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Background: Glioblastoma (GBM) is a fatal brain tumor with no effective treatment. The
specific GBM tumor immune microenvironment (TIME) may contribute to resistance to
immunotherapy, a tumor therapy with great potential. Thus, an in-depth understanding of
the characteristics of tumor-infiltrating immune cells is essential for exploring biomarkers in
GBM pathogenesis and immunotherapy.

Methods: We estimated the relative abundances of 25 immune cell types in 796 GBM
samples using single sample gene set enrichment analysis (ssGSEA). Unsupervised
clustering was used to identify different GBM-associated TIME immune cell infiltration
(GTMEI) patterns. The GTMEIscore system was constructed with principal component
analysis (PCA) to determine the immune infiltration pattern of individual tumors.

Results: We revealed three distinct GTMEI patterns with different clinical outcomes and
modulated biological pathways. We developed a scoring system (GTMEIscore) to
determine the immune infiltration pattern of individual tumors. We comprehensively
analyzed the genomic characteristics, molecular subtypes and clinicopathological
features as well as proteomic, phosphoproteomic, acetylomic, lipidomic and
metabolomic properties associated with the GTMEIscore and revealed many novel
dysregulated pathways and precise targets in GBM. Moreover, the GTMEIscore
accurately quantified the immune status of many other cancer types. Clinically, the
GTMEIscore was found to have significant potential therapeutic value for chemotherapy/
radiotherapy, immune checkpoint inhibitor (ICI) therapy and targeted therapy.
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Conclusions: For the first time, we employed a multilevel and multiplatform strategy to
construct a multidimensional molecular map of tumors with different immune infiltration
patterns. These results may provide theoretical basises for identifying more effective
predictive biomarkers and developing more effective drug combination strategies or novel
immunotherapeutic agents for GBM.
Keywords: glioblastoma, tumor immune microenvironment, proteomics, metabolomics, immunotherapy,
target therapy
INTRODUCTION

Glioblastomas (GBMs) are the most common aggressive primary
brain tumors and the most lethal central nervous system (CNS)
tumors due to their high proliferation rate, high aggressiveness,
highly heterogeneous immunosuppressive microenvironment,
and resistance to chemotherapy and targeted therapies (1, 2).
Recently, immune checkpoint blockade (ICB) therapy has
made outstanding achievements in improving the treatment
of certain types of tumors. However, the unique immune
microenvironment of the brain makes immunotherapy for
GBM more challenging than that for other cancers (3). The
tumor microenvironment (TME) is a key mediator of tumor
malignant progression, plays an important role in clinical survival
and response to therapy. In the TME, immune cells infiltrating
into tumor tissue form the tumor immune microenvironment
(TIME), which helps tumor cells achieve immune escape and
promote tumor malignancy and is closely related to the response
rate of immunotherapy (4, 5). Therefore, characteristics of the
GBM immune microenvironment are expected to serve as
biomarkers to guide clinical treatment and to identify GBM
patients who can benefit from immunotherapy.

Mounting evidence suggests that cancer patients who receive
personalized therapy show better clinical outcomes, and precision
medicine promises to revolutionize universal therapy for
oncology, but numerous studies still focus on abnormal changes
in the genome (6, 7). As the understanding of tumor mechanisms
deepens, the focus on tumor treatment is gradually shifting from
tumor cells to the interaction between the tumor and the
surrounding tissues. The TME is a key mediator of tumor
progression and therapeutic outcome. Tumor cells are able to
escape surveillance and recognition of the immune system and the
killing of T cells without the combined effect of the immune
microenvironment (8–11). The present classification schemes
used for the TIME and the establishment of immune scoring
systems in multiple tumors have greatly improved the current
understanding of TIME subtypes (12–15). Strategies to further
identify the ideal population and optimize immune combination
strategies for specific populations are urgently needed in the era of
precision medicine, and such strategies are popular areas of
research in the field of immunotherapy at present. However, the
recent integrated genomic and transcriptomic analyses and overall
assessments of the GBM immune microenvironment have often
been unsystematic, and effective immune models are lacking.

