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Neutrophils in the tumor microenvironment exhibit altered functions. However, the changes in
neutrophil behavior during tumor initiation remain unclear. Here we used Translating
Ribosomal Affinity Purification (TRAP) and RNA sequencing to identify neutrophil,
macrophage and transformed epithelial cell transcriptional changes induced by oncogenic
RasG12V in larval zebrafish. We found that transformed epithelial cells and neutrophils, but not
macrophages, had significant changes in gene expression in larval zebrafish. Interestingly,
neutrophils had more significantly down-regulated genes, whereas gene expression was
primarily upregulated in transformed epithelial cells. The antioxidant, thioredoxin (txn), a small
thiol that regulates reduction-oxidation (redox) balance, was upregulated in transformed
keratinocytes and neutrophils in response to oncogenic Ras. To determine the role of
thioredoxin during tumor initiation, we generated a zebrafish thioredoxin mutant. We
observed an increase in wound-induced reactive oxygen species signaling and neutrophil
recruitment in thioredoxin-deficient zebrafish. Transformed keratinocytes also showed
increased proliferation and reduced apoptosis in thioredoxin-deficient larvae. Using live
imaging, we visualized neutrophil behavior near transformed cells and found increased
neutrophil recruitment and altered motility dynamics. Finally, in the absence of neutrophils,
transformed keratinocytes no longer exhibited increased proliferation in thioredoxin mutants.
Taken together, our findings demonstrate that tumor initiation induces changes in neutrophil
gene expression and behavior that can impact proliferation of transformed cells in the early
tumor microenvironment.

Keywords: neutrophil, migration, tumor initiation, thioredoxin (txn), gene expression, keratinocyte
INTRODUCTION

Neutrophils respond to tissue damage cues and are actively recruited to the tumor microenvironment
(TME) (1, 2). Although neutrophils can have either pro- or anti-tumor effects (3), the presence of
neutrophils in tumors often correlate with poor prognosis (4, 5). Therefore, there is increasing interest in
understanding how neutrophils are recruited to and interact with transformed cells in the developing
tumor microenvironment.
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The zebrafish larval model allows for unparalleled non-invasive
imaging of the early stages of tumor initiation and interactions with
innate immune cells. Zebrafish larvae have a functional innate
immune system comprised of macrophages and neutrophils by 2
dayspost-fertilization (dpf).This earlydevelopmentalwindowallows
the investigationof specific interactions between innate immune cells
and the tumor-initiatingniche.Neutrophils arehighlymigratory cells
that move within interstitial tissues near transformed cells. In vivo
studies in zebrafish have shown that neutrophils are recruited shortly
after oncogene-induced transformation (6, 7). Furthermore,
recruited neutrophils make frequent, direct cell-cell contact with
HRasG12V-transformed cells, occasionally forming long membrane
tethers between cells (6). At this early stage in tumorigenesis,
neutrophils support proliferation and epithelial to mesenchymal
transition of transformed epithelial and glial cells (8, 9).
Additionally, recent evidence suggests that neutrophil migratory
behavior changes during the course of tumor development in
mouse models, with early stage tumors inducing migration of bone
marrow-derivedneutrophils and late stage tumors inducing a slower,
immunosuppressive neutrophil migration (10). Therefore, the
crosstalk between neutrophils and tumor cells is dynamic during
tumor progression.

Several signaling pathways are involved in neutrophil chemotaxis
and recruitment, many of which are also upregulated in the TME.
One of the primary chemotactic pathways that regulates neutrophil
migration is the CXCL8 (IL8)-CXCR1/2 pathway. CXCL8 is
upregulated in many cancers including solid tumors (brain, breast,
colon, gastric, lung, and others) and blood cancers (AML, CLL,
Hodgkin’s lymphoma)andhigh levels ofCXCL8expressionareoften
linked with disease progression (11). Reactive oxygen species (ROS)
are another potent neutrophil chemoattractant produced in
transformed cells (6) and tumors (12). Studying neutrophil
migratory behavior early in tumorigenesis may provide insight into
how these cells elict their tumor-supporting effects.

To identify candidate genes that regulate neutrophil behavior in
the TME, we conducted tissue-specific RNA-sequencing of
HRasG12V-transformed keratinocytes, neutrophils, and
macrophages in zebrafish larvae using translating ribosome affinity
purification (TRAP)-seq (13, 14). We found that the anti-oxidant
thioredoxin was increased approximately five-fold in HRasG12V-
transformed keratinocytes and three-fold in neutrophils, over
wildtype HRas-expressing zebrafish. We generated thioredoxin
mutants that showed increased neutrophil recruitment and altered
neutrophil motility behavior near transformed cells. These mutants
also exhibited enhanced neutrophil-dependent proliferation of
transformed cells, suggesting that thioredoxin modulates
neutrophil behavior and early tumor progression.
RESULTS

Oncogenic RasG12V Induces Differentially
Expressed Genes in Neutrophils and
Transformed Cells in Zebrafish Larvae
We sought to identify changes in gene expression that regulate
leukocyte behavior in zebrafish larvae in response to expression of
Frontiers in Immunology | www.frontiersin.org 2
oncogenic HRasG12V in keratinocytes. We performed translating
ribosome affinity purification (TRAP) (13, 15) and subsequent
RNA sequencing of three cell-types (Ras-expressing
keratinocytes, neutrophils, and macrophages) in 3 days post-
fertilization (dpf) larvae in response to wild type (WT) or
oncogenic HRasG12V (16). Briefly, keratinocytes co-expressed
either control HRas (pTol2-Krt4-RFP-HRas) or constitutively-
active HRasG12V (pTol2-Krt4-RFP-HRasG12V) and EGFP-tagged
ribosomal subunit L10a using the Krt4 promoter (Figure 1A). To
identify gene expression changes within transformed cells, GFP-
tagged ribosomes were immunoprecipitated and their associated
transcripts were sequenced (Figure 1A). Neutrophil or
macrophage-specific ribosomes were also isolated from whole
larvae using transgenic lines Tg(Lyzc : EGFP-L10a) or Tg(mpeg:
EGFP-L10a) to identifydifferentially expressed genes inneutrophils
andmacrophages, respectively (Figure 1A). Sequencing confirmed
expression of known cell-type-specific genes for neutrophils,
macrophages, and keratinocytes in the analyzed samples,
providing validation for the method (Figure 1B). We identified
genes altered >2fold in response to HRasG12V expressing
keratinocytes for all three cell types (Figure 1C). A small number
of transcripts overlapped between cell types, indicative of a cell-type
specific response to HRas-transformed keratinocytes.

