co-
immunoprecipitation assay suggested that MAF, Blimp-1, and
RORgt form a complex in IL-27 stimulated T cells (157)

Moreover, a study that recently examined the regulatory
network involved in the control of T-cell exhaustion in tumors
underlined that although MAF and PRDM1 are together
involved in controlling several co-inhibitory receptors
expression in T cells, both factors do not interact together and
that PRDM1 function in tumor-infiltrating T cells is independent
of MAF suggesting that both TFs may have a compensatory role
(116) Indeed, regression of tumor was observed more
significantly in MAF, PRDM1 double KO mice than in mice
with a single gene deletion. Our data reported an association of
MAF and PRDM1 during the B cell differentiation, thus a role of
MAF in the B-cell central regulatory network involving BACH2,
BCL6, IRF4, and PRDM1 is likely to also operate in the B cell
differentiation and need to be further examined.

Role of the MicroRNAs miR155 and miR 21
MicroRNAs (miRNAs) are small non-coding RNA molecules
that control gene expression by binding messenger RNA
(mRNA). Whereas most of the studies demonstrated that the
binding of miRNAs to 5′ UTR and coding regions have silencing
effects, some others have also suggested that miRNA interaction
with promoter region could have a positive effect and induce
transcription (158). Of particular interest in B-cell physiology are
the miR-155 and the miR-21.
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First observations in mir155-deficient mice suggested that
miR-155 control the GC formation, as well as, the extrafollicular
response (159). It was further demonstrated that one main target
of the miR155 was a member of the Ets domain-transcription
factor family the TF PU.1 (160). Interestingly, the deletion of
miR155 led to the overexpression of PU.1 resulting in the
impairment of class switch recombination and plasma cell
formation mostly by controlling the TF Pax5 (161).

The failure to downregulate Pax5 in PU.1-overexpressing
cells prevented them from upregulating Blimp1 and thus
initiating the plasma cell differentiation program. However, no
direct role of miR155 on Blimp1 has been established so far.

The role of miRNA on IL-10 production is not clear. A recent
report suggested that miR155 increased the expression of IL-10
by both upregulating the STAT3 phosphorylation and repressing
the epigenetic regulator Jarid2 leading to the decrease in histone
H3 lysine 27 trimethylation of the IL-10 promoter (162). On the
other hand, the IL-10 production following LPS stimulation
could inhibit miR155 in B cells in a STAT3-dependent manner
(163). These complex interactions between IL-10, mir155, and
STAT3 at the crossroad between B-cell differentiation and B-cell
regulatory function need to be further elucidated but underlined
their close relationship.

In one seminal paper, MAF has been described as an important
target of miR-155 in T cells, and the increase of the Th2 profile
observed in the miR-155 KO mice (bicm1/m1 and bicm2/m2) was
partially attributed to the upregulation of the MAF protein in
absence of its antagonist (164). The miR-155 suppressed MAF
expression in microglia leading to the decrease of IL-10 thus
promoting neuroinflammation (165). In Group 2 innate
lymphoid cells (ILC2), miR-155 targets the 3′-UTR of the Maf
mRNA and increased the production of IL-5, IL-9, and IL-13 Th2
cytokines in culture.Moreover, the treatment ofmicewith induced-
allergic rhinitis withmiR-155 antagomir significantly increased the
expression of c-Maf and reduced allergic symptoms (166).
Furthermore, another report described that c-MAF binding to the
Il10promoter is restrictedby jarid2 inmiR-155-deficientTh17cells,
emphasizing the importance of this network in regulating IL-
10 expression.

Considering the key role of miR-155 in controlling the GC
reaction, PB differentiation, IL-10 production, and MAF
expression, we could anticipate that its expression may highly
vary throughout the B-cell maturation. An in-depth investigation
of these interactions could decipher important regulator
mechanisms of the B-cell effector function.

ThemiR-21was also described as a critical regulator of theB-cell
differentiation and IL-10 production.Analysis ofmiR-21 levels in B
cells revealed higher expression in activated B cells, especially inGC
and memory B cells, and decreased expression in plasma cell
differentiation (167). BLIMP-1 binds to the promoter of the pre-
miR-21 to repress its expression upregulating miR-21 target genes,
BTG2, PDCD4, and RHOB.

ThemiR-21downregulated IL-10 expression inLPS-stimulatedB
cells invitroand its expression is reduced inCD1dhiCD5+andTim-1+

regulatory B cells. Furthermore, the administration of miR-21
antagonist in vivo decreased neuroinflammation and ameliorated
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the clinical symptoms of the EAEmostly through the increase of IL-
10 producing B cells (168). However, the fine-tune mechanisms of
miR-21 regulating IL-10 expression appearmore elaborate, as one of
itsmain targets thePDCD4proteinwas also described as a potent IL-
10 inhibitor (169). Interestingly,PDCD4controlsMAFexpressionby
sequestering the Basic helix-loop-helix (bHLH) transcription factors
Twist2 from the MAF promoter (170).

