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Defying convention in the time
of COVID-19: Insights into the
role of gd T cells

Marta Sanz, Brendan T. Mann, Alisha Chitrakar
and Natalia Soriano-Sarabia*

Department of Microbiology, Immunology and Tropical Medicine, George Washington University,
Washington, DC, United States
Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2). COVID-19 is a complex disease which

immune response can be more or less potent. In severe cases, patients might

experience a cytokine storm that compromises their vital functions and

impedes clearance of the infection. Gamma delta (gd) T lymphocytes have a

critical role initiating innate immunity and shaping adaptive immune responses,

and they are recognized for their contribution to tumor surveillance, fighting

infectious diseases, and autoimmunity. gd T cells exist as both circulating T

lymphocytes and as resident cells in different mucosal tissues, including the

lungs and their critical role in other respiratory viral infections has been

demonstrated. In the context of SARS-CoV-2 infection, gd T cell responses

are understudied. This review summarizes the findings on the antiviral role of gd
T cells in COVID-19, providing insight into how they may contribute to the

control of infection in the mild/moderate clinical outcome.
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Introduction

The beginning of the pandemic

Beginning December 2019, there was a surge of pneumonia cases of unknown

etiology inWuhan City, Hubei Province, Central China. Genomic sequencing (1) showed

that this pneumonia was caused by a novel coronavirus (CoV) that belonged to the B

lineage of the Beta-CoV genus along with SARS-CoV and MERS-CoV (1). Its similarity

to the original SARS-CoV sequence led to the naming severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) and the associated illness was named coronavirus disease

19 (COVID-19). CoVs belong to the family Coronaviridae (subfamily Coronavirinae)
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and can infect a wide range of animal hosts. In humans, CoV-

induced diseases, such as SARS, MERS, and currently COVID-

19 (2, 3), can range in severity from a common cold to the fatal

acute respiratory distress syndrome (ARDS). The origin of

SARS-CoV-2 and the first transmission event of the disease is

still unclear. However, initial group analysis pinpointed the

source of the outbreak to a seafood market in Wuhan. This

market is known for selling exotic animals for human

consumption and it is postulated that this could be the point

where the zoonotic transmission occurred (3). The route of

transmission between humans is through contact with the

nasopharyngeal secretions, including saliva of infected people.

Transmission occurs mainly by direct contact with respiratory

droplets but also hands or objects contaminated with these

secretions (4, 5).
SARS-CoV-2 structure and life cycle

SARS-CoV-2 consists of a positive-sense single-stranded

RNA genome, approximately 30 kb in length (6). The overall

structure of the virus includes the viral genome contained within

a nucleocapsid and encased with a glycosylated envelope. Of

note, the nucleocapsid is arranged in a helical symmetry, which

is not a common characteristic of positive-sense RNA viruses

(7). The main structural proteins of coronaviruses are described

in detail below (Figure 1A). (1) Spike (S) Glycoprotein is a

multifunctional class I transmembrane protein and varies in size

from 1160 to 1400 amino acids. It is located on the surface of the

virion, giving the virus its characteristic crown appearance. Foe

the entry of virion particles into the cell, the S glycoprotein is

required through its union with different host cell receptors (8)..

(2) Membrane (M) protein is the most abundant structural

protein in the virion, giving a definite shape to the viral envelope.

M protein is related to the shape and size of the virus (9). It binds

to the nucleocapsid and plays the role of the central organizer

during viral assembly. (3) Nucleocapsid (N) protein plays an

important role in the packaging of viral RNA into

ribonucleocapsid. This protein mediates viral assembly by

interacting with the viral genome and the M protein,

facilitating transcription and replication of viral RNA (10, 11).

(4) Envelope (E) protein has different functions involved in the

entry, assembly, and release of the virus (12, 13). It is also known

to act as a viroporin which integrates into the host membrane

and alters the flow of ions such as Na+ (14, 15).

