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Enhancing the synthesis of microbicidal and immunomodulatory host defense peptides
(HDP) is a promising host-directed antimicrobial strategy to combat a growing threat of
antimicrobial resistance. Here we investigated the effect of several natural
cyclooxygenase-2 (COX-2) inhibitors on chicken HDP gene regulation. Our results
indicated that phenolic COX-2 inhibitors such as quercetin, resveratrol, epigallocatechin
gallate, anacardic acid, and garcinol enhanced HDP gene expression in chicken HTC
macrophage cell line and peripheral blood mononuclear cells (PBMCs). Moreover, these
natural COX-2 inhibitors showed a strong synergy with butyrate in augmenting the
expressions of multiple HDP genes in HTC cells and PBMCs. Additionally, quercetin
and butyrate synergistically promoted the expressions of mucin-2 and claudin-1, two
major genes involved in barrier function, while suppressing lipopolysaccharide-triggered
interleukin-1b expression in HTC macrophages. Mechanistically, we revealed that NF-kB,
p38 mitogen-activated protein kinase, and cyclic adenosine monophosphate signaling
pathways were all involved in the avian b-defensin 9 gene induction, but histone H4 was
not hyperacetylated in response to a combination of butyrate and quercetin. Because of
their HDP-inducing, barrier-protective, and antiinflammatory activities, these natural COX-
2 inhibitors, when combined with butyrate, may be developed as novel host-directed
antimicrobial therapeutics.

Keywords: cyclooxygenase-2 inhibitors, host defense peptides, antimicrobial peptides, antibiotic alternatives,
polyphenols, antimicrobial resistance
Abbreviations: AvBD9, avian b-defensin 9; C/EBPa, CCAAT-enhancer-binding protein a; CAMP, cathelicidin antimicrobial
peptide; cAMP, cyclic adenosine monophosphate; CLDN1, claudin 1; COX-2, cyclooxygenase-2; CRE, cAMP response
element; CREB, cAMP response element-binding protein; DDA, 2’,5’-dideoxyadenosine; DEFB1, human b-defensin 1; DEFB4,
human b-defensin 2; EGCG, epigallocatechin gallate; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; HDAC, histone
deacetylase; HDPs, host defense peptides; ICER, inducible cAMP early repressor; IL-1b, interleukin-1b; LPS,
lipopolysaccharide; MAPK, mitogen-activated protein kinase; MUC2, mucin 2; NF-kB, nuclear factor-kB; NSAIDs,
nonsteroidal anti-inflammatory drugs; PBMCs, peripheral blood mononuclear cells; PGE2, prostaglandin E2; PKA, protein
kinase A; RIPA, radioimmunoprecipitation; RPMI, Roswell Park Memorial Institute; RT-qPCR, reverse transcriptase-
quantitative PCR; SEM, standard error of the mean; STATs, signal transducer and activator of transcription proteins.
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INTRODUCTION

The rapid emergence of antibiotic-resistant bacteria has become
a major public health concern (1), creating an urgent need for the
development of novel antimicrobial therapeutic strategies with a
minimum risk to trigger resistance (2). Boosting host innate
immunity through induction of endogenous host defense peptide
(HDP) synthesis has attracted an increasing attention as a host-
directed antiinfective approach (3–5). HDPs, also known as
antimicrobial peptides, are a group of small cationic and
amphipathic peptides with preferential expression in
phagocytes and epithelial cells of the host (6). HDPs consist
mainly of the defensin or cathelicidin families in vertebrates.
Defensins are categorized by the presence of six cysteine residues,
while cathelicidins are comprised of a conserved cathelin domain
and a diversified mature peptide sequence (4, 7). A total of 14
defensins (AvBD1–14) and four cathelicidins (CATH1–3 and
CATHB1) exist in chickens (7, 8). Chicken HDPs are widely
expressed in the respiratory, gastrointestinal, and urogenital
tracts as well as in multiple lymphoid cells, and regulated
differentially in response to infection and inflammation (7, 8).
With antimicrobial, immunomodulatory, and barrier protective
activities, HDPs constitute a critically important component of
the innate immunity system (6, 9). A range of small-molecule
compounds such as short-chain fatty acids, vitamin D3, and
histone deacetylase (HDAC) inhibitors have been found to be
capable of inducing HDP synthesis and some have been explored
for disease control and prevention (3–5, 10, 11).

Butyrate, a short-chain fatty acid fermented from dietary
carbohydrates by intestinal bacteria, is a well-known HDP
inducer in humans and animals (4, 5). Inhibition of HDAC is
a major mechanism by which butyrate promotes HDP
expression (12), while mitogen-activated protein kinase
(MAPK) signaling pathways are also involved in butyrate-
mediated HDP induction (13). Butyrate has been shown to
confer protection to infections at least in part via induction of
HDPs (14, 15). Synergic augmentation of HDPs has been
observed between butyrate and several other HDP-inducing
compounds such as vitamin D3 (16), lactose (17, 18), forskolin
(19, 20), and wortmannin (21).

