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In the Thick of It: Formation
of the Tuberculous Granuloma
and Its Effects on Host and
Therapeutic Responses
Mark R. Cronan*

In Vivo Cell Biology of Infection Group, Max Planck Institute for Infection Biology, Berlin, Germany

The defining pathology of tuberculosis is the granuloma, an organized structure derived
from host immune cells that surrounds infecting Mycobacterium tuberculosis. As the
location of much of the bacteria in the infected host, the granuloma is a central point of
interaction between the host and the infecting bacterium. This review describes the
signals and cellular reprogramming that drive granuloma formation. Further, as a central
point of host-bacterial interactions, the granuloma shapes disease outcome by altering
host immune responses and bacterial susceptibility to antibiotic treatment, as discussed
herein. This new understanding of granuloma biology and the signaling behind it highlights
the potential for host-directed therapies targeting the granuloma to enhance antibiotic
access and tuberculosis-specific immune responses.

Keywords: tuberculosis, granuloma, granuloma organization, host-directed therapies, macrophage
reprogramming, macrophage
INTRODUCTION

The granuloma has been recognized by pathologists as the defining pathology of tuberculosis for
more than 100 years (1–3). This structure is organized around infecting Mycobacterium
tuberculosis, the etiologic agent of tuberculosis, from host immune cells (2, 4). As the location of
much of the bacteria within infected individuals, the granuloma pivotally shapes the way that Mtb
interacts with the host immune system (2). This structure also helps define our clinical approaches
to Mtb treatment, serving as a substantial barrier to Mtb chemotherapeutics (5, 6). In this review, I
will discuss the organization of the tuberculous granuloma and the host and bacterial signaling that
shape its formation. I will also consider the ways in which this central structure of tuberculosis
contributes to the pathogenicity and clinical outcomes of this disease. As a pivotal structure to
mycobacterial pathogenesis and treatment, the potential of targeting this structure as an adjunctive
therapy and potential pitfalls of this approach will be considered.
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Cronan Tuberculous Granuloma and Host Responses
EARLY MTB INFECTION AND
GRANULOMA ORGANIZATION

Mtb is an obligate human pathogen, passing from host to host in
the aerosols generated by the cough of an Mtb-infected
individual (7). Droplets containing Mtb bacilli are deposited
into the lungs of newly infected individuals where the bacteria
are rapidly phagocytosed by resident alveolar macrophages (7).
These macrophages then bring the bacterium out of the airway,
carrying the bacterium into the interstitium of the lung. Once out
of the airway, the bacterium is able to use the concerted action of
many virulence factors to evade immune-mediated killing and
efficiently replicate within populations of macrophages and other
recruited immune cells (7–10). As the infection progresses,
continued recruitment and aggregation of macrophages and
other immune populations to the site of Mtb infection leads to
the formation of the granuloma, the defining pathology of
tuberculosis infection (2, 4, 11).

The macrophage is central to the formation of the granuloma.
Macrophages comprise much of the cell population of the
granuloma and form the inner layers of the granuloma, serving
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as a central scaffold around which the other cell populations are
nucleated (2, 4, 11). While macrophage populations are highly
motile under normal physiological conditions or infection,
during granuloma formation, these cells undergo a pronounced
morphological differentiation termed ‘epithelioid differentiation’
where they tightly interdigitate and aggregate with their
neighbors to form the granuloma (4, 12). These epithelioid
macrophages are a central characteristic of the tuberculous
granuloma, but they are joined by other macrophage
populations, including conventional macrophages, lipid-laden
foamy macrophages and multinucleate macrophage giant cells
(2, 13). Beyond macrophage populations, the granuloma is
characterized by a broader immune response that recruits
many other cell types to the granuloma. Cell populations
recruited to the granuloma include myeloid populations such
as neutrophils, dendritic cells, eosinophils, and mast cells,
lymphocyte populations including T cells, B cells, NK cells and
ILCs and nonhematopoietic cells such as fibroblasts, endothelial
and epithelial cells (Figure 1) (2, 14–20).

Granulomas in Mtb-infected patients take many shapes and
forms. Tuberculosis is most classically associated with the
FIGURE 1 | Organization of necrotic granulomas during mycobacterial infection. Necrotic granulomas are structured around a central core of necrotic cell debris in
which much of the bacteria are concentrated. Layers of epithelioid macrophages surround the necrotic core interspersed with other macrophage populations. A
diversity of other cell types are recruited to the granuloma and can be integrated into this structure at the periphery as well as within the epithelioid layers of the granuloma.
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Cronan Tuberculous Granuloma and Host Responses
formation of caseous necrotic granulomas, wherein the central
region of the granuloma has undergone necrotic cell death,
leading to the formation of a core of cell debris that frequently
have a soft, cheese-like consistency termed caseum (4, 5, 21).
These necrotic granulomas come in many forms including
fibrotic granulomas (encapsulated by a fibrotic rim), calcified
granulomas (necrotic core is mineralized), and suppurative
granulomas (necrotic core infiltrated by neutrophils) (5, 18).
Mtb infection also results in the formation of cellular or non-
necrotic granulomas, where the central necrotic core is absent
and the bacteria reside intracellularly (5, 18). Furthermore, the
primary granulomas that arise from initial infection events are
also morphologically distinct from the post-primary granulomas
that form via encapsulation of caseus pneumonia from
bronchogenic spread of Mtb in individuals previously exposed
to the bacterium (22). This text will largely focus on the primary
granulomas that have been the recent focus of the field, however,
with the newfound re-recognition of post-primary tuberculosis
and animal modeling of this process (23), future studies
comparing these lesions will be of great interest.