We identified significantly deferentially expressed genes in
transformed keratinocytes (56 genes) and neutrophils (53 genes),
but not in macrophages (Figure 2A). As expected, gene
expression was upregulated in transformed keratinocytes, with
the majority of transcripts showing increased expression. In
contrast, the majority of the differentially expressed genes in
neutrophils showed reduced expression. While neutrophils
collected from HRas-transformed keratinocyte larvae showed
differential gene expression, macrophages did not. The
significant changes in gene expression observed in neutrophils,
may be due to neutrophil trafficking around transformed
keratinocytes (7).

Thioredoxin Expression Is Induced in
Neutrophils and Keratinocytes With
HRasG12V Transformation
Gene set enrichment analysis (GSEA) revealed significant
enrichment of the IL6-Jak-Stat3-signaling and Tnfa-signaling-
via-NF-kB in transformed cells and neutrophils. There was also
enrichment in reactive-oxygen-species signaling pathways in
neutrophils in response to oncogenic Ras (Figure 2B).
Hierarchical clustering indicates overlapping enrichment of many
Hallmark pathways between neutrophils and keratinocytes (Figure
S1A).To further characterize the role of ROS signaling on leukocyte
behavior near transformed cells, we focused on the role of the ROS
regulator and antioxidant thioredoxin. Thioredoxin (txn) was
among the most highly upregulated genes in keratinocytes in
response to oncogenic Ras (Figure 2C) and was also found to be
significantly upregulated in neutrophils. This finding is consistent
with human in vitro studies showing that oncogenic Ras-
transformation induces several antioxidant genes (17). In
addition, thioredoxin expression was upregulated in ten of
thirteen human carcinoma samples based on bulk sequencing
February 2022 | Volume 13 | Article 818893
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FIGURE 1 | Oncogenic HRas induces differentially expressed genes in neutrophils and transformed cells in zebrafish larvae. (A) Schematic of Translating Ribosomal
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(pTol2-Krt4-HRasG12V-mcherry) constructs for neutrophil- or macrophage-targeted L10a expression, respectively. (B) Cell type specific genes expressed in keratinocytes
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expression profiles in TRAP samples from keratinocytes, neutrophils, and macrophages. (C) Venn diagram showing distribution of genes altered >2fold by TRAP-seq in
response to HRasG12V expressing keratinocytes (n=3).
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available throughTheCancerGenomeAtlas (TCGA), as compared
to healthy tissue (Figure S1B) (51). Furthermore, human tumors
areknown toproduceROSabovenormal tissue levels (12), and thus
thioredoxin may play an important role in cellular redox balance
during tumorigenesis to reduce ROS levels.

Thioredoxin Regulates Neutrophil
Recruitment and Redox Balance in
Damaged Tissues
To characterize the role of thioredoxin during tumor initiation, we
generated a thioredoxin (txn) mutant using CRISPR/Cas9 gene
editing. Despite its known role as an antioxidant, the role of
thioredoxin during inflammation is unclear with both pro- and
anti-inflammatory functions reported (18–21). We generated a
zebrafish txn mutant harboring a 1bp insertion leading to a
premature stop codon (Figure 3A). Western blotting of 3dpf
larval lysates showed loss of the full-length protein in txnmutants
(Figure 3B). txn-/- larvae appeared morphologically normal and
developed similar neutrophil numbers compared towildtype larvae
(Figures S2A, B), suggesting that thioredoxin is not required for
normal development.

Previous studies have shown that a gradient of H2O2 is
generated early after wounding and regulates neutrophil
recruitment (22–24). To determine if thioredoxin alters ROS
signaling and neutrophil recruitment after tissue damage, we
wounded control and thioredoxin-deficient zebrafish by tail
transection at 72 hours post fertilization (hpf) (Figure 3C). We
assayed H2O2 abundance using the fluorescent H2O2 sensor,
pentafluorobenzene sulphonyl fluorescein (pfbs-f) and found
that txn mutant larvae displayed increased H2O2 accumulation
both 30 minutes and 4 hours post-wound (hpw) (Figures 3D, E).
These findings suggest that thioredoxin regulates the redox
balance of damaged tissues and that its deletion induces a
more robust gradient of H2O2 at the wound edge.

To determine if increased wound-associated ROS altered
neutrophil recruitment to wounds, we quantified neutrophil
numbers at a wound in control and thioredoxin mutants. We
observed a small increase in neutrophil infiltration at 2 but not
6hpw (Figures 3F, G), consistent with H2O2 providing an early
recruitment cue (24). To determine if other neutrophil recruitment
pathwaysarealtered in thioredoxinmutants,wequantifiedexpression
of inflammatory cytokines. Loss of thioredoxin did not affect basal
gene expression of inflammatory cytokines, including the neutrophil
chemoattractants cxcl8a and cxcl8b.1 (Figure S2C). Taken together,
ourfindings suggest that thioredoxin limits neutrophil recruitment to
wounds, likely through the modulation of H2O2 production.