Cyclooxygenase (COX) is a key enzyme responsible for the
conversion of arachidonic acid to prostanoids (22, 23). COX-1 is
a constitutive isoform involved in maintaining barrier integrity,
while COX-2 is inducible by inflammatory stimuli and often a
target for treating inflammatory diseases. Several natural
phenolic compounds such as quercetin, resveratrol, and
epigallocatechin gallate (EGCG), anacardic acid, and garcinol
are well-known COX-2 inhibitors (22, 23). In addition, a few of
these polyphenols such as resveratrol (24), curcumin (25), EGCG
(26, 27), and genistein (28) are capable of inducing HDP genes. It
is unknown whether these polyphenols induce HDP genes by
acting as COX-2 inhibitors. Additionally, a potential HDP-
inducing synergy between butyrate and COX-2 inhibitors is yet
to be explored.

In the current study, we investigated a potential synergy
between butyrate and several natural phenolic COX-2
inhibitors in regulating the expression of various HDP genes in
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chicken HTC macrophages and peripheral blood mononuclear
cells (PBMCs). To confirm these polyphenols synergize with
butyrate in HDP induction through COX-2 inhibition, two
synthetic COX-2-specific inhibitors namely nimesulide and
niflumic acid were also evaluated for their synergy with
butyrate in HDP induction in chicken cells. The involvement
of histone acetylation as well as the MAPK, nuclear factor-kB
(NF-kB), and cyclic adenosine monophosphate (cAMP)
signaling pathways in the avian b-defensin 9 (AvBD9) gene
induction mediated by butyrate and COX-2 inhibitors was
also examined.
MATERIALS AND METHODS

Chemicals
Quercetin and garcinol were acquired from Cayman Chemical
(Ann Arbor, MI), while sodium butyrate, tributyrin (glyceryl
tributyrate), and lipopolysaccharide (LPS) (Escherichia coli O55:
B5) were obtained from MilliporeSigma (St. Louis, MO).
Resveratrol, anacardic acid, EGCG, nimesulide, niflumic acid,
SB203580, SP600125, PD98059, PDTC, MG132, and 2’,5’-
dideoxyadenosine (DDA) were procured from Santa Cruz
Biotechnology (Dallas, TX). Sodium butyrate was dissolved in
Roswell Park Memorial Institute (RPMI) 1640 medium
(Hyclone, Logan, UT), and all other chemicals were dissolved
in dimethyl sulfoxide (DMSO, Santa Cruz Biotechnology). All
chemical stock solutions were stored at –20°C or –80°C. An
equal volume of RPMI or DMSO was used in all cell stimulation
assays as a negative control.

Culture and Stimulation of Chicken
HTC Macrophages
Chicken HTC macrophage cells (29), kindly provided by Dr.
Narayan C. Rath at United States Department of Agriculture–
Agricultural Research Service, were cultured in complete RPMI
1640 medium containing 10% fetal bovine serum (Atlanta
Biologicals, Flowery Branch, GA), 1% streptomycin-penicillin
(Lonza, Walkersville, MD) at 1 × 106 cells/well in 6-well tissue
culture plates overnight at 37°Cand5%CO2prior to24-h treatment
with different concentrations of natural or synthetic COX-2
inhibitors separately or in combination with 2 mM sodium
butyrate or 0.25 mM tributyrin (19, 30, 31), followed by total
RNA extraction and expression analyses of chicken HDP genes as
described below. HTC cells were also stimulated with butyrate,
quercetin, or their combination for 24 h, followed by 3-h
stimulation with 10 ng/mL LPS and subsequent expression
analysesof thegenes involved inbarrier functionand inflammation.

Isolation, Culture, and Stimulation of
Chicken Peripheral Blood Mononuclear
Cells (PBMCs)
Chicken PBMCs were isolated from the peripheral blood of 2- to
4-week-old male Cobb broilers through density gradient
centrifugation using Histopaque®-1077 (MilliporeSigma)
following the manufacturer’s instructions. Briefly, EDTA-
February 2022 | Volume 13 | Article 819222

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Yang et al. HDP Induction by COX-2 Inhibitors and Butyrate
anticoagulated blood was overlaid onto an equal volume of
Histopaque®-1077 and centrifuged at 400 × g for 30 min. The
interface containing PBMCs was carefully aspirated and if
necessary, red blood cells were hypotonically lysed with 0.2%
sodium chloride and reconstituted with 1.6% sodium chloride.
After three washes in phosphate buffered saline, PBMCs were
suspended in complete RPMI 1640 medium containing 10% fetal
bovine serum, 1% streptomycin-penicillin, and 20 mM HEPES
(Hyclone). After 2-h seeding at 5 × 107 cells/well in 6-well plates,
PBMCs were stimulated with various chemicals individually or
in combination for 24 h. In the signaling experiments, PBMCs
were pre-treated for 1 h with individual specific inhibitors,
including 25 µM SB203580 (p38 MAPK inhibitor), 20 µM
SP600125 (JNK inhibitor), 50 µM PD98059 (MEK1/2
inhibitor), 40 µM PDTC (NF-kB inhibitor), 20 µM MG132
(NF-kB inhibitor), or 100 or 500 µM DDA (adenylyl cyclase
inhibitor) (19, 31), followed by stimulation with 10 µM quercetin
and 2 mM butyrate for 24 h.