Given the diversity of granuloma types and the on-demand
nature of granuloma assembly, there is considerable heterogeneity
in the organization of individual granulomas (5, 24, 25). However, a
general pattern of spatial organization is observed in the granuloma,
wherein the central regions of the granuloma are macrophage-rich
with many of these macrophages having undergone epithelioid
transition, whereas lymphocyte populations tend to be largely
confined to the periphery where they comprise a lymphocyte-rich
cuff that surrounds the granuloma (Figure 1) (2, 18, 26). At the
edges of the granuloma, these lymphocytes can be organized along
with antigen presenting cells into tertiary lymphoid follicles (also
called iBALT in lungs) that allow for local antigen presentation at
the site of infection (27, 28). In necrotic granulomas, bacteria are
found largely in the necrotic core of granulomas, while smaller
numbers of bacteria live intracellularly largely within the
macrophage-rich regions surrounding the core (18, 26). Similarly,
in cellular granulomas Mtb resides predominantly in the central
regions of the granuloma, though the absence of necrosis in these
granulomas means that Mtb resides intracellularly, predominantly
within the macrophage populations that comprise the core of these
granulomas (5, 18).

Granulomas are commonly presented as a number of distinct
granuloma types, but it is important to recognize that all of these
distinct granuloma types can be observed within a single infected
host (21, 24, 29). Individual bacteria within the host can
experience radically different granuloma environments and local
inflammatory states depending on the type of granuloma they are
in, the age of the granuloma and the regional immune response
(24). Throughout the course of infection in a single infected
individual, these local differences mean that while some
granulomas progress, expand and consolidate with neighbors,
other granulomas that are established subsequently regress (24).
This is supported by both classical and recent findings that have
demonstrated that sterile, frequently calcified, lesions freely coexist
in Mtb infected individuals along with active lesions containing
large numbers of Mtb (24). This considerable heterogeneity
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between individual lesions not only underlies differences in the
infection outcomes within each lesion, but also likely complicates
the clinical treatment of tuberculosis, as individual lesions respond
heterogeneously to antibiotic treatment.

Not only is there substantial variation between granulomas, but
the organization of individual granulomas is considerably more
complex than is generally depicted. Granulomas are commonly
represented as circular structures (including in the figures herein).
While this circular depiction of granulomas is true to what is
commonly observed in histological sections and is also
representative of many smaller lesions, classical work as well as
recent PET-CT and micro-CT analysis of granulomas in human
patients has found that larger granulomas form substantially more
complex structures (30–32). These larger granulomas are highly
elaborated and branched, factors that make granuloma
organization difficult to assess by histology (30–32). While
researchers have worked to characterize the local environment
of granulomas, these extended structures mean that a single
granuloma may instead sample a much more diverse variety of
environments within the lung than widely expected (30). In
particular, many of the larger, elaborated granulomas, while
lodged in lung tissue, were found to directly access the airways
in these patients, potentially enabling the bronchogenic spread of
Mtb from these granulomas through the airways (30). This
complex, branched structure of the granuloma further suggests
that even within a single granuloma, there may be substantial
variation in local environment depending on where the bacteria
are located within the granuloma, which may result in spatially
distinct selective pressures even within a single granuloma.

While the spectrum of granuloma types has long been a
hallmark of the human disease, granulomas are difficult to study
in preclinical animal models due to discrepancies in granuloma
morphology between models and human patients and species-
specific limits in tool availability. The most widely used Mtb
model are inbred mouse models such as C57BL/6 and BALB/c
mice, which possess an expansive suite of immunological tools
(33). However, these inbred mouse models fail to form the
necrotic granulomas that define human disease (33, 34).
Limitations of inbred mouse models have led to the
development of new mouse models including C3HeB/FeJ mice
(35), the C57BL/6 NOS2-/- ear infection model (36), CBA/J
IL10-/- mice (37) and genetically diverse panels of mice, which
develop necrotic lesions that more closely resemble the human
disease (38, 39). However, the complex genetic backgrounds of
these animals complicate the use of existing mouse genetic tools.
Beyond mice, a number of other small mammal models have
long been used as effective tuberculosis surrogate models, most
notably rabbits and guinea pigs (33). These models phenocopy
many features of human Mtb infection and granuloma
formation, but also are restricted by tool availability and
the limited use of genetic approaches in these models.
The development of non-human primate models has allowed
the interrogation of tuberculosis pathogenesis in a model that
closely resemble human disease (29, 40), but cost, time, and
ethical concerns limit the widespread adoption of this model.
Outside of mammalian systems the zebrafish has emerged as a
March 2022 | Volume 13 | Article 820134
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genetically tractable model to study mycobacterial granuloma
formation (41–43). In this model, zebrafish are infected with
Mycobacterium marinum, a close relative of Mtb that conserves
many virulence factors with Mtb and is a natural pathogen of
zebrafish (41). Infection of zebrafish can be performed within
optically transparent zebrafish larvae to enable visualization of
immune-mycobacterial interactions and early granuloma
formation in live animals. Adult zebrafish can also be infected,
resulting in a long-term infection and formation of necrotic
granulomas that closely resemble the granulomas seen in human
disease (42, 43). Findings in zebrafish have been predictive of
human Mtb infection outcomes (44–48). However, as a surrogate
model, there are several caveats to the zebrafish/M. marinum
system including the use ofM. marinum rather thanMtb itself, the
degree of conservation of immune genes between humans and
zebrafish and the absence of lungs in zebrafish. While many
animal models exist for Mtb infection, each of these models
have distinct strengths that allow researchers to match their
question to an optimal model.
MOLECULAR REPROGRAMMING
OF MACROPHAGES AND HOST
DETERMINANTS OF GRANULOMA
FORMATION

A central feature of mycobacterial granuloma formation in all of
these models of tuberculosis is the epithelioid transformation of
their macrophage populations. The term ‘Epithelioid cell’ was
chosen by early pathologists due to the close resemblance of these
macrophage populations to epithelial tissues (2, 4). Morphologically,
these cells are characterized by a spread morphology, an elongated
nucleus and tight interdigitation with surrounding macrophages (4,
11). The strikingly altered morphology and behavior of epithelioid
cells compared to parental macrophages suggests that these cells
undergo substantial reprogramming events during epithelioid
transformation, but the nature of these reprogramming events
remained unknown for over a century.