In this study, we integrated transcriptome information from
796 GBM samples, used single sample gene-set enrichment
org 2
analysis (ssGSEA) to estimate the relative abundances of 25
immune cell types based on annotated immune cell gene
expression profiles (16–18), and provided a comprehensive
outlook on the immune landscape within GBM tumors. We
revealed three distinct GTMEI patterns with different clinical
outcomes and modulated biological pathways. In addition, we
developed a scoring system to quantify the immune infiltration
pattern of individual tumors, termed GTMEIscore. To understand
the intrinsic tumor characteristics and tumor immune infiltration
patterns associated with the GTMEIscore, we comprehensively
analyzed the genomic characteristics, molecular subtypes
and clinicopathological features as well as proteomic,
phosphoproteomic, acetylomic, lipidomic and metabolomic
properties associated with the GTMEIscore, revealing lots of
novel dysregulated pathways and precise targets in GBM.
Moreover, GTMEIscore accurately quantified the immune status
of many other cancer types. Clinically, GTMEIscore was found to
have significant potential therapeutic value for chemotherapy/
radiotherapy, immune checkpoint inhibitor (ICI) therapy and
targeted therapy. These findings might provide a theoretical
basis for identifying more effective GBM predictive biomarkers
and developing more effective, targeted clinical treatment
strategies, ultimately guiding GBM clinical treatment and
achieving precision medicine.
METHODS

Collection and Preprocessing of Publicly
Available Expression Datasets
A total of 796 GBM patients with clinical prognostic information
from 6 cohorts, including 153 from the TCGA RNA-seq dataset,
374 from 2 CGGA RNA-seq datasets (237 from one cohort and
137 from the other cohort), 155 from the Gravendeel microarray
dataset, 97 from the Wang RNA-seq dataset (19) and 17 patients
treated with anti-PD1 therapy from the Zhao/PD1 RNA-seq
dataset (20), were included in this study. TCGA RNA-seq data
(FPKM format) and clinical information were downloaded from
the TCGA database (https://portal.gdc.cancer.gov/repository)
and transformed into TPM format. The 2 CGGA RNA-seq
datasets and their clinical information were downloaded from
the CGGA database (http://www.cgga.org.cn/), the Gravendeel
microarray dataset and clinical information were downloaded
from the GlioVis database (http://gliovis.bioinfo.cnio.es/), the
Wang RNA-seq dataset (FPKM format) and clinical information
March 2022 | Volume 13 | Article 820673
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were extracted from the supplemental data of the article, and the
missing data were obtained with the K-nearest neighbor (KNN)
method and transformed into TPM format. For the Zhao/PD1
RNA-seq dataset, we downloaded the raw data from SRA
PRJNA482620 and then processed them into TPM format, and
clinical information was obtained from the supplemental data of
the article. The ComBat method from the ‘SVA’ R package was
used to remove the batch effects among these different datasets
(21). The basic information of all enrolled datasets is
summarized in Supplementary Table S1.

For ICB data, RNA-seq data and clinical information from
the IMvigor210 cohort, were obtained from http://research-pub.
Gene.com/imvigor210corebiologies based on the Creative
Commons Attribution 3.0 license. The metastatic melanoma
RNA-seq data from patients treated with nivolumab were
obtained from GSE78220 (22) and GSE91061 (23) datasets,
and the clinical information were obtained from the
supplemental data of the article, respectively.

Estimation of TME Immune Cell Infiltration
We used the ssGSEA algorithm to quantify the relative
abundances of 25 infiltrating immune cells in the GBM TME.
Gene sets for BMDM TAMs and MG TAMs were obtained from
Bowman, R. et al. (18), and those for 23 other infiltrating
immune cell types were obtained from Charoentong P. et al.
(24, 25). The relative abundance of each infiltrating immune cell
in each sample was represented by the enrichment score
calculated by the ssGSEA algorithm. The ESTIMATE
algorithm was used to assess the immune and stromal scores
and tumor purity of each GBM sample.