RNA Isolation and Reverse Transcriptase-
Quantitative PCR (RT-qPCR)
Cells were lysed in RNAzol (Molecular Research Center,
Cincinnati, OH) for total RNA isolation according to the
manufacturer’s protocol. The quantity and quality of total
RNA were determined using Nanodrop (Nanodrop Products,
Wilmington, DE). Reverse transcription was performed using
QuantiTect Reverse Transcription Kit (Qiagen, Hilden,
Germany) following the instructions of the manufacturer.
Briefly, genomic DNA was removed from total RNA with
gDNA Wipeout Buffer provided in the kit prior to reverse
transcription at 42°C for 30 min. The resulting cDNA was
then diluted with RNase-free water and used in subsequent
qPCR analysis with QuantiTect SYBR Green PCR Kit (Qiagen)
according to the manufacturer’s instruction. PCR was performed
in 10-µL reactions with initial activation at 95°C for 10 min,
followed by 40 cycles at 94°C for 15 s, 55°C for 20 s, and 72°C for
30 s in CFX Real-Time PCR Detection System (Bio-Rad,
Hercules, CA). The primer sequences for chicken HDP genes,
claudin 1 (CLDN1), mucin 2 (MUC2), interleukin-1b (IL-1b),
and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were
previously described (14, 18, 20). The specificity of PCR
amplification was confirmed using melt curve analysis, and the
CLDN1 and MUC2 amplicons were further verified through
direct Sanger sequencing using gene-specific forward primers.
Relative fold changes in gene expressions were calculated using
the DDCt method (32) normalized against GAPDH as described
(14, 18–20).

Western Blot Analysis
Chicken HTC cells were treated with 2 mM butyrate, 20 mM
quercetin, or their combination for 6 or 12 h, followed by lysis in
the radioimmunoprecipitation (RIPA) lysis buffer (Santa Cruz
Biotechnology). The resulting proteins were quantified using the
Bradford Assay (Bio-Rad), followed by loading of 20 µg proteins
from each sample in 12.5% SDS-PAGE gels and transferring to
Immobilon-P® polyvinylidene difluoride membranes
Frontiers in Immunology | www.frontiersin.org 3
(MilliporeSigma). After overnight blocking in 5% dry skim
milk in TTBS (0.05% Tween 20, 20 mM Tris-HCl, 150 mM
NaCl, pH 7.5) at 4°C, the membranes were incubated with a
primary rabbit antibody against acetyl-histone H4 (Cell
Signaling, Danvers, MA; diluted 1:500) or a rabbit antibody
against b-Actin (MilliporeSigma; diluted 1:1000) in the blocking
buffer for 1 h at room temperature. After three washes in TTBS,
the membranes were incubated with an alkaline phosphatase-
conjugated goat anti-rabbit IgG antibody (MilliporeSigma;
diluted 1:2,000) for 45 min at room temperature, followed by
visualization using enhanced chemiluminescence (ThermoFisher
Scientific). The band intensity of acetyl-histone H4 was
quantified as the area under the curve using ImageJ (https://
imagej.nih.gov/ij/) and further normalized against the band
intensity of b-Actin for each sample.

Statistical Analysis
Statistical analysis and data visualization were performed using
GraphPad Prism (GraphPad Software, La Jolla, CA). The results
were expressed as means ± standard error of the mean (SEM)
from 2–3 independent experiments. One-way ANOVA and post
hoc Tukey’s test were applied to determine statistical significance.
The results were considered statistically significant if P < 0.05.
RESULTS

Concentration- and Time-Dependent
Induction of AvBD9 Gene Expression in
Response to Quercetin
To study whether chicken HDP genes are regulated by quercetin,
both dose-response and time-course experiments were
conducted with quercetin in chicken HTC macrophage cells.
AvBD9, the most inducible chicken HDP genes in response to a
variety of small-molecule compounds (14, 18, 31), was gradually
augmented in response to increasing concentrations of quercetin,
reaching a peak of 881-fold induction at 80 mM (Figure 1A). In
addition, almost all HDP genes that are expressed in HTC cells
were induced by quercetin, although the magnitude of induction
varied greatly among different genes (Figure 1B). For example,
AvBD14 was readily induced, while AvBD10 showed minimum
alterations. An obvious time-dependent induction of AvBD9
expression was also observed in HTC cells in response to 40
mM quercetin, peaking at 24 h (Figure 1C).