As recently reviewed, SARS-CoV-2 enters host cells by the

interaction of its surface Spike (S) protein with the host’s

angiotensin-converting enzyme 2 (ACE2) receptor, a

membrane exopeptidase primarily expressed in the kidney,

lungs, and heart (16). However, this process also requires a

cellular protease that helps the cleavage of the spike protein and

fusion of the cell and viral membranes. This cellular
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transmembrane protease is TMPRSS2 (17). Both of these

proteins, TMPRSS2 and ACE2, determines viral entry (18, 19).

After the virus is endocytosed, the nucleocapsid containing the

RNA genome, is released into the cytoplasm of the cell. Parts of

the endoplasmic reticulum are then appropriated to form double

membraned vesicles which protect the viral genome to ensure

replication (20). The viral genome gets translated by using the

protein translation machinery of the host. Two viral proteases

are used for cleavage of proteins into structural and

nonstructural viral proteins. Viral particles are assembled in

the endoplasmic reticulum/Golgi compartment and infectious

virions are released from the cells through exocytosis (21–23).

SARS-CoV-2 life cycle is summarized in Figure 1B.
SARS-CoV-2 disease: COVID-19

Treatment and vaccines

COVID-19 has emerged as a complex disease affecting many

body systems and generating a wide spectrum of clinical

manifestations. Understanding SARS-CoV-2 immunopathogenesis

is key to developing effective treatments. Currently, there are

several drugs for the treatment of COVID approved by the FDA

including several first line antivirals used to treat other

infections. The most widely used are described briefly.

Remdesivir, a broad-spectrum antiviral with established

activity against several viruses such as respiratory syncytial

virus (RSV), Ebola virus, MERS-CoV and SARS-CoV (24, 25)

is also capable of inhibiting the replication of SARS-CoV-2 (26,

27). It is one of the first line drugs recommended for use in

patients who require hospitalization and the support of

supplemental oxygen (28). Lopinavir, an antiretroviral of the

protease inhibitor class used for HIV treatment, is capable of

disrupting viral replication and RNA release from host cells by

inhibiting proteases such as 3CLpro, the main SARS-CoV-2

protease critical for viral replication (29). The combination of

Lopinavir with IFN-1b significantly reduced the time to clinical

improvement in patients with moderate symptoms (30)

although this benefit did not extend to patients with severe

symptoms (31).

As a result of an incredible scientific effort, we have seen the

development of several highly effective vaccines in a short period

of time. COVID-19 vaccines can be divided into three categories:

(1) Inactivated vaccines, protein-based vaccines consisting of

virus particles that generate target antigens in vitro, (2) virus-

vectored, DNA or mRNA vaccines, are gene-based vaccines that

encode proteins of the pathogen are delivered and (3) live-

attenuated virus vaccines, it is a combination of protein-based

and gene-based to produce protein antigen or antigens in vitro

and in vivo (32–34). Despite the efficacy of these vaccines, we still

do not fully understand the role of innate and adaptive
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immunity against SARS-CoV-2. Specifically, this article aims to

give a comprehensive review of available literature covering the

role of innate-like gd T cells fighting SARS-CoV-2 infection.
SARS-CoV-2 infection can induce a
cytokine storm

A cytokine storm is defined by the rapid proliferation and

hyperactivation of T cells, macrophages and Natural killer (NK)

cells resulting in excess secretion of inflammatory cytokines and

chemical mediators released by both immune or nonimmune

cells (35). In older adults, having an unbalanced pro-

inflammatory environment can further enhance the

inflammatory responses to SARS-CoV-2 infection, leading to

an exacerbated cytokine storm and could also influence ACE2

expression facilitating viral entry (36). This cytokine production

leads to positive feedback on other immune cells by recruiting

them to the area of inflammation causing an exponential

increase in inflammation and tissue damage (37). The main

cytokines involved in the cytokine storm are interleukins (IL),

interferons (IFN), tumor necrosis factor (TNF), colony

stimulating factors (CSF), chemokines, and growth factors

(GF) (35). The induction of cytokine production typically

occurs following viral entry. Target cells such as respiratory

epithelial cells, alveolar cells, macrophages, and blood circulating

monocytes are activated through pattern recognition receptors

(PRRs) that lead to stimulation of the pro-inflammatory NF-kB
cascade (38, 39). In addition, viral RNA enters endosomes and