Using the zebrafish model, it was found that these granuloma
macrophages undergo a bona fide epithelialization event during
granuloma formation, broadly engaging epithelial-specific genes
in a macrophage-epithelial transition that is analogous to
mesenchymal-epithelial transition (46). Among the many
characteristic rearrangements of epithelial tissues, these
epithelioid cells formed functional E-cadherin-positive adherens
junctions, desmosomes and tight junctions (Figure 2), alter their
cytoskeletal structure and induce apical-basal polarity pathways
(46). Engagement of this epithelialization program was essential to
granuloma formation, as disruption of epithelialization by
macrophage-specific expression of a dominant negative E-
cadherin blocks granuloma formation and leads to the loss of
epithelioid morphology (46). These rearrangements were observed
not only in zebrafish, but also in samples from human patients by
histological staining approaches (46, 47). Extensive engagement of
epithelial markers could also be observed in mass spectrometry
Frontiers in Immunology | www.frontiersin.org 4
data sets from human granulomas, which further supports that
epithelialization is an evolutionarily conserved feature of
mycobacterial granulomas (49, 50). Beyond tuberculosis, E-
cadherin induction has also been seen in schistosome
granulomas as well as in dermal granulomas formed in
sarcoidosis and foreign body reactions (51–55). The
identification of epithelialization hallmarks within these diverse
granuloma types also supports a wider involvement of
epithelialization within granulomatous diseases generally.

That the macrophages of the granuloma undergo such
profound cellular and molecular changes during granuloma
formation raises the question of what factors could be driving
these changes within macrophage populations. As central
mediators of the immune response, cytokine signals are likely
candidates for regulating granuloma formation. Classically,Mtb
granulomas have been thought to be driven by type 1 immune
responses (50, 56). Amongst type 1 cytokines, IFN-g and TNF
have been most closely associated with Mtb pathogenesis and
granuloma formation. Both IFN-g and TNF are crucial to the
control of Mtb burden during infection in preclinical animal
models and human patients (57–64). Loss of these cytokines has
also been linked to altered granuloma architecture during Mtb
infection, suggesting that signaling through these pathways may
be required for ordered granuloma formation (61–64).
However, in the case of TNF, subsequent longitudinal imaging
experiments in zebrafish revealed that TNF deficient animals
have normal granuloma formation early in infection, and that
loss of granuloma morphology was instead due to the
accelerated cell death caused by exuberant bacterial growth in
these animals (65). Further evidence that TNF is required for
bacterial restriction but not granuloma formation has been
found in macaques, where neutralization of TNF with anti-
TNF antibodies resulted in normal granuloma formation but
markedly enhanced bacterial burden (66). Similar results have
been observed for IFN-g in mice infected with the attenuated
vaccine strain M. bovis BCG, where IFN-g-deficient animals
infec ted with BCG st i l l form simi lar numbers of
morphologically normal granulomas compared to wildtype
controls (67). Additionally, while C57BL/6 mice fail to form
necrotic granulomas, disseminated infection in C57BL/6 mice
deficient for the critical IFN-g-induced factor iNOS resulted in
the formation of sporadic necrotic granulomas that could be
enhanced by neutralization of either IFN-g or TNF (36).
Therefore, while type 1 pathways are important for Mtb
restriction, it is less clear that they are required for granuloma
architecture, suggesting that other cytokine signaling pathways
may be required for granuloma formation.

WhileMtb pathology has commonly been thought to be driven
by type 1 immunity, in Schistosome granulomas it has long been
known that type 2 immunity is crucial to driving formation of the
granuloma structure (12, 68). Type 1 and type 2 immunity are
thought to drive substantially divergent transcriptional programs
in macrophages (69). It seems unlikely that such disparate
transcriptional programs could drive the formation of the same
complex and highly organized granuloma structure. Instead, it is
possible that theMtb granuloma is driven by type 2 immunity and
March 2022 | Volume 13 | Article 820134
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the degree of type 2 polarization within the tuberculous granuloma
has been underestimated.

A growing number of studies have observed that there is a
substantial type 2 inflammatory response duringMtb infection, seen
in the lung, and within the granulomas in Mtb patients, as well as
animal models that form necrotic granulomas (18, 47, 70–73).
Owing to the identification of these type 2 responses in human
disease, efforts have been made to model the involvement of these
cytokines in infection and granulomatous responses. Due to the
availability of genetic tools, these experiments were initially done in
inbred mouse models deficient for type 2 signaling. However, in
these models, loss of type 2 signaling had only mild effects on
granuloma formation and modest to moderate effects on bacterial
burden, suggesting that type 2 immunity was largely dispensable for
granuloma formation during Mtb infection (74–76). One
confounding point to these experiments is that the C57BL/6 and
BALB/c mouse model used in these studies do not form the highly
Frontiers in Immunology | www.frontiersin.org 5
organized necrotic granulomas seen in human disease. Recognizing
that the strong type 1 environment observed in many Mtb infected
inbred mouse lines may limit the involvement of type 2 immune
responses in these models, Heitmann et al. used transgenic mice
overexpressing IL-13 to instead look at how enhanced type 2
responses within mice would alter the pathology and trajectory of
Mtb infection (77). In contrast to non-transgenic C57BL/6
littermates, IL-13 overexpressing animals infected with Mtb
formed organized necrotic granulomas that closely resembled
human disease, suggesting that type 2 pathways contributed to
necrotic granuloma formation (77). Necrotic granuloma formation
was accompanied by increased bacterial burden in these animals,
suggesting that either the enhanced type 2 signaling or granuloma
formation itself was bacterial beneficial (77).