Since neutrophils also show an increase in thioredoxin
expression in response to transformed cell cues, we next wanted
to determine if there were neutrophil-intrinsic changes that may
contribute to increased neutrophil recruitment to wounds. To
address this question we knocked down thioredoxin in human
neutrophil-like HL60 cells using CRISPR/Cas9 gene editing
(Figure 4A). We found that decreased thioredoxin expression in
neutrophil-like cells generated more ROS in response to PMA
stimulation, suggesting that thioredoxin has neutrophil intrinsic
effects on ROS signaling (Figures 4B, C). However, these cells
Frontiers in Immunology | www.frontiersin.org 5
exhibited normal chemotactic migration including similar velocity
to wild type cells (Figures 4D, E). In accordance with these findings,
we also determined that neutrophil random migration speed in the
head region of zebrafish larvae was similar between control and
mutant, suggesting that intrinsic neutrophil function was not
significantly altered in thioredoxin mutants (Figures S3A, B).

Transformed Keratinocytes Exhibit
Increased Proliferation and Reduced
Apoptosis During Tumor Initiation in
Thioredoxin Mutants
Due to very low survival of zebrafish larvae with HRasG12V

driven expression of transformed keratinocytes, we modified
our model to express oncogenic KRasG12V under the Krtt1c19e
basal keratinocyte promoter (Figure S4). Increased expression of
thioredoxin within KRasG12V transformed keratinocytes was
confirmed (data not shown). All experimental data were
collected using this KRas-transformed keratinocyte model.

Previous studies have demonstrated that neutrophils regulate the
proliferation of transformed cells in zebrafish larvae (7, 9). To
determine the effect of txn on transformed cell fate, proliferation
was assessed using EdU incorporation during S-phase.
Constitutively-active KRasG12V or WT KRas were expressed in
basal keratinocytes in either txn+/+ or txn-/- larvae (Figure S4).
Quantification of EdU incorporation showed increased
proliferation of transformed cells in the txn mutants, suggesting
that thioredoxin inhibits early KRasG12V-driven proliferation in vivo
(Figures5A,B).Wealso foundreducedcaspase-3 stainingcompared
to wildtype controls (Figures 5C, D) suggesting txn promotes
transformed cell apoptosis. As loss of thioredoxin affects redox
balance in the wounded fin (Figures 3D, E), we tested whether
changes in redox signaling could be responsible for the proliferative
phenotype. Using metabolic imaging, we quantified differences in
redox signaling within and around transformed keratinocytes. We
identified a trend towards a more oxidative state in txnmutants, but
this was not statistically significant (data not shown). Our findings
indicate that thioredoxin suppresses the transformed cell growth
through multiple mechanisms during tumor initiation in
zebrafish larvae.

Thioredoxin Affects Neutrophil Behavior
Around KRasG12V-Transformed
Keratinocytes
Cancerhas beendescribed as awound that “doesnotheal”. Similar to a
wound,early innate immune inflammationaroundtransformedcells is
mediated by redox signaling (6). In accordance with the wound
response (Figures 3F, G), there was a small increase in neutrophil
abundance aroundKRasG12V-expressing cells in the txnmutant larvae
as compared to control larvae (Figures 6A, B). Additionally, live
imaging of neutrophil behavior revealed neutrophils were slower on
average around KRasG12V-transformed cells in txn null larvae
(Figures 6C, D). To determine if this change in neutrophil behavior
in the tumor microenvironment correlated with changes in
inflammatory cytokines, we used TRAP and qPCR to analyze
cytokine expression in KRasG12V-transformed keratinocytes. We
found that tnfa expression was increased roughly two-fold within
February 2022 | Volume 13 | Article 818893
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transformed cells in txn mutant larvae (Figure 6E). Basal TNFa
expression was unaffected in txn mutants compared to WT larvae
(Figure S2C). Therefore, thioredoxin impairs induction of TNFa
inflammatory cytokine production during tumor initiation
(Figure 6E). No change in keratinocyte gene expression was
identified for neutrophil chemoattractants cxcl8a and cxcl8b.1 in the
thioredoxinmutants (Figure6E). Taken together, ourfindings suggest
that thioredoxin inhibits neutrophil recruitment and retention around
transformed cells in vivo, possibly by regulating the redox status and
cytokine production in the tumor microenvironment.

Transformed Keratinocyte Proliferation Is
Not Altered in Thioredoxin Mutants in the
Absence of Neutrophils
Since we observed altered neutrophil behavior in thioredoxin-
deficient larvae, we then tested the requirement of neutrophils
for the increased proliferation of transformed keratinocytes.
Frontiers in Immunology | www.frontiersin.org 7
Neutrophils can produce proliferative factors such as IL-8 to
directly promote tumor growth (11). It has been postulated that
they can also release growth factors such as EGF, HGF, and
PDGF (25).

To determine if the presence of neutrophils is necessary for the
increase in proliferation in thioredoxin-deficient larvae, we
inhibited neutrophil recruitment to transformed cells using an
established model with impaired neutrophil function. A
transgenic zebrafish line expressing a dominant inhibitory Rac2
mutation (Rac2D57N) in neutrophils renders neutrophils
incapable of migrating out of the vasculature (26). In the
Rac2D57N background, we found that thioredoxin deficient
larvae had no increase in the proliferation of cells expressing
KRasG12V compared to WT KRas. Specifically, we found that the
frequency of EdU-positive transformed cells between txn wildtype
and mutant larvae were similar (Figures 7A, B). This is in contrast
toour data showing an increase in EdU-positiveKRas transformed-
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keratinocytes in the thioredoxin mutant when neutrophils are
present (Figures 5A, B). Our findings suggest that the increase in
transformed cell proliferation in txn-/- larvae requires the presence
of neutrophils in the tumor microenvironment.
DISCUSSION

Here, we report the results of a cell-specific translation profiling
screen (TRAP-seq) designed to identify genes differentially
expressed in the early tumor microenvironment using the
larval zebrafish model. We identified significantly differentially
expressed genes on a systemic level in neutrophils and
transformed keratinocytes, but not macrophages. One of the
Frontiers in Immunology | www.frontiersin.org 8
most highly upregulated genes in both neutrophils and
transformed keratinocytes was the redox regulator and
antioxidant thioredoxin. We developed a zebrafish thioredoxin
mutant line to investigate the role of this antioxidant in the early
tumor microenvironment. Our findings support previous studies
suggesting that redox regulators are key determinants of
inflammation and progression in the tumor microenvironment.