Synergistic Induction of HDP Genes by
Quercetin and Butyrate
To explore a possible synergy in HDP induction between
quercetin and butyrate, chicken HTC cells were treated with
different concentrations of quercetin in the presence or absence
of 2 mM sodium butyrate for 24 h. A clear synergy was observed
with a peak 1000-fold induction when 2 mM butyrate was
combined with 20 µM quercetin, while they separately gave a
50- and 41-fold AvBD9 induction, respectively (Figure 2A). To
confirm the quercetin/butyrate synergy in HDP induction in a
February 2022 | Volume 13 | Article 819222
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different cell type, chicken PBMCs were treated with butyrate
and quercetin individually or in combination. Similar to HTC
macrophages, quercetin alone elevated AvBD9 transcription in a
dose-dependent fashion and more importantly, synergized
dramatically with butyrate (Figure 2B). It is noteworthy that
the synergism was diminished when butyrate was combined with
Frontiers in Immunology | www.frontiersin.org 4
higher concentrations of quercetin in both HTC cells
(Figure 2A) and PBMCs (Figure 2B). Quercetin also
synergized strongly with tributyrin, a triglyceride analog of
butyrate (33), in improving AvBD9 expression in chicken
PBMCs (Figure 2C). To study the kinetics of the butyrate/
quercetin synergy in HDP induction, a time-course experiment
A B

DC

FIGURE 2 | Synergistic induction of AvBD9 gene expression by a combination of quercetin and butyrate or tributyrin. (A) Chicken HTC macrophages or (B)
peripheral blood mononuclear cells (PBMCs) were treated in duplicate with indicated concentrations of quercetin with or without 2 mM butyrate for 24 h. (C) Chicken
PBMCs were stimulated with indicated concentrations of quercetin with or without 0.25 mM tributyrin for 24 h. (D) Chicken PBMCs were treated in duplicate with
2 mM butyrate and 10 mM quercetin individually or in combination for indicated times. The expression levels of the AvBD9 gene were analyzed by RT-qPCR. Results
are presented as means ± SEM of 2–3 independent experiments. The bars not sharing common superscript letters are significantly different (P < 0.05) as determined
by one-way ANOVA and post hoc Tukey’s test.
A B C

FIGURE 1 | Dose- and time-dependent induction of chicken host defense peptide (HDP) gene expressions by quercetin. Chicken HTC macrophage cells were treated
in duplicate with indicated concentrations of quercetin for 24 h, followed by RT-qPCR analysis of avian b-defensin 9 (AvBD9) (A) and other HDP genes (B). (C) HTC
cells were also treated with 40 µM quercetin for indicated times, followed by AvBD9 expression analysis. Results are expressed as means ± SEM of three independent
experiments. The bars not sharing common superscript letters are significantly different (P < 0.05) as determined by one-way ANOVA and post hoc Tukey’s test.
February 2022 | Volume 13 | Article 819222
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was conducted using quercetin and butyrate separately or in
combination. The synergy became more pronounced as the
treatment time was gradually increased, with a 24-h treatment
giving the strongest synergy in inducing AvBD9, while a longer
48-h stimulation caused a diminished synergy in HTC cells
(Figure 2D). Besides AvBD9, butyrate and quercetin also
synergistically increased AvBD1, AvBD2, AvBD3, AvBD4,
AvBD6, and AvBD7, but not AvBD5, AvBD8, AvBD10,
AvBD14, or CATHB1, in HTC macrophages (Figure 3).
Notably, varying magnitudes of induction were observed for
different HDP genes (Figure 3), indicating a gene-specific effect.