Further evidence for the role of type 2 immunity in
mycobacterial granuloma formation has come from recent studies
on macaques and zebrafish. Using histological staining of macaque
FIGURE 2 | Host signals involved in granuloma formation. (Yellow box) Signaling events within epithelioid macrophages results in induction of epithelial cell-cell
adhesion pathways including induction of adherens junctions, tight junctions and desmosomes within the macrophages of the granuloma. (Red box) IL4R signaling
via stat6 is required for induction of E-cadherin within macrophages and necrotic granuloma formation.
March 2022 | Volume 13 | Article 820134
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granulomas and scRNA-seq analysis of the organized necrotic
granulomas that form in zebrafish it was found that the
epithelialized macrophage populations in the granuloma had
increased type 2 inflammatory signaling (47). These type 2
responses were required for necrotic granuloma formation and
epithelialization (Figure 2), as zebrafish deficient for type 2
signaling by deletion of either the IL-4 receptor or the
downstream transcription factor stat6 failed to undergo
macrophage-epithelial transformation and no longer formed
necrotic granulomas (47). Loss of type 2 signaling was associated
with increased bacterial burden in stat6-deficient animals, raising
the possibility that elevated bacterial burden could be driving
necrotic granuloma breakdown (47). To test this hypothesis,
mixed marrow chimeras possessing both wildtype and stat6-
deficient cell populations were used to assess whether stat6
functioned cell autonomously. Infection of these mixed marrow
chimera animals resulted in the formation of necrotic granulomas.
However, these necrotic granulomas were predominantly composed
from the wildtype donor tissue (47). Despite the presence of
organized necrotic granulomas in these animals, stat6-deficient
populations failed to undergo epithelialization and were largely
excluded from these granulomas, localizing instead to the periphery
of these structures (47). Further supporting that type 2 signaling is
required for granuloma organization independent of its burden
effects, an ex vivo culture model (78) was used to test the effects of
stat6 inhibitors on established granulomas ex vivo. Addition of a
stat6 inhibitor to isolated granulomas reversed granuloma
epithelialization and drove disaggregation of these structures,
suggesting that continued stat6 signaling was required to maintain
granuloma organization (47). Thus type 2 responses appear to play
a critical role in the organization of necrotic granulomatous
structures. At later stages of infection, it is thought that erosion of
these lesions into the airway can drive transmission in the process of
cavitation (5, 21). Interestingly, work in human patients has
indicated that elevated type 2 signaling is also associated with
cavitation and transmission, suggesting that type 2 signaling may
play crucial roles in multiple phases of the Mtb life cycle (71, 79).

While these studies have implicated type 2 immune responses
driven by IL-4 and IL-13 in granuloma pathology, there are still a
number of outstanding questions about how, when and where
these cytokines are produced. In zebrafish, scRNA-seq
demonstrated that IL-4 and IL-13 were produced by T cell and
eosinophil populations within the granuloma (47). By contrast,
in macaques, scRNA-seq found that IL-4 and IL-13 were
particularly highly produced by recruited mast cells, indicating
that there may be some species specific variation in the cell types
that are producing type 2 cytokines (15). Beyond IL-4 and IL-13,
it seems likely that other cytokines and signals are also required
to drive necrotic granuloma formation, as elevated levels of IL-4
and IL-13 are observed in many inflammatory responses that do
not lead to granuloma formation (80). The identity of these
potential accessory factors is unknown, but experiments
characterizing the induction of the epithelial cell-cell adhesion
molecule E-cadherin in macrophages in culture found that
E-cadherin induction by IL-4 and IL-13 could be enhanced by
costimulation with IL-10 and TGFb (52), suggesting that these
Frontiers in Immunology | www.frontiersin.org 6
two cytokines may act as accessory factors, facilitating
granuloma formation through potentiation of the macrophage-
epithelial transitions that underlie granuloma formation (46).
Similarly, cell-cell interactions during infection and granuloma
formation may also contribute to type 2 polarization and
epithelioid transformation. Coculture of macrophages with
platelets has found that platelets drive these macrophages into
an M2 phenotype that is accompanied by the acquisition of
epithelioid-like characteristics (81).
BACTERIAL DETERMINANTS OF
GRANULOMA FORMATION

The granuloma has frequently been thought of as a host driven
structure. However, studies of bacterial growth in mycobacterial
infected hosts have found that bacterial expansion actually
coincides with the formation of this structure (82, 83). The
connection between bacterial growth and granuloma formation
suggests that the mycobacteria themselves benefit from driving
this structure (82, 83). The attenuated vaccine strain M. bovis
BCG has previously been used to identify regions of the
mycobacterial genome that are potentially involved in
virulence (84–86). The DRD1 region of M. bovis was identified
as a particularly crucial region that was lost in BCG strains and
necessary for virulence (84, 85, 87). This region is broadly
conserved in pathogenic mycobacterial species; mycobacterial
species lacking the DRD1 region are strongly attenuated in vitro
and in vivo (82, 87, 88). Studies of DRD1 M. marinum have
found that this region is necessary for effective granuloma
formation either by innate immunity alone in larval zebrafish
or in the context of both innate and adaptive arms in adult
zebrafish (42, 82, 83). These defects were associated in part with
decreased recruitment of macrophages and led to the formation
of smaller, less well-organized granulomas (83, 89). In larval
zebrafish, the crucial role for the DRD1 region in mycobacteria
was found to involve the secreted protein ESAT6, which is
encoded within this region (89). ESAT6 was released from
infected macrophages and was subsequenty taken up by the
surrounding epithelium, where it drives expression of the
chemotactic metalloprotease MMP9 within these epithelial
populations (89). Elevated MMP9 levels were found in turn to
lead to the recruitment of surrounding macrophages to the
granuloma, facilitating granuloma growth and expansion (89).