activates intracellular toll-like receptors (TLRs), mainly TLR7/8,

inducing the expression of numerous inflammatory factors,

cytokines, and chemokines (38, 40). One of the most

detrimental effects caused by the cytokine storm is acute lung

injury (35).
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Recent studies have shown that patients with severe disease

had high concentrations of pro-inflammatory cytokines (IL-1b,
IFN-g, interferon gamma inducible protein-10, IP-10, and

monocyte chemoattractant protein-1, MCP-1) which were

associated with pulmonary inflammation and extensive lung

damage (41). Similarly, severe cases often display heightened

activated T-helper-1 (Th1) cell responses including increased

production of IFN-g, TNF-a, and IL-2 as well as macrophage

overactivation (42), both of which contribute to increased

inflammation and tissue damage. The observation that patients

admitted to the ICU had higher granulocyte-colony stimulating

factor (G-CSF), IP-10, MCP-1, MIP-1a , and TNF-a
concentrations, further suggests that the development of a

cytokine storm is associated with disease severity. However, an

increase in T-helper-2 (Th-2) associated cytokines IL-4 and IL-

10 has also been reported in severely infected patients. These

findings are consistent with other studies in which severe

COVID-19 patients had mixed high levels of cytokines (IL-2,

IL-6, IL-7, IL-10, IP-10, MCP-1, TNF-a) than patients with mild

and moderate infections (43, 44). Therefore, an adequate Th-1/

Th-2 balance plays an important role controlling the severity of

the disease. However, more studies are needed to characterize

the Th1 and Th2 responses, as well as when and how

dysregulation starts impacting the clinical outcome of

the disease.

The prolonged release of inflammatory cytokines induces a

feedback loop of subsequent cytokine production that can lead

to cell and organ damage. This cytokine storm can be caused by

an aberrant host response to infection provoking a severe clinical

syndrome known as sepsis, (45). Critically ill COVID-19

patients may develop organ dysfunction due to a dysregulated

response to infection and develop sepsis (46, 47). Criteria for the

diagnosis and treatment of bacterial sepsis is analogous to SARS-

CoV-2 infection and has been applied to understand severe
A B

FIGURE 1

SARS-CoV-2 structure and life cycle. (A) SARS-CoV-2 contains four structural proteins: spike surface glycoprotein, membrane, nucleocapsid
and envelope protein, as well as eight accessory proteins (not represented). (B) Coronavirus particles bind to cellular attachment factors and
specific S interactions with the cellular receptors ACE2 and TMPRSS2, promoting viral uptake and membrane fusion. Positive sense single-
stranded RNA is released, partially translated into SARS-CoV-2 polymerase protein, and transcribed. Structural proteins and accessory proteins
(N, S, M, and E) results after RNA subgenomic translation, that are inserted into the ER–Golgi compartment for virion assembly. Subsequent
positive-sense RNA genomes are incorporated into newly virions, which are secreted from the plasma membrane.
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COVID-19 (48). However, there are some differences between

sepsis caused by SARS-CoV-2 and bacterial sepsis. A

retrospective study investigated whether there are differences

in the immune system status of these two types of sepsis. A total

of 64 bacterial sepsis patients and 43 patients with SARS-CoV-2

sepsis were included (49). The results of this study showed that

there are key differences between the two types of sepsis, such as

a milder cytokine storm in SARS-CoV-2 sepsis as well as higher

immunoglobulin and complement protein levels. However,

neutrophil, monocyte, infection biomarkers, individual

lymphocyte subset counts (total T lymphocyte, CD4+ T cell,

CD8+ T cell, B cell, and NK cell counts), and lymphocyte subset

functions were similar in bacterial sepsis patients and SARS-

CoV-2 sepsis patients. Treatment protocols for sepsis have a

well-established history in most healthcare systems. Considering

the similarities in both the immunopathogenesis and

pathophysiological manifestations, our knowledge of sepsis

could inform the management of severity COVID-19 (50).
Innate and innate-like immune responses
to SARS-CoV-2 infection