Modulation of Barrier Function and
Inflammatory Cytokine Gene Expression
by Butyrate and Quercetin
Butyrate and quercetin are known to enhance barrier function by
inducing mucin and tight junction protein expressions while
suppressing inflammation (34, 35). CLDN1 is critically involved
in tight junction assembly (35), while MUC2 is the most
abundant component of the intestinal mucus layer (36). To
investigate a potential synergy between butyrate and quercetin
in regulating barrier function and inflammation, chicken HTC
Frontiers in Immunology | www.frontiersin.org 5
macrophage cells were treated for 24 h with butyrate and
quercetin separately or in combination prior to a 3-h
stimulation with LPS. A synergistic induction of AvBD9 by
butyrate and quercetin was obviously maintained following LPS
stimulation (Figure 4A). While 2 mM butyrate induced CLDN1
gene expression by 875-fold and 20 mM quercetin showed a
minimum effect, the butyrate/quercetin combination elicited a
synergistic 2,024-fold increase in CLDN1 expression, which was
unaffected by LPS (Figure 4B). Moreover, butyrate or quercetin
improved the MUC2 mRNA expression individually, and the
combination synergistically enhanced MUC2 expression even in
the presence of LPS (P < 0.05) (Figure 4C). Additionally,
butyrate, quercetin, or the combination had no significant
impact on IL-1b expression. As expected, butyrate or quercetin
suppressed LPS-induced IL-1b expression in HTC cells (P < 0.05).
Desirably, the butyrate/quercetin combination had the strongest
effect in reducing LPS-triggered IL-1b expression (Figure 4D).
Collectively, quercetin is synergistic with butyrate in boosting the
expressions of AvBD9, CLDN1, andMUC2, while suppressing IL-
1b during LPS-triggered stimulation. It is noted that LPS had no
effect on AvBD9 expression, but triggered a 754-fold induction of
IL-1b gene expression (Figures 4A, D).
FIGURE 3 | Induction of chicken HDP genes by quercetin and butyrate. Chicken HTC macrophage cells were treated in duplicate with 20 mM quercetin and 2 mM
sodium butyrate separately or in combination for 24 h, followed by RT-qPCR analysis of chicken HDP gene expression. Results are presented as means ± SEM of
two independent experiments. The bars not sharing common superscript letters are significantly different (P < 0.05) as determined by one-way ANOVA and post hoc
Tukey’s test.
February 2022 | Volume 13 | Article 819222
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Synergistic Augmentation of AvBD9
Expression by Butyrate and Other
COX-2 Inhibitors
To further evaluate the synergy between butyrate and other
COX-2 inhibitors in chicken HDP gene induction, four
additional natural COX-2 inhibitors including resveratrol,
anacardic acid, EGCG, and garcinol were tested in chicken
PBMCs with or without butyrate. Similar to quercetin, each
compound dose-dependently elevated AvBD9 expression and
also synergized markedly with butyrate in AvBD9 gene
expression (Figure 5). For example, 50 µM resveratrol and 2
mM butyrate induced AvBD9 expression by 43- and 511-fold,
respectively, while the combination augmented AvBD9
expression by 2,519-fold (Figure 5A). Similarly, anacardic acid
(Figure 5B), EGCG (Figure 5C), and garcinol (Figure 5D) also
demonstrated a strong synergy with butyrate in AvBD9 mRNA
induction, although garcinol was relatively weak in its ability to
synergize with butyrate.

Inaddition to actingas aCOX-2 inhibitor, quercetin, resveratrol,
anacardic acid, EGCG, and garcinol also exert a range of other
effects on host cells (37, 38). To confirm COX-2-specific inhibitors
can also synergize with butyrate in HDP induction, two highly
selective COX-2 inhibitors namely nimesulide and niflumic acid
Frontiers in Immunology | www.frontiersin.org 6
(39, 40) were separately applied to chicken PBMCswith or without
butyrate. Similar to their natural counterparts, both nimesulide and
niflumic acid increased AvBD9 gene expression in a dose-
dependent manner, further with a marked synergy with butyrate
(Figure 6). For example, 250 µM nimesulide and 2 mM butyrate
together enhanced AvBD9 gene expression by 10,524-fold, while
they individually gave 69- and 349-fold induction, respectively
(Figure 6A). A robust synergy also occurred between niflumic
acid and butyrate (Figure 6B). Taken together, inhibition of the
COX-2 pathway upregulates AvBD9 gene expression and further
synergizes with butyrate to promote AvBD9 transcription.

Involvement of Histone Acetylation
and MAPK, NF-kB, and cAMP Signaling
in AvBD9 Induction by Butyrate
and Quercetin
Butyrate is a well-known HDAC inhibitor to maintain the hyper-
acetylation status of histones to facilitate chromatin relaxation and
subsequent gene expression (41). To investigate whether histone
acetylation is involved in butyrate/quercetin-mediated synergy in
AvBD9 induction, chickenHTCcellswere treatedwithbutyrate and
quercetin separately or in combination for 6 and 12 h, followed by
examination of histone 4 (H4) acetylation using Western blotting.
A B

DC

FIGURE 4 | Regulation of HDP, barrier function, and inflammatory cytokine gene expressions by quercetin and butyrate. Chicken HTC macrophage cells were treated
in duplicate with 20 mM quercetin and 2 mM sodium butyrate separately or in combination for 24 h, followed by stimulation with 10 ng/mL lipopolysaccharides (LPS) for
another 3 h. Gene expressions of AvBD9 (A), claudin 1 (CLDN1) (B), mucin 2 (MUC2) (C), and interleukin 1b (IL-1b) (D) were analyzed by RT-qPCR. Results are
presented as means ± SEM of two independent experiments. The bars not sharing common superscript letters are significantly different
(P < 0.05) as determined by one-way ANOVA and post hoc Tukey’s test.
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Butyrate, butnot quercetin, significantly increasedH4acetylationat
6 h and the acetylation was diminished at 12 h (Figures 7A, B).
Relative to butyrate, a combination of butyrate and quercetin
showed no hyper-acetylation at either time point (Figures 7A, B),
suggesting that the HDP-inducing synergy between butyrate and
quercetin is not caused by hyper-acetylation of histones in theHDP
gene promoters.
Frontiers in Immunology | www.frontiersin.org 7
To examine the role of MAPK, NF-kB, and cAMP signaling in
AvBD9 induction, chicken PBMCs were treated with quercetin and
butyrate in the presence or absence of specific inhibitors for three
major MAPK pathways as well as NF-kB, and cAMP pathways. To
our surprise, inhibition of three MAPK pathways (with SB203580,
SP60025, or PD98059)modestly activated the basal expression of the
AvBD9 gene (Figure 8), suggesting that blockingMAPK signaling is
A B