Beyond secreted bacterial effectors, mycobacteria are known to
produce a number of lipid species that are critically important to the
ability of mycobacteria to influence host immune responses (90).
This was demonstrated in classical experiments which found that
injections of killed mycobacteria, particularly when emulsified
within Freund’s adjuvant (so called Complete Freund’s Adjuvant)
could organize a robust granulomatous response, suggesting that
lipids or other heat-stable mycobacterial fractions were important
mediators of the granulomatous response (91, 92). Early efforts to
identify crucial lipids by Sabin identified three distinct lipid
fractions, all which could induce varying levels of epithelioid and
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Cronan Tuberculous Granuloma and Host Responses
giant cell differentiation and granuloma formation within rabbits
(91, 93). Subsequent work in mice identified the mycolic acids,
particularly Trehalose 6, 6’-Dimycolate (TDM), as a major mediator
of epithelioid transformation and granuloma formation (94–96).
Specifically these studies found that TDM when emulsified in
incomplete Freund’s Adjuvant or TDM coated beads was
sufficient to induce epithelioid granuloma formation in vivo (94,
95, 97). Interestingly, experiments in mice found that the effects of
TDM depend on the particle size of emulsions and the density of
TDM on the surface of beads, which together with studies on TDM
organization in vitro, suggested that TDM geometry on the surface
of mycobacteria is crucial to the granulomatous response (95, 98,
99). Importantly, removal of cell surface TDM and other mycolic
acids and lipid species by lipid extraction abrogates granuloma
formation in mice, instead leading to a predominantly neutrophilic
response with minimal macrophage involvement (94, 100).
However, these findings with delipidated bacteria are complicated
as these bacteria are rapidly removed by host immune responses
(94, 100).

Taken together with the previous section, orderly formation
of granulomas requires the concerted action of both host and
bacterial responses. The granuloma has long been presumed to
be a host-protective response, containing and walling off the
mycobacteria within this structure. This effective, host beneficial
response can be observed in the sterile calcified granulomas seen
in human patients and animal models (24). However, given the
long-term coevolution betweenMtb and humans, the granuloma
likely represents a stalemate, affording benefits for not only the
host but also the pathogen. This view is further supported by the
recognition that bacteria also drive this structure with conserved
mediators to facilitate their expansion (82, 89, 94, 96). While
aspects of the granuloma may benefit both host the bacterium, as
we discuss in the following sections, this structure critically
shapes the immune responses to mycobacteria and the clinical
treatment of infection.
GRANULOMA FORMATION LIMITS
IMMUNE RECOGNITION OF
INFECTING MYCOBACTERIA

The hallmark of the granuloma is its complex three-dimensional
organization of immune cells into the granulomatous structure.
Despite the ad hoc assembly of granulomas by the host immune
system, this process results in a generally reproducible spatial
organization, with bacterial populations largely constrained to
the central region of the structure, while distinct immune
populations are distributed in the surrounding cellular layers
(18). With the presence of so many bacteria in the core regions of
this structure, effective immune responses must be mounted
through the complex and polarized cellular and inflammatory
milieu of this structure (18, 26, 49). Many immune populations
require close contact with infecting mycobacteria to restrict these
pathogens; the spatial distribution of bacteria and immune
populations within the granuloma suggests that the highly
structured granuloma could serve as a barrier to mycobacterial
Frontiers in Immunology | www.frontiersin.org 7
recognition, critically shaping the interaction of bacteria with
the host immune system. Recent work described below,
has supported this notion, finding the cellular environment
of the granuloma plays a crucial role in shaping host
immune responses.

While CD4+ T cells are clearly critical to control of Mtb
infection, the persistent survival of Mtb in actively infected
individuals demonstrates that these responses are ultimately
unable to clear the infection in many individuals (101). One
possible explanation for this disconnect is that the complex
environment of the granuloma is able to shape and limit
effective T cell responses. In mouse models, it was found that
direct interaction between CD4 T cells and infected macrophages
is critical to effective T cell help inMtb infection (102). However, T
cells are predominantly located at the periphery of the granuloma,
distant from the bacteria in the myeloid-rich core regions of the
granuloma (18, 26). Thus, the inability for T cell responses to
completely eliminate Mtb in infected patients appears to be, at
least in part, due to the spatial restriction of T cells to sites distant
from infected macrophages (26). Similarly, both NK cells and CD8
T cells are known to be recruited to granulomas in humans and
animal models of Mtb infection (15, 103, 104). CD8 cells, have
been found to be crucial to control of Mtb burden in the mouse
model in vivo (105, 106). NK cells by contrast have been
demonstrated to be important for Mtb control in T cell-deficient
animals, suggesting that these cells can also participate in
functional responses to Mtb (107). Aspects of the responses of
both of these cell types require close contact between the immune
cells and Mtb-infected cells (108, 109), suggesting that granuloma
architecture may also play a critical role in the Mtb-specific
responses of these populations as well. In the case of T cells, the
importance of spatial separation between these cells and bacterial
populations is also supported by computational modeling of
tuberculous granulomas, which indicated that the spatial
organization of the granuloma was one of the major drivers
limiting T cell responsiveness in the granuloma (110).