The clinical course of COVID-19 is very similar to other

respiratory infections such that 80% of patients present mild to

moderate symptoms (Figure 2). SARS-CoV-2 primarily targets

cells in the upper and lower respiratory tract, as well as

pulmonary cells (51). Macrophages and NK cells belong to the
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innate immune system and constitute one of the first defense

mechanisms (52). Pathogens are removed from circulation by

phagocytosis, and processed antigens are displayed to initiate

adaptive immune responses. This includes the production and

secretion of inflammatory cytokines and chemokines that recruit

various immune cells to the site of infection and regulate T cell

responses to the pathogen (53, 54). gd T cells, which are generally

classified as innate-like T cells, secrete several cytokines

including IFN-g and TNF-a and also cytotoxic components

such as perforin and granzymes (55).

gd T cell responses to coronavirus infections have been

understudied, with a previous report on SARS-CoV infection

showing a potent cytolytic activity against infected target

monocytic cell lines (56). Although more intense research has

been performed in other airway infections such as influenza,

their role in SARS-CoV-2 infection remains understudied.
gd T cell subpopulations and ligands

gd T cells’ unique properties enable them to have a critical tole

linking innate and adaptive immune responses (57, 58). These cells

are key contributors to pulmonary mucosal immunity including

tissue repair and rapid response against numerous respiratory

pathogens (59–61), and therefore their potential role fighting

SARS-CoV-2 infection is worthy of investigation.

gd T cells are recognized for their contribution to tumor

surveillance, fight against infectious diseases, and autoimmunity
FIGURE 2

Schematic immune responses to SARS-CoV-2. The SARS-CoV-2 virus recognizes ACE-2 in respiratory epithelial cells, facilitating viral entry.
After viral replication, the virus is released and recognized by the immune system. T cells and dendritic cells are activated through pattern
recognition receptors. The virus induces the expression of numerous inflammatory factors, the synthesis of type I interferons and production of
cytokines. High levels of cytokines cause a cytokine storm, which leads to a dysfunctional response with an excessive infiltration of cells,
decrease in different populations of T cells in the blood such as gd T cells and surviving T cells are immunologically exhausted, this provokes
progression to acute respiratory distress syndrome (ARDS).
frontiersin.org

https://doi.org/10.3389/fimmu.2022.819574
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Sanz-Perez et al. 10.3389/fimmu.2022.819574
(57, 58, 62). In contrast to conventional ab T cells, the T-cell

receptor (TCR) of gd T cells is comprised of variable g and d
chains that recognize non-peptide antigens in the absence of

MHC molecules. gd T cells elicit non-redundant functions when

compared to conventional ab T cells (57, 58). Within circulating

human T cells, gd T cells account for 0.5–10% and are classified

into two major peripheral blood subpopulations based on the d
chain usage, Vd1 and Vd2 T cells (57). The Vd2 chain is present

in the majority of circulating gd T cells and is almost always

paired with the Vg9 chain (Vg9Vd2 T cells) (63–65). Vd2 T cells

specifically recognize low-weight phosphorylated metabolites of

isoprenoid biosynthesis compounds, or mevalonate pathway,

referred to as phosphoantigens (P-Ags) (66, 67). This pathway is

essential for the synthesis of cholesterol and precursors for

prenylation of proteins and as such are produced by both

eukaryotes and prokaryotes and can therefore act as self (host)