FIGURE 6 | Synergistic induction of AvBD9 gene expression by synthetic COX-2-specific inhibitors and butyrate. Chicken PBMCs were treated in duplicate with indicated
concentrations of nimesulide (A) or niflumic acid (B) with or without 2 mM butyrate for 24 h, followed by RT-qPCR analysis of AvBD9 gene expression. Results are presented
as means ± SEM of two independent experiments. The bars not sharing common superscript letters are significantly different (P < 0.05) as determined by one-way ANOVA
and post hoc Tukey’s test.
A B

DC

FIGURE 5 | Induction of AvBD9 by natural COX-2 inhibitors and butyrate. Chicken PBMCs were treated in duplicate with indicated concentrations of resveratrol (A), anacardic
acid (B), epigallocatechin gallate (EGCG) (C), or garcinol (D), in the presence or absence of 2 mM butyrate for 24 h, followed by AvBD9 expression analysis. Results are
presented as means ± SEM of 2–3 independent experiments. The bars not sharing common superscript letters are significantly different (P < 0.05) as determined by one-way
ANOVA and post hoc Tukey’s test.
February 2022 | Volume 13 | Article 819222
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beneficial for the constitutive expression of AvBD9. However,
inhibiting the p38 MAPK pathway with SB203580 gave a
substantial reduction in butyrate-induced AvBD9 expression, while
blocking the JNK and MEK1/2 MAPK pathways with SP60025 and
PD98059, respectively, potentiated AvBD9 expression (Figure 8),
implying that p38, but not JNK or MEK1/2 MAPK, is required for
butyrate-mediated AvBD9 induction. However, p38 MAPK
appeared to have no effect on quercetin-induced AvBD9
expression, while suppressing the JNK and MEK1/2 pathways
increased AvBD9 expression. Blocking p38 MAPK substantially
reduced AvBD9 gene expression in chicken PBMCs in response to
a combination of butyrate and quercetin, while inhibiting the JNK
and MEK-ERK pathways had a minimum effect on AvBD9
expression (Figure 8). These results suggest a differential
involvement of three canonical MAPK signaling pathways in
AvBD9 induction mediated by butyrate, quercetin, or
the combination.

Blocking NF-kB with PDTC or MG132 had no impact on the
basal expression of AvBD9, but caused nearly a complete
abolishment of AvBD9 expression induced by butyrate, quercetin,
or the combination (Figure 8), indicating a critical role of NF-kB in
Frontiers in Immunology | www.frontiersin.org 8
AvBD9 gene expression. Inhibition of the cAMP pathway with
DDA resulted in a modest AvBD9 induction in PBMCs under the
basal condition; however, DDA dose-dependently increased AvBD9
expression induced by butyrate or quercetin and further potentiated
AvBD9 expression in response to the butyrate/quercetin
combination (Figure 8), implying that inhibiting cAMP signaling
is beneficial for AvBD9 induction mediated by butyrate, quercetin,
or the combination.
DISCUSSION

Enhancing HDP synthesis is a promising host-directed approach
to antimicrobial therapy (3–5, 11). This study revealed a potent
HDP-inducing activity of several natural phenolic compounds
with COX-2 inhibitory activity. We further reported a strong
synergy between butyrate and these natural COX-2 inhibitors in
promoting HDP expression and barrier function while
suppressing LPS-mediated inflammatory response in chicken
cells. These multifaceted beneficial effects of polyphenols and
butyrate make them attractive candidates for further evaluation
of their efficacy in disease control and prevention in chickens and
possibly other animals.

COX-2 is a membrane-bound enzyme responsible for the
production of prostanoids including prostaglandins and
thromboxanes from arachidonic acid during inflammation (22,
23). As a result, a variety of cell type-specific prostaglandins are
synthesized and in turn lead to inflammation and pain (22, 23).
Specific inhibition of COX-2 can be achieved by using nonsteroidal
anti-inflammatory drugs (NSAIDs) (22, 23). Many polyphenols
have COX-2 inhibitory activity (42). For example, quercetin is
capable of suppressing COX-2 gene expression and prostaglandin
E2 (PGE2) production (43). Recently, COX-2 signaling was linked
toHDP expression. Activation of COX-2 downregulates human b-
defensin 1 (DEFB1) mRNA expression in intestinal epithelial cells
(44), and PGE2 is known to suppress human b-defensin 2 (DEFB4)
expression in gingival epithelial cells (45) and human cathelicidin
antimicrobial peptide (CAMP) gene in macrophages (46).
Conversely, inhibiting COX-2 increases DEFB4 expression in
human gingival epithelial cells (45). Several polyphenols such as
resveratrol and EGCG have also been shown to induce HDP gene
expression (24, 26, 27). However, it remains unknown whether
these polyphenols induce HDP expression by acting as COX-
2 inhibitors.