The list of miRNAs that could potentially control IL-10
producing B cells described here is far from being exhaustive,
and it is not clear how the interplay between these different actors
could influence the B-cell function. However, this entire field
remains an exciting area of investigation still uncovered.
CONCLUDING REMARKS

The idea of a unique TF regulating all Breg populations seems
unlikely, the diversity of precursors and mechanisms of action of
Bregs are more compatible with microenvironmental plasticity
and multiple molecular mechanisms. However, the extreme
flexibility of the c-MAFs proteins to directly or indirectly
cooperate with diverse partners modulating cell specification
makes it a promising candidate in regulating B-cell effector
functions such as Ab production or immune regulation.
MATERIAL AND METHODS

Patients and Samples
The study was performed in accordance with the Declaration of
Helsinki and was approved by ethical committees. The patients/
participants provided their written informed consent to
participate in this study.

RNA Sequencing Sample Preparation
The in-vitro-induced Be1 and Be2/Breg were obtained in
coculture with naive and memory T cells, respectively, as
previously described (126). After coculture, B cells were sorted
with the “FACS MoFlo XDP cell sorter” (Beckman Coulter) with
a purity greater than 98%.

RNA-Sequencing
RNA-seq (50 bp paired-end) was performed on a Nextseq500
instrument (Illumina). The library preparation was done using
the Illumina TruSeq® Stranded mRNA Sample preparation kit.
The starting material (1 µg) of total RNA was mRNA enriched
using the oligodT bead system. The isolated mRNA was
subsequently digested using enzymatic fragmentation. Then,
the first strand and second strand synthesis were performed
and purified (AMPure XP, Beckman Coulter). Next, the double-
stranded cDNA was end repaired, 3’ adenylated, and Illumina
sequencing adaptors were ligated onto the fragment ends.
Finally, purified mRNA-stranded libraries were pre-amplified
by PCR and the library size distributions were validated and
quality inspected on a Bioanalyzer (high sensitivity DNA chip).
High quality libraries were quantified using qPCR, the
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concentration was normalized, and the 12 samples from six
independent experiments were randomly pooled in six final
libraries, three for the Be1 conditions and three for the B reg
conditions. The library pools were re-quantified with qPCR and
the optimal concentration of the library pools was used to
generate the clusters on the surface of a flow cell before
sequencing on a Nextseq500 instrument using a High Output
sequencing kit (2 x 50 cycles) according to the manufacturer’s
instructions (Illumina). The quality of the Raw.fastq files was
analyzed using the bcl2fastq software (Illumina), with a Q-score
greater than 30. Reads mapping to the reference genome
(GRCh37/hg19) were performed on quality-checked reads
using STAR 2.4.1c. The reference annotation used was
Ensembl_75. The overlap of reads with annotation features
found in the reference gtf fi le was calculated using
featureCount. The output computed for each sample (raw read
counts) was then used as the input for Edge R analysis. Genes
that had an expression level of under 10 counts per million (cpm)
were excluded from the analysis. The quantile-adjusted
conditional maximum likelihood (qCML) method was used to
determine differentially expressed genes (DEGs) with p-value
filters <0,01 and |fold-change (FC)|≥1,5.

Peripheral Blood B-Cell Isolation, Sorting,
and Culture
The leukoreduction system chambers (LRSC) of Peripheral
blood from healthy donors were obtained during routine
plateletpheresis at the “Etablissement français du sang”. The
peripheral Blood Mononuclear Cells (PBMCs) were isolated
using density gradient centrifugation on lymphocyte separation
medium, Pancoll human (PAN Biotech). CD19+ B cells were
purified from human PBMCs using the REAlease® CD19
Microbead Kit (Miltenyi Biotec) with a purity greater than
98%, according to the manufacturer’s instructions.

Isolated B cells were cultured in 96-well plates (BD Falcon) at
2x105 cells per 200 µL/wells in complete medium (RPMI 1640
medium (Sigma-Aldrich)) supplemented with 10% of heat-
inactivated Fetal Calf Serum (FCS) (BD Biosciences), 2 mM
Glutamax (Gibco) and penicillin (200 U/mL) and streptomycin
(100 µg/mL). B cells were stimulated for 48 h (2 days) in the
presence of CpG oligodeoxynucleotide (ODN-2006) (1 µM; In
vivoGen), recombinant human Interleukin-2 (rh IL-2) (20 ng/
mL, ImmunoTools) or anti-CD40 (1 mg/mL) (MAB-59;
Beckman Coulter).