Reactive oxygen species can modulate signaling pathways
within the cell (27), as well as act as a chemotactic signal
outside of the cell (24). Thioredoxin aids in dampening these
ROS levels and thus can influence many signaling pathways in
the tumor microenvironment. In our study, with both in vitro
tissue culture and in vivo tissues, depletion of thioredoxin
increased ROS signaling. In tumor progression, thioredoxin is
A

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 E

du
+  

ce
ll s

txn +/+ txn -/-

****

KRasG12V Edu Merge

txn +/+

txn -/-

B

C KRasG12V active caspase-3 Merge

txn +/+

txn -/-
txn +/+ txn -/-

0.0

0.5

1.0

1.5

2.0

C
as

pa
se

-3
 s

ig
na

l (
no

rm
. M

G
V) **

D

FIGURE 5 | Transformed keratinocytes exhibit increased proliferation and reduced apoptosis during tumor initiation in thioredoxin mutants. (A) EdU staining (white)
of txn+/+ or txn-/- larvae with KRasG12V-expressing basal keratinocytes (magenta) at 3dpf. (B) Quantification of the frequency of EdU-positive KRasG12V-expressing
basal cells 3dpf in txn wt (n=35) and mutant (n=35) larvae. (C) Cleaved caspase-3 immunofluorescence of txn+/+ or txn-/- larvae. (D) Quantification of relative signal
intensity within transformed cells 3dpf in txn+/+ (n=45) and txn-/- (n=51) larvae. Scale bar, 10um. Large, bolded shapes indicate average value per replicate (n), with
small shapes representing data points from independent larvae. Samples were analyzed for statistical significance via t-test (p < 0.001***, p < 0.0001****).
February 2022 | Volume 13 | Article 818893

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Korte et al. Neutrophils and Tumor Initiation
typically found to be tumor-promoting (28–30). Our findings
support a tumor suppressing role that limits transformed
cell growth early in tumorigenesis. Therefore, thioredoxin may
have a distinct role during tumor initiation as compared to
more developed tumor models used in other studies.
Frontiers in Immunology | www.frontiersin.org 9
Furthermore, our data suggest that the presence of neutrophils
in the TME are necessary for thioredoxin to elicit a tumor
suppressing effect. A limitation of our study is that we were
unable to determine the cell-type specific role of neutrophil
thioredoxin on keratinocyte proliferation. Re-expression of
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cell-specific thioredoxin in txn mutant larvae resulted in an
inactive protein (data not shown).

Thioredoxin can also alter inflammatory signaling in the tumor
microenvironment.We found that expression of the inflammatory
cytokine TNFawas increased in transformed cells in the absence of
thioredoxin. Our findings are consistent with previous results
showing that thioredoxin inhibits NF-kB activation, which drives
cytokine production (19). Additionally, exogenous thioredoxin
upregulates tnfa expression (20). It is possible that the increase in
TNFa inhibits neutrophil motility in the TME, as we observed
decreased neutrophil speed near transformed keratinocytes.
Indeed, previous studies have shown that TNFa induces
neutrophil arrest in vitro (31). Thioredoxin may also act as a
direct neutrophil chemoattractant in vitro and in vivo (20).
However, our own experimental data has shown no evidence of
this (data not shown). In fact, there is controversy in the field as
thioredoxin has also been shown to protect against neutrophilic
inflammation (32). Our data support an inhibitory role for
thioredoxin since thioredoxin limited neutrophil recruitment and
retention around transformed cells (Figures 6B, D). Overall, our
data indicate thioredoxin, in the context of early KRas-induced
transformation in vivo, is inhibitory to inflammatory gene
expression and neutrophil motility.

Recent studies have highlighted the importance of understanding
neutrophil function in the tumor microenvironment. Many studies
have supported a pro-tumor role of neutrophils (4). However how
tumor initiation affects neutrophil function remains less clear.
Recent work from other cancer models has shown that
neutrophils change in the tumor microenvironment and this can
be detected by changes in gene expression (33, 34). Our findings
Frontiers in Immunology | www.frontiersin.org 10
suggest that these gene expression changes occur even in the early
tumor microenvironment. Thus, oncogenic activation is associated
with a systemic shift in neutrophil gene expression, suggesting that
neutrophilsmay provide an early systemic rheostat of tumorigenesis.
In the zebrafish model system, we can monitor in vivo changes in
neutrophil behavior in the tumor microenvironment. Our findings
also show that neutrophils are highly dynamic in the earlyTME,with
recruitment very early after oncogenic transformation. Neutrophil
migratory behavior changes during the course of tumor
development in mouse models, with early stage tumors inducing
migration of bonemarrow-derived neutrophils and late stage tumors
inducing slower, immunosuppressive neutrophil migration (10).
Thus, neutrophil motility in the TME can be an indicator of
oncogenic activation and tumorigenesis.