Statistical Analysis
Spearman and distance correlations were used to calculate the
correlation coefficient of 25 immune cell types. Student’s t-test
was used for two-group comparisons. For comparisons among
more than two groups, the Kruskal-Wallis test and one-way
ANOVA were used for nonparametric and parametric data. The
cutoff values of each dataset (other than the TCGA dataset) were
evaluated based on the association between survival time and the
GTMEIscore using the “survminer” package, and the TCGA
dataset was grouped according to the median GTMEIscore. The
Kaplan-Meier method was used to generate survival curves for
the subgroups in each dataset, and the log-rank (Mantel-Cox)
test was used to determine if they were significantly different. The
hazard ratios (HRs) for the univariate analyses were calculated
using a univariate Cox proportional hazards regression model.
Univariate prognostic analysis results were visualized using the
“forestplot” R package. The specificity and sensitivity of the
GTMEIscore in predicting response to anti-PD1 therapy were
assessed by receiver operating characteristic (ROC) curves, and
the area under the curve (AUC) was quantified using the
“pROC” R package. P>0.05 was considered to indicate
nonsignificance (ns), and P<0.05 was considered to indicate
statistical significance (*P<0.05; **P <0.01; ***P<0.001,
****P<0.0001). All data processing with R packages was
performed using R Studio (version 3.6.3).
Frontiers in Immunology | www.frontiersin.org 3
RESULTS

Landscape of Immune Cell Infiltration and
Clinicopathological Characteristics of TME
Subtypes in GBM
The overview workflow of our research is shown in Figure 1A.
First, we combined six GBM datasets (a TCGA dataset, two
CGGA datasets, The Gravendeel dataset, the Wang dataset and
the Zhao/PD1 dataset) with available survival data and clinical
information into one meta-cohort, including 796 samples
(Supplementary Table S1). We then performed ssGSEA and
employed the ESTIMATE algorithm to quantify the abundances
of immune cells in and the immune and stromal scores of GBM
tumor tissues (Supplementary Table S1) and depicted a
comprehensive landscape of TME immune cell interactions,
regulatory connections and their prognostic value for patients
with GBM (Figure 1A and Supplementary Table S2). We
identified three independent GTMEI clusters with significant
survival differences (Figure 1B, P = 0.004; Supplementary
Figure S1A and Table S1). We then explored the specific
differences in the abundances of immune/stromal score,
tumorpurity and 25 TME-infiltrating immune cells and their
intrinsic biological differences among GTMEI clusters. We found
that GTMEI cluster B, which had the worst prognosis, presented
significantly increased immune cell infiltration and immune and
stromal scores and enrichment of both immune and stromal
activation-related pathways; GTMEI cluster A, which showed
survival times between those of GTMEI cluster B and GTMEI
cluster C and was characterized by moderate immune cell
infiltration, was prominently associated with activation of
carcinogenic and stromal pathways; However, GTMEI cluster
C, which was associated with a favorable prognosis and was
characterized by suppression of immunity, was prominently
associated with activation of the cell cycle and DNA repair
pathways (Figures 1C–F).

Generation of the GTMEI Gene Signature
and Functional Annotation
To further investigate the underlying genetic alterations and
biological behavior of each GTMEI pattern, we identified 2288
GTMEI pattern phenotype-related DEGs using the “limma”
package (Supplementary Figure S1B and Table S3). Further
enrichment analysis of the DEGs via the Metascape database
showed that they were significantly involved in the cell cycle, DNA
repair and immune-related pathways (Supplementary Figure S1C
and Table S3). Furthermore, enrichment analysis via PaGenBase
showed that these genes were almost exclusively expressed in the
blood, spleen, bone marrow, and thymus and some other tissues
where peripheral immune cells gather (Supplementary Figure S1D).
We further used the random forest algorithm for 2288 GTMEI
phenotype-related DEGs to dimensionality reduction, and then
extracted 135 genes with significant prognostic value (P<0.001) as
the most representative GTMEI pattern DEGs (we call them as
GTMEI phenotype signature), which were significantly enriched in
immune and metabolism-related signaling pathways
(Supplementary Figure S1E and Supplementary Table S4).
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Consistent with the clustering groups of GTMEI patterns,
unsupervised hierarchical clustering analysis also identified three
distinct GTMEI pattern-related genomic phenotypes based on the
Frontiers in Immunology | www.frontiersin.org 4
expression of the GTMEI phenotype signature, and we named these
three clusters as GTMEI gene clusters A-C (Figure 2A and
Supplementary Figures S1F, G). Furthermore, we found that
A B