or non-self (pathogen) antigens. The most potent, naturally

occurring P-Ag known to date is (E)-4-Hydroxy-3-methyl-but-

2-enyl pyrophosphate (HMB-PP), an intermediate of the MEP

(non-mevalonate) pathway utilized by several pathogenic

bacterial species (68). Another, less potent activator is

isopentenyl pyrophosphate (IPP), an intermediate of the

mevalonate pathway that increases in response to cellular

stress and is present both in eukaryotic and procaryotic cells

(69, 70). Aminobisphosphonates (N-BPs) bears structural

similarity to pyrophosphates and specifically activate Vd2 T

cells. N-BPs inhibit one key enzyme of the mevalonate pathway,

farnesyl pyrophosphate synthase, leading to an accumulation

of IPP (71), that is then presented to Vd2 T cells independent of

major histocompatibility (MHC) molecules, but in the context of

butyrophilin (BTN) molecules (72, 73). A recent study identified

that in addition to BTN3A1, BTN2A1 plays an important role as

a ligand that binds to the Vg9 TCR g chain (72). It is believed that
once p-Ag binds to BTN3A1 through its intracellular domain,

the BTN2A1–BTN3A1 complex engages the gd TCR via two

distinct binding sites: BTN2A1 binds to Vg9 region, whereas

another ligand (possibly BTN3A1) binds to the opposing Vg9
and Vd2 chains. Besides detecting p-Ags, gd T cells can recognize

cells through molecules that are expressed at the cell surface in a

stress-induced manner. For example, endogenous proteins, such

heat shock protein 60 (74, 75) or FI-ATPase (76), that can be

ectopically expressed on the cell membrane upon transformation

and recognized by Vd2 TCRs to promote tumor cell lysis. In

addition, gd T cells recognize malignant cells through the

engagement of innate-like activating receptors like NKG2D,

and natural cytotoxicity receptors (NCRs) (57, 77). NKG2D

acts as a costimulatory signal upon recognition of stress markers

MHC class I chain related protein A and B (MICA, MICB), and

UL16 binding proteins (ULBPs). Activation through this

pathway provokes the secretion of proinflammatory cytokines

TNF-a and IFN-g as well as direct cytolytic activity mediated by

the release of perforins and granzymes (78–80). On the contrary,
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the natural antigen for Vd1 T cells has yet to be defined. These

cells are mainly found within the tissue where they have a critical

role in immunosurveillance (57).
Functional plasticity of gd T cells

gd T cells exhibit a high degree of polyfunctionality, or

functional plasticity as regulatory and effector cells, as

characterized by their membrane receptors and cytokine

production (57). gd T cells can secrete a range of different

cytokines and can directly interact with other immune cell

populations (81). Distinct subpopulations of gd T cells are

capable of producing either anti-inflammatory or pro-

inflammatory signals, giving them a direct role in maintaining

immunological homeostasis and response to disease (82–84).

They exert different immunomodulatory and adjuvant functions

on CD4 T, CD8 T, B, and dendritic cells (DC) which vary

according to the infectious challenge or environment, and the

subset of gd T cells involved in the antiviral response (85). gd T

cells execute direct cytolytic activity mediated by the release of

perforin and several types of granzymes (86). gd T cells may also

induce apoptosis through the expression of tumor necrosis

factor receptor superfamily members TNF- related apoptosis-

inducing ligand (TRAIL) or FasL (87, 88). Both of which have

been demonstrated to be important for mediating the resolution

of inflammation and clearing tumor cells. Effector gd T cells also

express CD16 (FcgRIII) which affords them the ability to execute

antibody-dependent cellular cytotoxicity (ADCC) against virally

infected cells as well as phagocytosis of opsonized cell-free

pathogens (89, 90). Studies from our group have highlighted

the importance of the CD16 receptor expression as a marker of

cytotoxic capacity associated to Vd2 T cell elimination of HIV-

latently infected CD4 T cells (91, 92).
gd T cells in viral infections

gd T cells play a key role in controlling a variety of different

viral infections. Their anti-HIV activity was recognized since the

beginning of the pandemic (93) and although not completely yet

understood, their key role fighting the infection has been

documented (86, 94). Less is known about their specific

involvement in HIV latency, which is the focus of our studies

(86, 91, 92, 94). In respiratory infections, such as influenza or

respiratory syncytial virus (RSV), lung-resident and infiltrating

gd T cells play critical roles in controlling the severity of the

infection (89, 90, 95, 96). More intensive research has been

performed in influenza, providing important insights on general

gd T cell responses to viral infections that cause respiratory

distress. Using a murine model of influenza, it was recently

reported that early production of IL-17 by gd T cells promoted
frontiersin.org
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viral clearance (89) and more importantly, adoptive cell transfer