In summary, neutrophils in the early tumor microenvironment
exhibit changes in their gene expression profile. It remains unclear
what specific tumor signals are responsible for inducing these
changes in neutrophil gene expression. Our findings suggest that
thioredoxin is likely one of many factors that alters neutrophil
behavior in the tumor microenvironment. Identifying factors that
alter neutrophil behavior will be important for understanding what
drives a neutrophil pro-tumor vs anti-tumor phenotype.
METHODS

Zebrafish Maintenance and txn-/-

Line Generation
Zebrafish lines were maintained as previously described (35). To
generate txn-/- line, 400pg Cas9 protein (PNA Bio, CP01-50) and
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200pg gRNA targeting txn exon II were microinjected into one-
cell stage NHGRI-1 background. gRNA primers (Table 1) and
PCR was conducted according to CRISPRscan method (36) and
gRNA was synthesized in vitro using HiScribe T7 kit (NEB,
E2050S) and purified using mirVana miRNA Isolation kit
(ThermoFisher, AM1561). CRISPR efficacy in 3dpf F0
chimeras was assessed via Indel Detection and Amplicon
Analysis (IDAA) (40) (Table 1). F0 chimeras were raised to
adulthood and a 1bp insertion was identified via IDAA in F1
progeny indicating germline mutation of txn in the F0
generation. The gRNA target region was cloned using the
TOPO TA Cloning kit (Life Technologies, 450030) (Table 1)
and sequenced via Sanger sequencing (Functional Biosciences)
confirming a 1bp insertion in txn exon II. F1 txn heterozygotes
were genotyped via PCR (Table 1) followed by AlwNI restriction
enzyme digestion (NEB, 101229-066). txn-/- and Tg(LyzC:H2B-
mcherry) txn-/- lines were generated via incrossing and screened
using the txn genotyping protocol above.

To generate an anti-txn antibody, full-length zebrafish txn was
cloned into pTrcHis and expressed in BL21 E. coli. His-tagged txn
was extracted from bacterial lysates using nickel-nitrilotriacetic
acid (Ni-NTA) resin (Qiagen, 30410) and subsequently used for
anti-sera production in rabbits (Covance). Txn protein depletion
was confirmed via Western blot using lysates from 30 txn+/+ or
txn-/- larvae 3dpf. Briefly, larvae were manually deyolked via
pipette aspiration in Ca2+-free Ringer’s solution and lysate
generated via sonication in lysis buffer (20mM Tris pH 7.6,
0.1% Triton X-100, 0.2mM phenylmethylsulfonyl fluoride
(PMSF), 1mg/ml Pepstatin, 2mg/ml Aprotinin, 1mg/ml
Leupeptin). Lysates were clarified via centrifugation and loaded
on a 6-20% SDS-polyacrylamide gel prior to transfer to
nitrocellulose and probing with anti-txn antisera.
Frontiers in Immunology | www.frontiersin.org 11
Plasmid Microinjection
pTol2-krt4-RFP-HRas, pTol2-krt4-RFP-HRasG12V, and pTol2-
krt4-L10a-EGFP constructs used in TRAP RNA-sequencing
experiment were generated as previously described (7). pTol2-
krtt1c19e-KRasG12V-mcherry, pTol2-krtt1c19e-KRasG12V-GFP,
and pTol2-krtt1c19e-L10a-GFP were cloned via PCR of inserts
containing the gene of interest and homologous recombination
into pTol2 vectors using the In-Fusion HD cloning kit (Clontech,
638911). All constructs microinjected contained Tol2
transposable elements thus allowing incorporation of the
relevant promoter and gene-of-interest into the zebrafish
genome (41).

Embryos at 1-cell stage were microinjected as previously
described (7) with 3nl injection mix containing 37.5ng relevant
plasmid, indicated in figure legend, and 52.5ng tol2 mRNA.
Injected embryos were incubated at 28.5°C in E3 media (5mM
NaCl, 0.17mMKCl, 0.33mMCaCl2, 0.33mMMgSO4) containing
0.2mM N-phenylthiourea (PTU) to inhibit pigment formation
(Sigma, P7629). Larvae were anesthetized with 0.2mg/ml
Tricaine (Pentair, trs1) in E3 3dpf and screened for transgene
expression using Zeiss Stereo Zoom Microscope (EMS3/SyCoP3;
Plan-NeoFluar Z objective).

Translating Ribosome Affinity Purification
Larvae were microinjected and screened 3dpf for transgene
expression as described above. Microinjections for TRAP-
RNA-sequencing included either control pTol2-krt4-RFP-HRas
or oncogenic pTol2-krt4-RFP-HRasG12V constructs injected with
pTol2-krt4-GFP-L10a in wildtype larvae, or into Tg(LyzC :
EGFP-L10a) or Tg(mpeg1:EGFP-L10a) larvae (13) for
keratinocyte, neutrophil, or macrophage-specific expression
profiling, respectively. For TRAP-qPCR experiments, control
TABLE 1 | Primer information.

Species Primer name Sequence Use Reference

Zebrafish txn-gRNA1.2-F taatacgactcactataGGGGGCCCTGCCAGACCATCgttttagagctagaa CRISPR gRNA generation –

Zebrafish gRNA-R constant AAAAGCACCGACTCGGTGCCACTTTTTCAAGTTGATA
ACGGACTAGCCTTATTTTAACTTGCTATTTCTAGCTCTAAAAC

CRISPR gRNA generation (36)

Zebrafish M13-txn-F GTAAAACGACGGCCAGTGGCCTTCGACAACGCCCTAAA Txn genotyping, cloning into
TOPO vector, IDAA

–

Zebrafish txn-R2 AAGCTATTCTCCGCCGGTTG Txn genotyping, cloning into
TOPO vector, IDAA