D

E F

C

FIGURE 1 | Landscape of immune cell infiltration and clinicopathological characteristics of TME subtypes in GBM. (A) Overview of the workflow of our research.
(B) Cellular interactions of 25 immune cell types in the GBM microenvironment. The size of each immune cell represents its effect on the survival of GBM patients, as
calculated using a log10 formula (log-rank test P value). Green indicates that the immune cell is a protective factor for overall survival (OS), while black indicates a risk
factor. The lines connecting the immune cells indicate cell-cell interactions, the thickness of which indicates the strength of the correlation estimated by Spearman
correlation analysis. Positive correlations are indicated in red, and negative correlations are indicated in blue. (C) Kaplan-Meier curves for the OS of 796 GBM
patients from 6 GBM cohorts with three GTMEI clusters. The numbers of patients in GTMEI clusters A, B and C were 374, 300 and 122, respectively, and the log-
rank test showed P = 0.004. (D) Abundances of immune/stromal score, tumorpurity and 25 immune cell types in the three GTMEI patterns. The upper and lower
ends of the boxes indicate the interquartile range of the values. The lines in the boxes represent the median values, and black dots show outliers. The significance of
differences between the three clusters were determined by the Kruskal-Wallis test. *P < 0.05; **P < 0.01; ***P < 0.001. (E) Unsupervised clustering of 25 immune cell
types in the cohort of 796 GBM patients. A heatmap was used to visualize immune cell infiltration. Yellow represents high immune cell abundance, black represents
moderate immune cell abundance, and blue represents low immune cell abundance. (F) GSVA revealed the activation status of biological pathways in different
GTMEI patterns. A heatmap was used to visualize these biological pathways. Yellow represents activated pathways, and blue represents inhibited pathways.
March 2022 | Volume 13 | Article 820673
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patients in gene cluster A, who showed immune suppression, had a
better prognosis, whereas patients in gene cluster B, who showed
high immune cell infiltration and activation of immune, stromal and
carcinogenic pathways, had the most unfavorable outcomes
(Figures 2B–D), which was consistent with the expected outcomes
of the GTMEI patterns.

Given the heterogeneity and complexity of the GTMEI
patterns, we constructed a DEG-based scoring system, termed
the GTMEI phenotype score (GTMEIscore), based on the
GTMEI phenotype signature to quantify the GTMEI pattern of
individual patients using PCA. The patients were grouped into
high or low GTMEIscore groups using the cutoff value obtained
with the “survminer” package, and patients with a low
GTMEIscore exhibited a significant survival benefit
(Figure 2E, P < 0.001). And GTMEI gene clusters B and C
were linked to a higher GTMEIscore, whereas GTMEI gene
cluster A exhibited a lower GTMEIscore (Figure 2F). Further
analysis showed that both GTMEI cluster B and gene cluster B
had the highest GTMEIscore (Figure 2G). We then tested
whether the GTMEIscore could serve as an independent
prognostic biomarker for GBM patients. As shown in
Figure 2H, the robust prognostic value of the GTMEIscore
was validated in six independent datasets. To further evaluate
the biological relevance of the GTMEIscore system, we explored
the correlation of the GTMEIscore with immune-related
pathways as well as known carcinogenic signatures and found
that it was positively correlated with the immune activation
process, oncogenic activation and stromal activation signaling
but negatively correlated with the cell cycle and DNA repair
process (Figure 2I). A heatmap of the correlation matrix
demonstrated that the GTMEIscore was markedly positively
correlated with the immune and stromal scores but negatively
correlated with tumor purity. Regarding immune cells, the
GTMEIscore was positively correlated with most infiltrating
immune cells, as well as with fibroblasts (Figure 2J). The
expression levels of most MHC, immunostimulatory, and
immunoinhibitory molecules were also positively associated
with the GTMEIscore (Figure 2K). These results implied that
the GTMEIscore can reflect immune cell infiltration and can be a
reliable prognostic biomarker.