of expanded gd T cells resulted in cells trafficking to the lungs

and induction of potent antiviral function that led to control of

viral replication (90). In line with these results, activated gd T

cells express high levels of chemokine receptors CXCR5, CCR1

and CCR5 allowing their migration along CCL3 and CCL5

chemotactic signals towards the lungs (97, 98). Interestingly,

influenza-infected macrophages and DCs alter the mevalonate

pathway leading to the production of IPP and subsequent gd T

cell activation directly conferring immune protection

independent of viral subtypes (99).
gd T cell responses to SARS-CoV-2

Lymphopenia is associated with disease progression where a

significant reduction in T cell counts is often observed in severe

COVID-19 patients compared to non-infected and mild cases

(100, 101). SARS-CoV-2 has the ability to evade the immune

system, allowing the virus to proliferate and disseminate into

various tissues. Dysregulation of host immunity has been linked

to the severity of the disease. This includes macrophage

hyperactivation, the development of a cytokine storm, as well

as the depletion of key lymphocytic populations such as NK cells

and cytotoxic T cell lymphocytes (CTLs) cells (35).

gd T cell frequency in the blood of hospitalized COVID-19

patients is lower compared to healthy controls (102–104),

indicating gd T cells as one of the most affected lymphocyte

subsets (105). Carissimo et al. (105) evaluated the frequency of

different T cell populations, CD8, CD4, gd (Vd1 and Vd2), and
mucosal-associated invariant T (MAIT) cells in the acute phase of

the infection inCOVID-19 patients showing a decrease in cytolytic

populationsCD8,MAITandVd2T cells.On the contrary,Vd1 and
CD4T cells did not show a significant decrease during infection. In

addition, as the disease severity increased, there was a gradual

reduction of Vd2 T cells in the peripheral blood, which was

hypothesized to be a consequence of activation and infiltration of

these cells into the lungs (105). This inverse correlation was more

pronounced inVd2andCD8Tcells,which suggested that therewas
a selective activation and infiltration of these cells in the lungs. In

line with these observations, a recent work on the first lung

transplant of a COVID-19 patient, highlighted a key role of gd T

cells being specifically recruited to the lungs (106). In addition to

decreased circulatingVd2 T cells, other studies reported a switch to

an effector memory population at the time of hospital admission

compared to healthy control (102, 107, 108). This increase in

memory phenotype provides further insights into the possibility

of effector-like gd T cells recruitment from the blood to the lungs

therefore, strengthening their involvement in the immune response

against SARS-CoV-2 (109).

gd T cells from COVID-19 patients with mild symptoms

exhibited a strong activated phenotype based on CD25

expression, although early activation marker CD69 and
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exhaustion marker PD-1 levels were similarly expressed in

healthy donors (108). This limited data suggests that gd T cells

were not exhausted, raising the possibility that CD69 was

expressed earlier during infection followed by reversion to the

quiescent state during prolonged recovery. Whether this is the

case for severe cases of COVID-19 requires further investigation.

In addition, patients in the acute phase of infection had elevated

expression of CD38 in Vd2 T cells compared to healthy

individuals. Interestingly, Carissimo et al. also found that the

immature neutrophil-to-Vd2 T cell ratio was an excellent tool to

predict patient progression to pneumonia (105).