–

Zebrafish il1b-F GCCTGTGTGTTTGGGAATCT RT-qPCR (6)
Zebrafish il1b-R TGATAAACCAACCGGGACAT RT-qPCR (6)
Zebrafish cxcl8-l1-F GTCGCTGCATTGAAACAGAA RT-qPCR (37)
Zebrafish cxcl8-l1-R CTTAACCCATGGAGCAGAGG RT-qPCR (37)
Zebrafish cxcl8-l2-F GCTGGATCACACTGCAGAAA RT-qPCR (37)
Zebrafish cxcl8-l2-R TGCTGCAAACTTTTCCTTGA RT-qPCR (37)
Zebrafish tnfa-F GCGCTTTTCTGAATCCTACG RT-qPCR (38)
Zebrafish tnfa-R TGCCCAGTCTGTCTCCTTCT RT-qPCR (38)
Zebrafish rps11-F TAAGAAATGCCCCTTCACTG RT-qPCR (37)
Zebrafish rps11-R GTCTCTTCTCAAAACGGTTG RT-qPCR (37)
Human Luc 1 ACAACTTTACCGACCGCGCC CRISPR (39)

Exon 6 gRNA
Human Txn CCTTTATAAACTGGCACGCCCGG CRISPR Designed with CRISPOR

Exon 1 gRNA
Human Txn GAGTCTGACGAGCGGCTGTAAGG CRISPR Designed with CRISPOR

Exon 1 gRNA
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pTol2-krtt1c19e-mcherry-KRas or oncogenic pTol2-krtt1c19e-
mcherry-KRasG12V was injected into txn+/+ or txn-/- larvae in
conjunction with the TRAP construct pTol2-krtt1c19e-EGFP-
L10a. Following microinjection, larvae were screened for
transgene expression 3dpf and subsequently stored at -80°C in
minimal residual media. The TRAP lysis and ribosome
immunoprecipitation procedure was conducted as previously
reported (13) using 50 larvae per condition per replicate.
Immunoprecipitated mRNA was extracted from polysomes
following Trizol (ThermoFisher, 15596026) manufacturer
recommendations. 70% ethanol was added to the aqueous layer
at 1:1 ratio and mRNA was purified using the RNAqueous Micro
kit (ThermoFisher, AM1931).

RNA Sequencing and Analysis
cDNAlibrariesweregenerated fromaforementionedTRAPsamplesas
previously described (16) and sequencedonan IlluminaHiSeq system.
An average of 23million single-end reads were generated and aligned
to zebrafish reference genome GRCz10 using Bowtie v1.1.1 (42).
Transcript abundance was quantified using RSEM v1.2.20 (43) and
differential expression between conditions was assessed using DESeq2
(44). To control for possible batch effects, the design formula
“~ replicate + condition” was used for DESeq2’s generalized linear
model, where “condition” was the combination of cell type and
treatment (control or oncogenic construct) for each sample.
Statistical testing for differential expression within each cell type was
performed using the Wald test implemented in the DESeq2 package
and geneswith aBenjamini–Hochberg correctedPvalue (FDR)≤ 0.05
were considered statistically significant. Zebrafish genes werematched
to human orthologs using BioMart and Hallmark gene set differences
assessedviaGeneSetEnrichmentAnalysis (45).Txn transcript levels in
humantumors samples fromTheCancerGenomeAtlas (TCGA)were
assessed using Firebrowse (http://firebrowse.org/).

qPCR
mRNA isolated via TRAP was DNAse treated (Promega, M6101)
for 30 min at 37°C. cDNA was synthesized using SuperScript III
First-Strand Synthesis kit (ThermoFisher, 18080051) according
to manufacturer specifications. Sybr green (Roche) qPCR master
mix was used to quantify il1b, cxcl8a, cxcl8b.1, and tnfa gene
expression in addition to rps11 expression as a normalization
control (Table 1). qPCR reactions were run on a Lightcycler
(Roche) and Cq values were quantified from Lightcycler software
and normalized to housekeeping gene rps11.

Neutrophil Migration Movies
Neutrophil behavior in response to basal transformation was
carried out in LyzC-H2B-mcherry txn mutant lines. These lines
were injected with pTol2-krtt1c19e-KRasG12V-GFP as
described. Locations with 30-40 transformed cells within the
FOV of 40x objective were selected. Timelapse images were taken
at 90 second intervals for 2.5 hours on a Zeiss spinning disk
confocal (Yokogawa, CSU-X) microscope with Photometrics
Evolve EMCCD camera. Neutrophils were tracked with Imaris
analysis software and mean track speed was calculated.

Neutrophil random migration was assessed in unstimulated
LyzC-H2B-mcherry txn wildtype and mutant lines. Timelapse
Frontiers in Immunology | www.frontiersin.org 12
images were taken at 90 second intervals for 2.5 hours using a
10x objective on a Zeiss spinning disk confocal (Yokogawa, CSU-
X) microscope with Photometrics Evolve EMCCD camera.
Neutrophils were tracked with Imaris software and mean track
speed was calculated.

Tail Transection Assays – pfbs-f ROS
Probe and Neutrophil Recruitment
Hydrogen peroxide abundance was assessed with the probe
pentafluorobenzenesulfonyl fluorescein (pfbs-f) (Santa Cruz,
sc-205429). Tail transection was conducted 3dpf (Figure 2C)
with a sterile scalpel blade in a solution of 1uM pfbs-f and 0.2mg/
ml Tricaine in E3. 30 minutes post-wound (mpw) and 4 hours
post-wound (hpw), transected tails were imaged at 20x
magnification via spinning disk confocal microscopy
(Yokogawa, CSU-X). Pfbs-f mean gray value was quantified
from maximum intensity projections in an outlined region-of-
interest posterior to the notochord extending to and
encompassing the wound margin.

To assess neutrophil abundance, Tg(LyzC:H2B-mcherry)
txn+/+ and Tg(LyzC:H2B-mcherry) txn-/- larvae 3dpf were
wounded as above in 0.2mg/ml Tricaine in E3. Neutrophil
abundance posterior to the notochord was assessed 2hpw and
6hpw via spinning disk confocal microscopy (Yokogawa, CSU-
X) at 20x magnification.