Molecular Subtypes and Tumor Somatic
Mutations Associated With and
Chemotherapy/Radiotherapy Prognostic
Value of the GTMEIscore
To better understand the determinants of GBM tumor evolution
and treatment resistance, we then evaluated the differences in
GTMEIscore among TCGA molecular subtypes in the TCGA,
Gravendeel and Wang datasets, in which clinical information
was available. Survival analysis showed that the high
GTMEIscore group in the TCGA dataset had shorter survival
(Figure 3A, P = 0.013), which was further validated in the
Gravendeel dataset (Figure 3B, P = 0.006) and Wang
dataset (Figure 3C, P = 0.006). Samples with a higher
GTMEIscore were clearly concentrated in the MES subtype,
which had a poor prognosis (Figure 3D), and samples with
Frontiers in Immunology | www.frontiersin.org 5
the MES subtype were also mainly concentrated in the high
GTMEIscore group in the TCGA dataset (Figure 3E); the same
patterns were observed in the Gravendeel and Wang datasets
(Supplementary Figures 2A–D).

We then analyzed the differences in the distribution of somatic
mutations between the high and low GTMEIscore groups in the
TCGA-GBM cohort and Wang cohort using the “maftools”
package and found that the PTEN mutation rate (low: 22%,
high: 35%) was significantly increased in the high GTMEIscore
group compared to the low GTMEIscore group (Figure 3F and
Supplementary Figure 2E). Chen et al. (26) found that PTEN
deficiency in GBM increases macrophage infiltration, and the
infiltrated macrophages in turn secrete SPP1 to support GBM
survival via activating YAP1 signaling. Moreover, NF1 mutation,
a MES subtype marker that drives recruitment of TAMs (27), was
also remarkably more prevalent in the high GTMEIscore group
(13%) than in the low GTMEIscore group (5%). In our study, we
showed that there was a significant positive correlation between
the GTMEIscore and macrophages, especially BMDM TAMs
(hereafter also called macrophages), indicating the presence of a
large group of infiltrating mononuclear-derived macrophages in
the tumor tissues of GBM samples with a high GTMEIscore
(Figure 2J). We also found a significant positive correlation
between the GTMEIscore and the expression of myeloid cell-
derived macrophage-restricted chemokines, representative MES
genes, genes encoding ECM and immune checkpoint molecules
in both the combined and independent datasets (Figures 3G, H).
In addition, GSEA also showed that YAP1 signaling
(CORDENONSI_YAP_CONSERVED_SIGNATURE) and MES
signature was significantly upregulated in the high GTMEIscore
group compared to the low GTMEIscore group (Supplementary
Figures S2F, G). We next calculated the enrichment scores of
individual GBM samples according to the MES gene signature
(27) and found that the high MES expression group had a
significantly worse prognosis than the low MES expression
group (Figure 3I, P < 0.001). Further analysis revealed a
significant survival advantage for patients with both a low
GTMEIscore and low MES score (Figure 3J, P < 0.001). Next,
we explored the relationship between the GTMEIscore and GBM
chemotherapy/radiotherapy sensitivity in the CGGA dataset, for
which chemotherapy/radiotherapy data were available. We
further demonstrated that the prognosis of the group with a
high GTMEIscore was significantly worse than that of the low
GTMEIscore group (Figure 3K, P = 0.010). Further analysis
showed that patients in the low GTMEIscore group and those
treated with chemotherapy/radiotherapy had a significant
survival advantage, while patients in the high GTMEIscore
group and those not treated with chemotherapy/radiotherapy
had the worst prognosis (Figures 3L, M).