In the current study, several structurally unrelated polyphenols
such as quercetin, anacardic acid, and garcinol were tested in
parallel with resveratrol and EGCG. All tested polyphenols
possess HDP-inducing activity and further synergize with
butyrate in HDP induction. We also confirmed two highly
selective COX-2 inhibitors including nimesulide and niflumic
acid (39, 47) are also capable of inducing HDP expression
showing a synergistic activity with butyrate in promoting HDP
gene expression, similar to those polyphenols. These results suggest
that polyphenols enhance HDP expression at least in part through
inhibition of COX-2 activation, perhaps by suppressing PGE2
synthesis, which is known to downregulate HDP gene expression
(45, 46).
A

B

FIGURE 7 | Role of histone acetylation in AvBD9 induction by butyrate and
quercetin. Chicken HTC cells were treated with 2 mM sodium butyrate or 20
mM quercetin individually or in combination for 6 or 12 h, followed by western
blot analysis of acetyl-histone H4 (Ac-H4) and b-actin. (A) A representative of
two independent blots. (B) Fold changes in the acetylation of histone H4
relative to unstimulated cells. Results are presented as means ± SEM of two
independent experiments normalized against b-actin. The bars not sharing
common superscript letters are significantly different (P < 0.05) as determined
by one-way ANOVA and post hoc Tukey’s test.
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Histone acetylation plays an important role in modulating
HDP gene expression and many compounds with HDAC
inhibitory activity have been found to induce HDP expression
(5). It is unsurprising to see butyrate, a well-known HDAC
inhibitor, to cause acetylation of histone H4 in chicken HTC cells
in this study. Although many polyphenols such as resveratrol,
quercetin, and EGCG have epigenetic functions by modifying
DNA methylation and histone methylation and acetylation (48),
quercetin fails to obviously induce histone acetylation showing
no cooperative activity with butyrate in hyper-acetylation of
histones, suggesting that its synergy with butyrate in HDP
induction is unrelated to histone acetylation.

However, we found that blocking the p38 MAPK signaling
pathway substantially abolishes AvDB9 gene induction
in PBMCs mediated by butyrate or the butyrate/quercetin
combination, but not quercetin alone; however, inhibiting
the MEK1/2 or JNK pathway instead potentiates AvDB9 gene
expression in response to butyrate, quercetin, the combination,
or even in the basal quiescent state. Differential involvement of
the three canonical MAPK pathways in HDP induction in
PBMCs is consistent with earlier observations that three
MAPK pathways mediate HDP induction in compound- and
cell type-specific manners (11). For example, inhibition of p38
and JNK pathways decreases AvBD9 expression, while
suppressing MEK1/2 increases AvBD9 expression in response
to butyrate or/and forskolin in chicken HD11 macrophage cells
(19). On the other hand, resveratrol induces human CAMP
gene expression through p38 MAPK, while blocking the MEK1/
2 pathway further enhances resveratrol-induced CAMP
expression in human keratinocytes (24).
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Phosphorylation of CCAAT-enhancer-binding protein a (C/
EBPa) by p38 MAPK is believed to be responsible for
resveratrol-mediated CAMP expression (24). Whether C/EBPa
is also involved in HDP induction by other polyphenols is
currently unknown. Given no influence of p38 MAPK on
quercetin-mediated AvBD9 induction, it is likely that different
polyphenols induce HDP gene expression differently, but it is
also possible that a gene- or cell type-specific HDP regulation
pattern exists. One possible reason for HDP induction in
response to the MEK1/2 blockage could be due to reduced
phosphorylation of cAMP response element-binding protein
(CREB), which is a major target of the MEK1/2 pathway (49,
50). Reduced CREB phosphorylation in turn suppresses the
synthesis of inducible cAMP early repressor (ICER), which
could otherwise compete with CREB for the cAMP response
element (CRE) on an HDP gene promoter resulting in reduced
gene transcription (51, 52).

NF-kB is also required for AvBD9 induction mediated by
butyrate, quercetin, or the combination, which is in agreement
with earlier observations on the involvement of NF-kB in human
CAMP induction by resveratrol and genistein, where NF-kB is
believed to activate p38 MAPK for phosphorylation of C/EBPa
and activation of CAMP gene transcription (24, 28). It is noted
that NF-kB is critical for the induction of the COX-2 gene, and
polyphenols block the COX-2 activity and PGE2 synthesis by
suppressing NF-kB action (53). Reduced PGE2 production thus
leads to increased HDP gene expression (45, 46).