Some gdT cell subsets constitutively express CD8while CD4 is

generally absent (110).However,we andotherspreviously reported

that they can transiently upregulate CD4 expression upon

activation (111, 112). Similarly, the proportion of gd T cells

expressing CD4 was increased in COVID-19 compared to

healthy donors, while frequency of CD8 gd T cells remained

unchanged (108). In our previous study, CD4 was transiently

upregulated after in vitro exposure to IL-2, without requiring

TCR-antigen recognition suggesting that CD4 expression on Vd2
cells could constitute an additional activation marker (111).

Interestingly, a higher frequency of CD16 expression was

observed in moderate COVID-19 disease and was almost absent

in the severe cases of the disease (113, 114). Therefore, similar to

HIV infection, inaddition to its involvement inADCC,CD16could

constitute a critical marker to determine the extent of the cytotoxic

capacity of gd T cells and their ability to control SARS-CoV-2

infection (115). The involvement of gd T cell-mediated ADCC in

COVID-19 responses is currently unknown, and constitute an

additional area of critical investigation, similar to NK-ADCC

mediated functions (116, 117).

Due to the dearth of studies that specifically focus on gd T cell

responses to COVID-19, there are important caveats to consider

when comparing these collective findings. Patient demographics

(e.g., age, biological sex, and race) can influence gd T cell

frequencies, phenotypes, and functions during both normal

health and disease (118, 119). Since age is an additional risk

factor for severe COVID-19 disease and Vd2 T cell frequencies are

diminished in the elderly where general a systemic low-grade

inflammation is present, the low Vd2 T cell count could explain

why the disease is more severe in older patients (120, 121). The

lack of age and sex-matched cohorts within most existing studies

presents a clear limitation that should be addressed in future

investigations. There is also a growing body of evidence suggesting

COVID-19 disease severity is associated with pre-existing

comorbidities such as obesity and Type 2 diabetes. These

chronic inflammatory health conditions may independently

contribute to alterations in gd T cells including their antiviral

responses (122, 123). This necessitates mechanistic studies to

determine the independent contribution of SARS-CoV-2

infection on gd T cell characteristics. Lastly, the definition and

stratification of disease severity is often discordant between

studies. Identifying robust clinical biomarkers as well as
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widespread utilization of nucleic acid and rapid antigen testing

may allow for more clearly defined methods for analyzing gd T

cells at different stages of COVID-19.
Immunotherapy for infectious
diseases

Few studies for the therapeutic use of Vd2 T cells to treat

infectious disease have been performed to date. A pilot study

analyzed the effect of combined treatment with the N-BP

zoledronate and interleukin-2 in people living with HIV

without antiretroviral treatment (124). The authors observed a

partial restoration of Vd2 T cell functionality including

enhancement of dendritic maturation and possibly HIV-

specific CD8 lymphocyte anti-viral responses.

A therapeutic effect against influenza has been demonstrated

(125), showing that human N-BP expanded Vd2 T cells killed

influenza virus-infected cells and inhibit viral replication in vitro

(90). Further work demonstrated in immunodeficient mice

reconstituted with human peripheral mononuclear cells, that the

N-BP pamidronate reduced disease severity caused by human

seasonal H1N1 and avian H5N1 influenza virus. In a more recent

study, the potential of pamidronate on treating H7N9 virus-

infected humanized mice was evaluated showing that

intraperitoneal injection of the drug induced expansion of Vd2 T
cells that controlled both viral replication and inflammation in

affected lungs (126). The therapeutic effect of Vd2 T cells has also

been demonstrated in other infections such as flavivirus infections

(127, 128) and Hepatitis C virus (129, 130).

The tuberculosis vaccine, Bacille Calmette-Guerin (BCG),

also affords protection against other diseases, due to immune

mechanisms such as activation of non-conventional T-cells, and

cross-reactive adaptive immunity (131–133). A recent study

used a rhesus macaque model to explore the protective efficacy

of aerosol-delivered BCG vaccination against SARS-CoV-2

(134). Immune parameters were monitored in vaccinated and

unvaccinated rhesus macaques for 28 days following aerosol

BCG vaccination. Interestingly, CD14+ monocytes and Vd2 T

cell frequencies increased rapidly in vaccinated animals

following SARS-CoV-2 infection. Despite the lack of efficacy of

the vaccination clearing infection, this study adds on the

potential immunotherapeutic role of gd T cells for SARS-CoV2.