Correlation Between the GTMEIscore and
Proteomic Characteristics
Understanding the proteomic characteristics of the GTMEIscore
can help us better understand the GBM TME pattern. By
integrating proteomic and metabolomic data from up to 10
platforms, Wang et al. (19) identified new multi-omics
March 2022 | Volume 13 | Article 820673
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FIGURE 2 | Generation of the GTMEI gene signature and functional annotation. (A) Based on the expression data of 796 GBM patients, unsupervised clustering of
representative DEGs associated with the GTMEI patterns was performed to classify patients into three groups, called GTMEI gene clusters A-C. A heatmap was
used to visualize the gene expression. Yellow represents high expression, black represents moderate expression, and blue represents low expression. (B) Kaplan-
Meier curves for the OS of 796 GBM patients within the three GTMEI gene clusters. The numbers of patients in GTMEI gene clusters (A–C) were 261, 111 and 424,
respectively, and the log-rank test showed P < 0.001. C GSVA revealed the activation status of biological pathways in different GTMEI gene clusters. A heatmap was
used to visualize these biological pathways. Yellow represents activated pathways, and blue represents inhibited pathways. (D) Abundances of immune/stromal
score, tumorpurity and 25 immune cell types in the three GTMEI gene clusters. The upper and lower ends of the boxes indicate the interquartile range of values. The
lines in the boxes represent the median values, and black dots show outliers. The significance of differences between the three clusters were assessed by the
Kruskal-Wallis test. *P < 0.05; **P < 0.01; ***P < 0.001. (E) Kaplan-Meier curves for the OS of 796 GBM with a high GTMEIscore (n = 573) and a low GTMEIscore (n
= 223), and the log-rank test showed P < 0.001. (F) CircGroup plot showing the relationships between GTMEI clusters, GTMEI gene clusters, the GTMEIscore, and
survival status. (G) Differences in the GTMEIscore among the three (left) GTMEI clusters and (right) GTMEI gene clusters in 796 GBM patients. (H) Univariate Cox
analysis of the prognostic value of the GTMEIscore for survival in the combined GBM cohort as well as in the independent GBM cohorts. A hazard ratio (HR) > 1.0
indicated that a high GTMEIscore was an adverse prognostic biomarker. (I) Spearman correlation analysis of the GTMEIscore and classical signaling pathways in
independent GBM cohorts. Blue indicates negative correlations, and red indicates positive correlations. The size of the circle represents the statistical P value, with
larger circles representing greater statistical significance. (J) Spearman analysis of the correlation of the GTMEIscore with (J) the abundances of 25 immune cells and
(K) immunomodulators (immunoinhibitory, immunostimulatory and MHC molecules). Colors indicate correlation coefficients, with yellow indicating a negative
correlation and red indicating a positive correlation. Asterisks indicate statistically significant P values calculated using Spearman correlation analysis. *P < 0.05;
**P < 0.01; ***P < 0.001.
Frontiers in Immunology | www.frontiersin.org March 2022 | Volume 13 | Article 8206736

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Zhao et al. Immune Microenvironment Landscape in Glioblastoma
A B