HL60 Cell Culture
HL-60 cells were maintained in RPMI 1640 1X with L-glutamine
and 25 mM HEPES (Corning 10-041-CV) supplemented with
10% heat-inactivated fetal bovine serum (FBS; HyClone,
SH30071.03) and 1X penicillin–streptomycin (Corning; 30-
002-CI) at 37°C, 5% CO2.

All HL60 cells were differentiated in RPMI 1640 complete
media supplemented with 1.3% DMSO (Sigma-Aldrich; D2650)
at a density of (3–4) × 105 cells/ml in 10 ml for 6 d at 37°C,
5% CO2.

Thioredoxin Knockdown in HL60
Neutrophil-Like Cells
Guide RNAs (gRNAs) were designed against early exons of target
genes using the Crispor tool (46) (Table 1). The gRNAs with
highest specificity and lowest off-target likelihood were chosen
and synthesized by IDT as Alt-R synthetic single guide RNA
(sgRNA). For generation of thioredoxin knockout cell lines, two
individual gRNAs targeting the same exon about 100 base pairs
apart were simultaneously transfected. gRNAs targeting the
Luciferase gene were utilized as a control. HL60 cells were
transfected with ribonucleoprotein (RNP) complexes, FACS
sorted, and expanded as previously described (47).

Western blotting was conducted to confirm protein
knockdown in the generated HL60 cell lines. Cell pellets were
collected and lysed in 1X RIPA buffer (50 mM Tris-HCl, pH 8.0,
150 mMNaCl, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS)
with 1X Halt Protease and Phosphatase Inhibitor Cocktail
(Thermo Scientific; 78840) for 30 min on ice. Lysates were
sonicated for three cycles at 20% amplitude (5 s on, 10 s off)
and cleared by centrifugation at 15,000 × g, 4°C for 15 min.
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Protein concentrations were determined using the Pierce BCA
Protein Assay (Thermo Scientific; 23225) and samples stored
at −80°C. Protein (20–30 µg) was heated in 4X Bolt LDS Sample
Buffer (Invitrogen; B0007) with 10X Bolt Sample Reducing
Agent (Invitrogen; B0004) for 10 min at 70°C. Samples were
loaded into precast Bolt 4–12% Bis-Tris Plus Gels (Invitrogen)
and run for 35 min at 200 V in 1X Bolt MES SDS Running Buffer
(Invitrogen; B0002). Proteins were transferred onto
nitrocellulose membranes for 60 min at 90 V. Membranes
blocked with 5% milk in TBS-0.1% Tween 20 (TBS-T) for 1 h
at RT. Membranes were washed and inverted onto primary Txn
antibody (Sigma, SAB1409783) in 5%milk TBS-T overnight at 4°
C. After washing, the membranes were incubated in anti-mouse
secondary antibody (Invitrogen, A-21131) for 60 min at RT.
Membranes were washed and scanned on an Odyssey scanner
(LICOR) at 700 and 800 nm wavelengths. Images were analyzed
in Image Studio software (LICOR).

In Vitro Neutrophil Assays- Reactive
Oxygen Species Production
and Chemotaxis
Intracellular ROS production was quantified using the ROS
indicator Carboxy-H2DCFDA (Invitrogen, C400). HL60 cells
were differentiated as described above, then re-suspended in 0.5%
HSA-PBS for 2.5 hours to serum starve. Cells were incubated for 30
minutes at 37°C in PBS containing 20uM Carboxy-H2DCFDA,
spun down, and re-suspended in 0.5%-HSA-HBSS. Cells were
plated into a fibronectin coated (10ug/mL) black 96-well plate at
100k cells per well. A 2X PMA solution was added to each well to
achieve a final concentration of 1ng/mL PMA. Fluorescence was
read every 30minutes for two hours using the Victor3Vmicroplate
reader using the 485nm/535nm filter (PerkinElmer).

Extracellular H2O2 production was assessed using the Amplex
Red/HRP probe (Invitrogen, A22188) as previously described
(48). Briefly, 100uL of the reaction mixture containing 50uM
Amplex Red and 0.1U/mL HRP was added to each well of a white
96-well plate coated with fibronectin (10ug/mL). The plate was
incubated for at least 10 minutes at 37°C. Differentiated HL60
cells were re-suspended in Krebs-Ringer buffer at 750k/mL and
plated at 20uL/well. Absorbance was read every hour for 3 hours
at 570nm using the Victor3V microplate reader (PerkinElmer).

Chemotaxis was assessed using a microfluidic device as
described previously (49). In brief, polydimethylsiloxane
devices were plasma treated and adhered to glass coverslips.
Devices were coated with 10 mg/mL fibrinogen (Sigma) in PBS
for 30 min at 37°C, 5% CO2. The devices were blocked with 2%
BSA-PBS for 30 min at 37°C, 5% CO2, to block non-specific
binding, and then washed twice with mHBSS. Cells were stained
with calcein AM (Molecular Probes) in PBS for 10 min at room
temperature followed by resuspension in modified Hank’s
balanced salt solution (mHBSS). Cells were seeded at 5 × 106/
mL to allow adherence for 30 min before addition of
chemoattractant. Then, 1 mM fMLP (Sigma) was loaded onto
the devices. Cells were imaged for 45–90 min every 30 s on a
Nikon Eclipse TE300 inverted fluorescent microscope with a 10×
objective and an automated stage using MetaMorph software
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(Molecular Devices). Automated cell tracking analysis was done
using JEX software (50) to calculate chemotactic index
and velocity.