Similar to theMEK1/2MAPK pathway, inhibition of the cAMP
signaling pathway appears to be beneficial for butyrate- and
quercetin-mediated AvBD9 gene induction in chicken PBMCs.
FIGURE 8 | Role of MAPK, NF-kB, and cAMP signaling pathways in AvBD9 induction mediated by quercetin and butyrate. Chicken PBMCs were pretreated for 1 h with or
without 25 µM SB203580 (p38 MAPK inhibitor), 20 µM SP60025 (JNK inhibitor), 50 µM PD98059 (MEK1/2 inhibitor), 40 µM PDTC (NF-kB inhibitor), 20 µM MG132 (NF-kB
inhibitor), or 100 or 500 µM 2’,5’-dideoxyadenosine (DDA) (cAMP inhibitor), followed by stimulation with 10 µM quercetin with or without 2 mM sodium butyrate for another
24 h. RT-qPCR was performed to determine AvBD9 mRNA expression. Results are presented as means ± SEM of two independent experiments. The bars not sharing
common superscript letters are significantly different (P < 0.05) as determined by one-way ANOVA and post hoc Tukey’s test.
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Consistently, activation of cAMP signaling suppresses the
expression of human CAMP and DEFB1 genes in colonic
epithelial cells (44). However, forskolin, an adenylyl cyclase
agonist and activator of the cAMP-protein kinase A (PKA)
signaling (54), has been found to be a weak inducer of AvBD9
and even synergize with butyrate in AvBD9 induction in chicken
HD11 macrophages (18–20). The discrepancy is likely due to a
difference in the cell type used in different studies, but it is also
possible because of a difference in the strength and duration of the
cAMP signaling being activated. Forskolin is beneficial to activate
the cAMP-PKA pathway to phosphorylate CREB for enhanced
HDP synthesis; however, excessive and prolonged CREB
activation may sustain ICER synthesis, creating a negative
feedback to turn off HDP synthesis (20, 51). Therefore, it is
beneficial to fine-tune the amount and duration of CREB
synthesis and phosphorylation to maintain a positive ratio of
phosphorylated CREB over phosphorylated ICER and increased
HDP gene expression. In fact, diminished HDP induction occurs
with high concentrations of butyrate or forskolin or prolonged
treatment (14, 19, 55), which is associated with increased ICER
transcription (20, 51). Similarly, we also observed a diminished
synergic AvBD9 induction in response to a combination of
butyrate and high concentrations of natural COX-2 inhibitors
in this study. ICER is likely involved in the reduced synergism, but
an experimental verification is warranted.

Although HDPs are an important part of the innate
immunity, not all HDPs are increasingly transcribed and
produced in response to infection or injury. In chicken HTC
macrophages, a 3-h LPS treatment triggered a massive IL-1b
induction, but AvBD9 gene expression was not altered, which is
consistent with earlier reports that AvBD9 was unaffected in the
vagina or Sertoli cells of chickens for up to 24 h following LPS
treatment (56, 57), although another report appeared to suggest
that AvBD9 is upregulated by LPS in chicken bone marrow-
derived cells (58). The discrepancy is currently unknown,
perhaps it is cell type-dependent.

In the current study, we believe that COX-2 inhibition is at least
partially responsible for polyphenol-mediated HDP synthesis;
however, we cannot rule out relative contributions of other
biological activities of individual polyphenols to HDP induction.
Most polyphenols have antioxidative, antiinflammatory, and
antiproliferative activities by modulating a multitude of biological
processes. Besides COX-2 inhibition, NF-kB, MAPK, and signal
transducer and activator of transcription proteins (STATs) are all
commonly suppressed by polyphenols (42). Additionally, many
polyphenols have been shown to influence DNA and histone
methylation beyond histone acetylation (48). Therefore, it will be
important to dissect the relative contributions of each of those
individual activities of polyphenols to HDP induction. It is likely
Frontiers in Immunology | www.frontiersin.org 10
different polyphenols induce HDP expression through different
mechanisms beyond COX-2 inhibition. It will be important to
expand the testing of additional structurally and functionally
distinct polyphenols as well as other highly specific COX-2
inhibitors such as aspirin, ibuprofen, and coxibs (23) for their
HDP-inducing activity. Additionally, it is critical to examine
whether the HDP-inducing synergy between butyrate and COX-
2 inhibitors similarly occurs in other animal species or humans.

CONCLUSIONS

We have revealed that several structurally different polyphenols
are potent HDP inducers likely by acting as COX-2 inhibitors.
Furthermore, these natural COX-2 inhibitors are synergistic with
butyrate in inducing HDP and barrier function gene expression
without eliciting inflammation, suggesting their potential for
further exploration as a novel host-directed approach to
antimicrobial therapy in chickens and possibly other animals,
although additional in vivo studies are warranted.
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