For the sorting of B cell subsets, isolated B cells were stained for
30 min at 4°C into the dark with IgD (IA6-2, Biolegend), CD10
(ALB1, Beckman coulter), CD27 (1A4CD27, Beckman coulter),
CD19 (J3-119, Beckman coulter) Abs. CD10-positive B cells, which
correspond to the transitional subset, were excluded from the cell
sorting. Naive (NA, IgD+ CD27- CD10-), unswitched memory
(USM, IgD+ CD27+ CD10-), switched memory (SM, IgD- CD27+

CD10-) and double negative B cells (DN, IgD- CD27- CD10-) were
sorted. Sorted cells were cultured in 96-well plates (Falcon) at 2×105

cells per 200 µL/well in complete medium (RPMI 1640 medium
supplemented with 10% of heat-inactivated FCS, 4 mM L-
Glutamine (Gibco) and penicillin and streptomycin. B cell subsets
were stimulated for 84 h (3.5 days), in the presence of theAffiniPure
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Goat anti-Human IgG+IgM(H+L) (2µg/mL), theAffiniPureF(ab’)
2 Fragment Goat Anti-Human Serum IgA, a Chain Specific (2 µg/
mL; Jackson ImmunoReasearch Laboratories) , CpG
oligodeoxynucleotide (ODN-2006) (0,25 µM), recombinant
human Interleukin-2 (rh IL-2) (20 ng/mL), as previously
described (https://www.biorxiv.org/content/10.1101/2021.03.
31.437810v1).

Isolation of Tonsil B Cells
Tonsils were collected during tonsillectomy. The Tonsillar
Mononuclear Cells (TMCs) were isolated by mechanical
disruption of tonsil tissue followed by Pancoll gradient
centrifugation. Isolated TMCs were diluted in FCS up to a
concentration of 10.106 TMCs/mL. Sheep red blood cells
(Boehringer Ingelheim Therapeutics) were pre-incubated with
Alserver solution (114 mM of dextrose, 27 mM of sodium citrate,
71 mM of sodium chloride, 1 M of citric acid diluted in distilled
water) for 5 minutes and washed before an incubation at 37°C
with 1 U/mL of neuraminidase (Sigma-aldrich) for 1 h.
Neuraminidase-treated sheep red blood cells were washed and
then incubated with the diluted TMCs during 10 minutes at
37°C. B cells from TMCs were then isolated following Pancoll
gradient centrifugation, with a purity greater than 96%.

Flow Cytometry
All staining was performed using the Navios II flow cytometer
(Beckman Coulter). The Abs with the following specificities were
used: CD19 (J3-119), CD38 (LS198-4-3), CD27 (1A4CD27), IgD
(IA6-2) c-MAF (T54-853, BDBiosciences), BLIMP-1 (646702, R&D
systems) and IRF4 (REA201, Miltenyi Biotec), IL-10 (JES3-9D7,
Biolegend). Intranuclear staining of IRF4, BLIMP-1 and c-MAF
(T54-853, BD Biosciences) were performed using the Transcription
Factor Buffer Set according to the manufacturer’s instructions (BD
Biosciences). For the detection of IL10 and c-MAF together, we used
the CytoFast Perm Fix Set (BioLegend) according to the
manufacturer’s instructions. The c-MAF expression was analyzed
using an unconjugated rabbit anti-MAF (BLR045F, Bethyl
laboratories) revealed by a Fluorescein (FITC) AffiniPure F(ab’) ₂
Fragment Donkey Anti-Rabbit IgG (H+L) (Jackson
ImmunoResearch Laboratories). Flow cytometry data were
analyzedusingKaluzaAnalysis (v2.1) andFlowJo (v10.7.2) softwares.

Western Blot
Total proteins were extracted with RIPA Lysis Buffer (Thermo
Fisher Scientific) supplemented with 1% of protease inhibitor
cocktail (Sigma Aldrich). Samples treated with reducing
Laemmli buffer (1.8% b-mercaptoethanol; Sigma Aldrich) were
separated on SDS-PAGE with 10% acrylamide/bis (37,5:1)
solution (Biorad) with the Mini-PROTEAN® Tetra Vertical
Electrophoresis Cell (Biorad) at 120 volts for 20 minutes and
then at 160 volts for 45 minutes. Separated proteins were then
transferred to a 0,2 µm PVDF membrane (Biorad) using the
Trans-Blot® SD Semi-Dry Transfer Cell (Biorad) at 20 volts
during 90 min. After washing in Tris Buffered Saline 0,1% Tween
(TBST), the membrane was blocked for 1 hour in TBST
containing 5% of fat dry milk (for c-MAF) or 5% of BSA (for
GAPDH) at room temperature. The polyclonal rabbit c-MAF Ab
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(ProteinTech) at 0,7 µg/mL in TBST containing 1% of fat dry
milk and the membrane was incubated in this solution for 2
hours at room temperature. The secondary antibody used was a
peroxydase conjugated donkey anti-rabbit IgG (H+L) Ab (GE
Healthcare) at 0,2 µg/mL in 1% of fat dry milk TBST during one
hour at room temperature. The HRP-Rabbit polyclonal to
GAPDH (Abcam) in TBST containing 1% of BSA and the
membrane was incubated overnight. The PVDF membranes
were revealed by chemiluminescence (Immobilon Fort Western
HRP substrate, Merck Millipore) by using the ChemiDoc™ XRS
system (Biorad, Quantity One® Software).

Statistics
All statistics and graph representation were performed with
GraphPad Prism (v.8.8.2). The Kruskal Wallis test combined
with Dunn’s multiple comparison test was used.
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