EdU Proliferation Assay and
Immunofluorescence
pTol2-krtt1c19e-KRasG12V injected txn+/+ or txn-/- larvae were
treated with 250uM EdU (ThermoFisher, C10338) for 6.5hrs at
28°C in E3 + PTU 3dpf. Larvae were fixed in formaldehyde buffer
(100mM PIPES, 1mMMgSO4, 2mM EGTA, 1.5% formaldehyde,
0.2mg/ml Tricaine) in E3 and stored at 4°C. Fixation buffer was
exchanged for methanol and larvae were placed at -20°C
overnight. Samples were rehydrated in a sequence of methanol
dilutions (75% methanol:25% PBSTx (0.2% Triton X-100), 50%
methanol:50% PBSTx, 25% methanol:75% PBSTx), washed in
PBSTx, and blocked for 3 hours in blocking buffer (1.5% v/v
sheep serum, 1% w/v BSA, 0.2% Triton X-100 in PBS) mixing via
nutator. Alexa Fluor 555 azide conjugation was conducted
accord ing to Cl ick- i t manufac turer spec ifica t ions
(ThermoFisher, C10338) in 350ml at 4°C overnight on rocker.
Antibody staining was utilized to allow for visualization of GFP-
Kras-expressing cells. Samples were washed twice in PBSTx and
blocked once in blocking buffer prior to primary rabbit a-GFP
Ab treatment (ThermoFisher, A11122). Primary antibody
treatment was incubated in 350ml at 1:200 dilution in blocking
buffer for 4 hours at room temperature. Samples were washed
twice in PBSTx, twice in blocking buffer and treated with
secondary donkey a-rabbit AF488 (Jackson ImmunoResearch,
711-545-152) in 350ul at 1:250 dilution in blocking buffer
overnight at 4°C. Samples were washed 6 times in PBSTx prior
to imaging via confocal microscopy. EdU-positive cells were
manually quantified in FIJI or Imaris.

Active caspase-3 staining was conducted as above, omitting
EdU and Alexa Fluor 555 azide treatment. Primary antibody
staining utilized rabbit a-active caspase-3 (BD Pharmingen,
559565) at 1:300 dilution and secondary staining used donkey
a-rabbit Dylight 405. Images were obtained via confocal
microscopy and intracellular active caspase-3 mean gray value
was calculated in FIJI.

Statistical Analysis
Statistical analyses were performed on at least three independent
experimental replicates, unless otherwise indicated in the
figure legend. For all experiments except neutrophil speed
assays, data points represent measurements from individual
larvae. Replicate number is distinguished by differential data
point color and shape, with the mean replicate value presented in
bold. For neutrophil speed experiments, data points represent
values from a given neutrophil, whereas bolded data points
display the average neutrophil speed for a given larvae. Data
were tested for normality with Shapiro-Wilk test (p<0.05).
Statistical significance (p<0.05) was calculated by t-test or
Mann-Whitney U test for normally or non-normally
distributed data, respectively, in R version 3.6 and graphed in
GraphPad Prism version 9 using measurements from individual
larvae as the sampling unit.
February 2022 | Volume 13 | Article 818893
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For in vitro quantification of ROS production, statistical
analyses were performed using a generalized estimating
equation (GEE) fit to the log background corrected fold change
to estimate the effect associated with each Txn-knockdown cell
line relative to the control. Model assumed Gaussian distribution
and were analyzed using R v3.6.2.3 and the associated geepack
package. Statistical significance was pre-defined as p< 0.05 with
confidence intervals set to 95% coverage. For in vitro cell tracking
experiments, statistical significance (p<0.5) was determined by
one-way ANOVA in GraphPad Prism version 9.
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Supplementary Figure 1 | Expression of txn in human tumors compared to
healthy tissue. (A) Hierarchical clustering of Gene Set Enrichment Analysis (GSEA)
of enriched Hallmark pathways in neutrophils, keratinocytes, and macrophages for
HRasG12V-keratinocyte expressing zebrafish. (B) mRNA expression profile of txn in
human cancer and normal tissue. Firebrowse was used to extract expression
profiles of human tumors from The Cancer Genome Atlas (TCGA).

Supplementary Figure 2 | Txn mutants display no basal increase in neutrophil
number or inflammatory gene expression. (A) Neutrophil distribution and abundance
in unstimulated txn+/+ Tg(LyzC:H2B-mcherry) or txn-/-Tg(LyzC:H2B-mcherry) larvae
3dpf. (B) Quantification of total neutrophil number in unstimulated larvae, wild-type
(n=41) andmutant (n=40). (C) qPCR of inflammatory cytokines il1b, cxcl8a, cxcl8b.1,
tnfa in whole larval lysates (pooled, 30 larvae) from txnwild-type (n=2) or mutant (n=2)
larvae 3dpf. Large, bolded shapes indicate average value per replicate (n), with small
shapes representing data points from independent larvae. Samples were analyzed
for statistical significance via t-test (p<0.05*, p<0.01**, p<0.001***, p<0.0001****).

Supplementary Figure 3 | Neutrophil random migration is unaffected in the txn
mutant. (A) Neutrophil random migration speed in the head region of unstimulated
txn+/+ Tg(LyzC:H2B-mcherry) or txn-/-Tg(LyzC:H2B-mcherry) larvae 3dpf. Track
color indicates average velocity per neutrophil tracked. (B)Quantification of average
neutrophil speed in txn wt (n=4) and txn mut (n=4) larvae. Scale bar, 10um. Large,
bolded shapes indicate average value per replicate (n), with small shapes
representing data points from independent larvae. Samples were analyzed for
statistical significance via t-test (p<0.05 *, p<0.01**, p<0.001***, p<0.0001****).

Supplementary Figure 4 | Schematic of basal keratinocyte KRasG12V zebrafish
model. (A) Schematic of microinjection procedure. One cell stage txn+/+ Tg(LyzC:
H2B-mcherry) or txn-/-Tg(LyzC:H2B-mcherry) embryos are injected with basal
keratinocyte transformation constructs (pTol2-krtt1c19e-KRasG12V-mcherry).
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