These findings provide a strong justification for further

studies aimed at translating Vd2 T cells into the clinic for

infectious diseases that currently have limited curative

treatment options.
Conclusions and future perspectives

Despite the limited studies on gd T cells, there is evidence

that indicates their active participation fighting SARS-CoV-2
Frontiers in Immunology 07
infection similar to their known pivotal antiviral and cytotoxic

functions against other viral infections. In addition to their

migration and infiltration capabilities into sites of infection,

including the lungs (106), their functional plasticity is reflected

in their ability to secrete numerous cytokines and crosstalk with

other cells including monocytes/macrophages and DCs, to

induce strong adaptive immune responses. Our capacity to

manipulate the mevalonate pathway allows us to generate gd T

cells with enhanced migration and cytotoxic capabilities (135)

and as such, gd T cell immunotherapy is being pursued from

several angles to treat different malignancies (136, 137), and for

HIV cure (91, 92). The use of nBPs to prevent or treat COVID-

19 was previously postulated (138) although a recent study

showed that oral nBPs did not prevent, nor ameliorate severe

COVID-19 disease (139). One possible explanation for this

outcome could be related to Vd2 T cell exhaustion after

repeated dosage of the nBP (140). As recently reviewed, nBPs

could be beneficial for SARS-CoV-2 acute response in the lung

(141) since nBPs directly activate Vd2 T cell homing to tissues

(105, 142) and therefore, migration into the lungs in response to

SARS-CoV-2 would be achieved. As we reviewed herein, Vd2 T
cells exhibit a potent adjuvant function that includes modulation

of B, T, DC, and NK cells functions (143) and their specific

activation could shape the full adaptive immune response.

An alternative approach to modulating the mevalonate

pathway are statins. Statins are widely used for the treatment

of hypercholesterolemia and they function by inhibiting HMG-

CoA reductase, which is the rate-limiting enzyme in the

mevalonate pathway (144, 145). SARS-CoV-2, like other

enveloped viruses, depend on their lipid envelopes for entry

and replication in host cells (146). Therefore, to reduce entry of

coronaviruses, cholesterol can be depleted from the plasma

membranes of target cells (147) In addition, statins have anti-

inflammatory and immunomodulatory effects, inhibiting the

secretion of proinflammatory cytokines (148) and suppressing

T cell activation (149). Different observational and experimental

studies suggest that treatment with statins could be associated

with better prognosis in severe COVID-19 infection. A meta-

analysis demonstrated that the use of statins was associated with

a lower risk of mortality in COVID-19 patients (150). However,

more investigation is still needed to confirm these findings.

The major adverse effect of intravenously administered

nBPs is the acute phase response associated with the release

of TNF-a and IL-6 (151–153). Combined administration of

nBPs and statins could be a possibility for SARS-CoV-2,

similar to a pilot study in patients with (bone)metastasized

malignancies receiving nBP-treatment (154). Although statins

reduced the production of perforin and GrzB from Vd2 T cells,

they did not prevent nBP effects increasing cell frequency, and

IFN-g and TNF-a production. An additional study showed

that prior use of statins avoided the acute phase response by

inhibiting nBP-induced production of IL-6 (155). The

sequential use of statins and nBPs in strategic paucity to treat
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mild versus severe COVID-19, constitutes a valuable area of

research to find the balance between immune hyperactivation

and suppression.
Concluding remarks

Although SARS-CoV-2 infection research has been centered

in other more abundant T cell populations, available studies

demonstrate a critical involvement of gd T cells in fighting

SARS-CoV-2 infection, and in determining the severity of

COVID-19. Exploiting Vd2 T cell functional plasticity could

lead to better means of prevention and mitigation of severe cases,

potentially improving clinical outcomes.
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