The factors driving the pronounced spatial separation
between T cells and macrophages are likely complex and
multifactorial, but some potential mechanisms contributing to
this asymmetry have been identified. Intravital microscopy of
Mtb-specific T cells in mouse granulomas demonstrated that
these cells largely fail to arrest within the granuloma as Mtb
antigens appear to be poorly recognized within the granuloma
(111). The limited recognition of mycobacterial antigens within
the granuloma is not due to failure by the macrophages to sense
these antigens as administration of exogenous antigens led to
rapid arrest of T cell populations (111). Lack of recognition of
Mtb antigens within the granuloma may be due to repression of
antigen presentation by Mtb within infected macrophages (112,
113) or by the failure of T cells to recognize specificMtb antigens
within infected macrophages (114). In mice and cell culture
models, infected macrophages have also been found to export
Mtb antigens to surrounding cells, which limits the ability of T
cells to directly recognize infected cells within granuloma and
which could also potentially lead to arrest of T cells at sites
distant to infected cells (115).
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Organized granuloma formationmay also diminish immune cell
recognition of Mtb by physical means. This could potentially result
from macrophage reprogramming and induction of epithelial
modules within the granuloma which may in turn limit the
ability of immune populations to recognize or migrate to bacteria
within the central regions of the granuloma. Supporting this idea in
zebrafish, partially disrupted granulomas formed by mosaic
expression of dominant negative E-cadherin, neutrophils are
preferentially recruited to the areas of the granuloma deficient for
epithelial transformation, suggesting that epithelialization limits
recruitment of these cells (46). Similarly, the physical packing of
the individual cells in the granuloma may also constitute a barrier to
immune recognition in this context. In intravital imaging
experiments of BCG liver granulomas in mice, it was found that
T cell recruitment into the granuloma required morphological
rearrangement of granuloma macrophages to accommodate
incoming T cells (116). While the degree to which these physical
constraints serve to limit mycobacterial recognition is still to be fully
investigated, at least in the case of epithelialization-dependent
neutrophil exclusion, altered immune access confers a bacterial
beneficial role, as epithelialization-deficient animals had increased
bacterial burden (46). This suggests that altering granuloma
epithelialization or otherwise loosening the tight apposition of
immune cell populations within the granuloma could potentially
improve antimycobacterial immune responses. Illustrating the
potential of therapies targeted at granuloma structure, work in
macaques has found that IDO inhibition can reorganize
granulomas, resulting in increased numbers of T cells at the core
of the granuloma and decreased bacterial burden (117). Outside of
cellular response, it could also be expected that loosening of the
granuloma would facilitate the access of other immune mediators
like antibodies. B cells are known to be recruited to granulomas in
humans and animal models (28, 118, 119), although the effects of B
cells and antibodies on infection have been varied despite the
effective recognition of Mtb by B cell produced antibodies (120).

Beyond physical separation of immune cell and bacterial
populations, the highly organized granuloma environment
alters host immune responsiveness through the generation of
local inflammatory environments that shape the cell signaling
and responses of cells within the granuloma. Histological and
mass spectrometry characterization of human and macaque
granulomas found that there is a pronounced type 1
inflammatory signature in the central regions of the
granuloma, presumably due to recognition of adjacent bacteria
within the necrotic core while more distal regions expressed an
anti-inflammatory signature (18, 47, 49). Immune markers were
found to correlate with the local cytokine environment, as mass
spectrometry studies indicated that the caseum is specifically
enriched for the type 1 inflammatory cytokine TNF, eicosanoids
and downstream components of IFN signaling (49). Studies in
cell culture have indicated that TNF is induced by macrophages
in response to mycobacteria and mycobacterial products (121,
122), suggesting that this local TNF signal could result from
interaction of macrophages with mycobacterial products at the
edge of the caseum. Local expression of type 2 immune
mediators can also shape the granuloma environment. TGFb, a
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potent type 2 cytokine, has long been known to alter immune
responses by driving anti-inflammatory programs in diverse
immune populations (123). Elevated levels of TGFb are found
in the plasma of individuals with active Mtb infection (124).
Interrogation of the local inflammatory environment within
granulomas in Mtb infected mice and macaques also found
that there was a pronounced TGFb signature within the
granuloma (125). Similarly, using histological techniques and
mass spectrometry, elevated TGFb signaling and induction of
downstream genes have recently been described in human
patient samples as well (103). Using TGFbR-deficient mice,
TGFb was found to act in a T cell intrinsic fashion to repress
Th1 differentiation within the granuloma (125). Loss of TGFb
signaling led to increased IFN-g production by granuloma T cells
and reduced bacterial burden in these animals (125).

The anti-inflammatory cytokine IL-10 has also been studied
during Mtb infection, particularly within the granuloma.
Computational studies have suggested that IL-10 may play a
crucial role in maintaining a host-detrimental anti-inflammatory
environment within the granulomas (126). Short-term studies in
macaques indicated that while neutralization of IL-10 had no
effect on bacterial burden, it altered the cytokine environment
within the granuloma and led to increased fibrosis throughout
the structure (127). While ongoing studies will continue to
identify the specific cytokines that shape the granuloma, it is
clear that the granuloma creates a constrained space in which
cytokines can generate a local inflammatory environment to
shape the host response to Mtb.
THE GRANULOMA SHAPES ANTIBIOTIC
ACCESS AND EFFICACY FOR THE
BACTERIA WITHIN

That tuberculosis persists in the face of effective antibiotic
therapies is a testament to the difficulty in clinically treating
tuberculosis. As a slow growing bacterium, treatment
necessitates the use of combination therapies composed of
multiple antibiotics over extended time frames of 6 months or
longer (128). In particular, the use of combination therapies is
essential to prevent the acquisition of antibiotic resistance by
Mtb. Despite these safeguards, antibiotic resistance is a growing
problem, particularly due to difficulties in maintaining these
complex drug regimens in resource-limited settings. This has led
to the emergence of multidrug-resistant (MDR) and extensively
drug-resistant (XDR) strains, which in turn have substantially
longer and more complicated treatment regimens and greatly
increased mortality (129). While many factors contribute to the
complexities of treating tuberculosis in the clinic, the granuloma
has been found to be a crucial structure that shapes antibiotic
access to the bacterium and the responsiveness of the bacteria
contained within.

Antimycobacterial antibiotics are first transported to their site
of action via the host vasculature (6). Mtb granulomas, while
largely composed from host immune populations, also recruit
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host vasculature to the nascent granuloma as observed in patient
samples as well as animal models of infection (130, 131). The
vascularization of granulomatous tissue is the result of
angiogenic signals produced by the granuloma itself (19, 130,
132, 133). While multiple angiogenic factors are produced by the
immune populations of the granuloma, the growth factor VEGF,
predominantly produced by the macrophages of the granuloma,
is crucial for efficient granuloma vascularization in both
zebrafish and rabbits (130, 132, 134). In zebrafish, VEGF
production by granuloma macrophages and angiogenesis is
driven at least in part by recognition of bacterial TDM by these
macrophage populations (134). However, there is considerable
heterogeneity in the degree of vascularization between individual
granulomas, which may restrict drug delivery to certain lesions (5,
30, 131). In addition, despite the strong vascularization of certain
lesions, the improvised nature of the vasculature formed around the
granulomamay limit the degree to which this vasculature can deliver
drugs to the granuloma. Using anti-VEGF therapies to limit
vascularization at the granuloma in rabbits, it was found that anti-
VEGF despite reducing the degree of granuloma vascularization,
enhanced delivery of small molecules to the granuloma by stabilizing
the residual vasculature (132). In agreement with VEGF findings, the
broad spectrum MMP inhibitor Marimastat was also found to
stabilize the blood vessels of the granuloma in mice, leading to
increased delivery ofMtb chemotherapeutics to the granuloma (135).
Thus, variations in the degree vascularization and the organization
and stabilization of granuloma vascularization are expected to
influence accessibility of the lesion to mycobacterial chemotherapies.

After delivery to the granuloma via the vasculature,
antimycobacterial therapies must cross the cellular layers that
compose the granuloma and access Mtb within its niche in the
granuloma. There are two distinct populations of bacteria within
the granuloma, intracellular bacteria within macrophages and
other immune cells and extracellular populations generally
residing within the necrotic core of the granuloma. Antibiotic
access to these disparate bacterial locations is driven by different
considerations. In intracellular mycobacterial populations there is
considerable variability in the degree to which individual
antibiotics are able to enter and be retained by immune
populations such as macrophages (136–139). Additionally, the
metabolic changes driven inMtb by the intracellular environment
also alter the antibiotic susceptibility profile ofMtb (140–142). By
contrast, for bacteria located within the central necrotic regions,
antibiotics must not only penetrate the cellular layers of the
granuloma but must also be able to diffuse efficiently into the
caseum within the center of the granuloma (6, 143). Caseum in
particular comprises a substantial barrier to antibiotic therapies, as
many antibiotics either diffuse poorly into caseum or irreversibly
bind to caseous material limiting deep penetration of antibiotics
into the granuloma (136, 143, 144). The necrotic core of the
granuloma and the composition of caseum itself also drives broad
metabolic reprogramming of Mtb that make it resistant to many
antibiotics (143, 145). Finally the reduced oxygen availability
within the granuloma can also drive mycobacterial populations
into a metabolically shifted, non-replicating state that can lead to
altered susceptibility to antibiotics (146, 147).
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The use of animal models with and without necrosis (148–
150) as well as identification of spatial distribution of antibiotics
with imaging mass spectrometry (136, 150–152) has shed light
on the degree to which the complex structure of the tuberculous
granuloma controls antibiotic access to Mtb. Consistent with
their strong efficacy in the clinic, the frontline chemotherapeutics
isoniazid and pyrazinamide effectively penetrate the outer
cellular layers of the granuloma as well as the necrotic core in
human patients and granuloma forming C3HeB/FeJ mice (136,
150). The other frontline therapies, rifampicin and ethambutol,
were initially excluded from necrotic regions but concentrated
within the necrotic core at later time points in either human
lesions (rifampicin) or rabbit lesions (ethambutol) (136, 152).
Despite the effective penetration of these antibiotics into the
granuloma, experiments in granuloma-forming mouse models
found that organized granuloma formation still limited the
effectiveness of frontline antibiotics (148, 150), suggesting that
the granuloma complicates treatment even for antibiotics with
favorable distributions. Consistent with this, modeling of
pharmacokinetic and pharmacodynamic data from humans
found that many frontline and second-line therapies failed to
reach desired concentrations in a subset of lesion types, with
cavitary and caseous lesions being most difficult to treat (153).

Many second-line therapies also have limited diffusion into the
core of necrotic granulomas (136, 137, 139, 150). Imaging of
moxifloxacin in human and rabbit granulomas demonstrated that
moxifloxacin penetrated the necrotic core far less efficiently than the
cellular layers surrounding the core (136, 139). This asymmetric
distribution of moxifloxacin and other fluoroquinolones was driven
in part through strong uptake of this antibiotic by macrophage
populations within the granuloma (139). While the clinical efficacy
of moxifloxacin and pharmacodynamic studies demonstrate that
moxifloxacin reaches effective concentrations within the granuloma
(154), experiments in Nos2-deficient mice that form necrotic
granulomas have suggested that the granuloma still serves as a
barrier to effective therapy (148). Moxifloxacin treatment of Nos2-
deficient animals prior to necrotic granuloma formation was
approximately a log more effective in reducing bacterial burden
than in animals that have already formed necrotic granulomas,
consistent with granuloma necrosis limiting moxifloxacin efficacy
(148). Similarly, while clinically equivalent moxifloxacin doses in
rabbits were able to effectively clear bacterial burden in all types of
granulomas, the use of suboptimal doses of moxifloxacin that mimic
the case of patients with poor pharmacokinetics led to diminished
clearance of bacteria within necrotic granulomas (154). By contrast,
bacterial killing within cellular granulomas in these rabbits was
equivalent for clinical and suboptimal dosing (154).

The complex structure of the granuloma also limits the use of
other second-line therapies. Clofazimine is widely used to treat
leprosy in clinical settings and has also been used against drug
resistant Mtb (155, 156). However, Imaging of clofazimine
localization in human patient samples revealed that although
the drug penetrated the cellular layers of the granuloma very
effectively, clofazimine was almost entirely excluded from the
necrotic regions of the granuloma (136). Experiments in mouse
models using the necrotic granuloma forming C3HeB/FeJ mice
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as well as BALB/c mouse models, which fail to form necrotic
granulomas, found that while clofazimine was highly active in
BALB/c mice, it was almost completely inactive in the necrotic
granulomas that form in the lungs of C3HeB/FeJ mice (149).
Further confirming that these differences in clofazimine
effectiveness were likely related to granuloma structure, Mtb
was found to be highly responsive to clofazimine in the spleens of
C3HeB/FeJ mice, which lack necrotic granuloma formation
(149). Taken together, these studies demonstrate that in Mtb
infected individuals, the disparate features of the granuloma are a
substantial barrier to therapy.
POTENTIAL OF TARGETING GRANULOMA
FORMATION AS AN ADJUNCTIVE
THERAPY

The central role of the granuloma in shaping host immune
responses suggests that targeting the formation of granulomas
could be used as a potential adjunctive therapy to facilitate
productive immune responses within Mtb infected individuals.
The disruption of the granuloma may serve to improve the ability
of crucial cell types to recognize and eliminate mycobacteria within
the granuloma either directly or through helper responses. Loss of
granuloma integrity may enhance diffusion and recognition of
mycobacterial products by the host immune system, potentially
facilitating a more productive response within the host immune
system. Similarly, loss of granuloma integrity may heighten the
ability of host cytokines or immune molecules such as antibodies to
access the bacteria and cells at the center of the granuloma. Beyond
its effects on the host immune response, the granuloma also serves
as a substantial barrier to the therapeutic efficacy of antibiotic
treatments. Disruption of granulomas may increase the
effectiveness of existing antimycobacterial therapies. Granuloma
disruption could also enhance the spectrum of therapies that are
effective against Mtb. Many chemotherapeutics are known to be
effective against Mtb in vitro but have failed to translate into new
clinical antibiotics. While the failure modes of these antibiotics are
in many cases not fully understood, given the strong partitioning of
some clinically effective anti-Mtb therapies, it is possible that at least
some of these therapies that are effective in vitro fail due to limited
penetration of these therapies in the context of organized
granulomas. Thus, adjunctive therapeutic approaches targeting the
granuloma may also facilitate the development of new antibiotics
that are effective within disrupted granulomas.

While there is considerable promise in the development of
adjunctive therapies targeting granuloma organization, there are
also potential concerns of how granuloma disruption could alter
disease outcomes during Mtb infection. In particular, the act of
dissociating the granuloma may lead to the development of
disseminated disease, a manifestation associated with poor disease
outcome. Support for this idea comes from findings in HIV-positive
individuals, where the degree of CD4 depletion is associated with
disseminated disease and disruption of granuloma structure (157,
158). However, in contrast to findings in HIV-infected individuals,
the granuloma has also been associated with dissemination in early
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infection (82, 83). A second potential limitation in targeting
granuloma formation is that disruption of the granuloma and
liberation of a large number of bacteria from the central core of
the granuloma may lead to the host mounting an exuberant, host-
detrimental response againMtb in granuloma disrupted individuals.
Excessive and problematic inflammatory responses are seen inMtb
infected, HIV-positive individuals, after beginning anti-retroviral
therapy in a syndrome termed TB-immune reconstitution
syndrome (TB-IRIS) (159). Finally, disruption of granulomas may
enhance bacterial growth or allow the access to distinct niches
within the infected host, potentially outweighing any advantages
gained in antibiotic penetration and altered immune recognition.

While it remains to be seen whether there will be detrimental
effects to therapies targeting granuloma structure, it may be possible
to manage any potential drawbacks by timing the dissociation of
granulomas. For instance, reduction of bacterial numbers through
an initial period of antibiotic treatment may ultimately enable the
safe disassembly of granulomas to improve subsequent therapies.
Regardless, the ongoing difficulties in treating tuberculosis suggest
that novel approaches to treating tuberculosis are worth pursuing.
Adjunctively targeting the granulomamay enhance the effectiveness
of existing treatments and shorten the duration of therapy required
for these complex therapies. Granuloma dissociation could also
enhance antimycobacterial immune responses, potentially boosting
existing therapeutic approaches for both drug-sensitive and drug-
resistant tuberculosis which could be further combined with
immunomodulatory and antibiotic therapies. Lastly, targeting
granuloma integrity may allow for the development of a wider
palette of chemotherapeutics including drugs that fail to penetrate
complex millieu of the organized granuloma. With the continued
burden of tuberculosis worldwide and the increasing threat of drug-
resistant Mtb, targeting of granuloma structure is a distinct
approach to enhance the treatment of Mtb and is complementary
to ongoing efforts to improve existing therapies and the
development of new therapeutics. With the recent advances made
in understanding granuloma formation and the molecular changes
that underlie it, potential new points of intervention for therapies
altering granuloma formation have been identified. Targeting these
pathways may enable the rational development of new granuloma-
targeted interventions.
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