D E F

G
IH

J

K L M

C

FIGURE 3 | Molecular subtypes and tumor somatic mutations associated with and the chemotherapy/radiotherapy prognostic value of the GTMEIscore. Kaplan-
Meier curves showing OS for the high (red) and low (blue) GTMEIscore groups in the (A) TCGA dataset, (B) Gravendeel dataset, and (C) Wang dataset, and the log-
rank test showed P = 0.013, P<0.001 and P=0.006, respectively. (D) Differences in GTMEIscore among different GBM molecular subtypes. The Kruskal-Wallis test
was used to determine the significance of differences between the three GBM molecular subtypes. (E) Stacked bar plot of GBM molecular subtypes in the high and
low GTMEIscore groups. (F) Waterfall plot of the tumor somatic mutation landscape in the low GTMEIscore (left) and high GTMEIscore (right) groups. Each bar
represents the mutation information for an individual patient. The top bar plot shows TMB, and the numbers on the right indicate the mutation frequency of each
gene. The bar plot on the right shows the proportion of each mutation type. (G) Spearman analysis was used to determine the correlation of the GTMEIscore with
the expression of immunosuppression-related genes (checkpoint molecule genes, macrophage immunosuppressive genes, ECM-related genes and MES
representative genes) in the combined GBM dataset. Colors indicate correlation coefficients, with blue indicating a negative correlation and red indicating a positive
correlation. The size of the sector represents the correlation coefficient, and a larger angle means a stronger correlation. (H) Spearman analysis of the correlation of
the GTMEIscore with the expression of immunosuppression-related genes molecules (checkpoint molecule genes, macrophage immunosuppressive genes, ECM-
related genes and MES representative genes) in six independent GBM datasets. (I) Kaplan-Meier curves for the OS of 796 GBM patients in the high MES score (n =
533) and low MES score (n = 263) groups, and the log-rank test showed P < 0.001. (J) Survival analysis was performed using Kaplan-Meier curves for the subgroup
of patients stratified according to GTMEIscore combined with MES score, and the log-rank test showed P < 0.001. H: High; L: Low. (K) Kaplan-Meier curves for the
OS of the high GTMEIscore (n = 293) and low GTMEIscore (n=81) groups in 2 CGGA GBM datasets, and the log-rank test showed P = 0.010. Survival analysis was
performed using Kaplan-Meier curves for subgroups of patients stratified by GTMEIscore (L) and treatment with adjuvant chemotherapy (chemo) (the log-rank test
showed P < 0.001) by GTMEIscore (M) and treatment with adjuvant radiotherapy (radio) (the log-rank test showed P = 0.001).
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subtypes. We then analyzed the relationship between the
GTMEIscore and clinical features as well as the identified
molecular subtypes and found that the high GTMEIscore
group tended to have more nmf2-subtype samples
(mesenchymal-like, which mainly showed enrichment of
immune response and extracellular matrix organization
pathways), MES-subtype samples, fewer IDH mutations, and
worse pathological features (Figure 4A). In addition, we found
that the high GTMEIscore group mainly showed enrichment of
the im1 and im2 subtypes, which was characterized by high
enrichment of immune cells (Figure 4B, P=0.001, chi-square
test). To explore the underlying mechanisms that led to the
different results in the low and high GTMEIscore groups, we
annotated the protein data with the hallmark dataset and
performed differential analysis; we found that pathways related
to the cell cycle were enriched in the low GTMEIscore group,
while pathways related to the immune response and ECM
remodeling were enriched in the high GTMEIscore group,
consistent with the RNA results (Figure 4C). Further GSEA
also showed consistent results (Figure 4D). In addition,
Metascape database (28) analysis revealed that genes with a
significant positive association with the GTMEIscore
(Supplementary Table S5, Pearson r > 0.3, P < 0.05) were
significantly enriched in pathways related to the regulation of
cell biological functions, stromal activation and immunity
(Supplementary Figure S3A and Table S6). Further
PaGenBase (29) enrichment analysis showed that these genes
were mainly specifically expressed in peripheral immune organs
such as the spleen, blood and bone marrow (Figure 4E). The
coanalysis of proteomic and transcriptomic alterations helped us
to further decipher the mechanism by which the TIME in GBM
is formed. We analyzed the differences between the high and low
GTMEIscore groups based on RNA-seq data and found that
compared with the low GTMEIscore group, the high
GTMEIscore group had 183 DEGs (FC>2 and P value<0.05)
(Supplementary Table S7). For the protein data, we found 2758
DEGs (FC>1.2 and P value<0.05) in the high GTMEIscore group
compared with the low GTMEIscore group (Supplementary
Table S8). As shown in Figure 4F and Supplementary Table
S9, via joint analysis of the protein and RNA-seq data, we found
a moderately strong positive correlation (Pearson r = 0.2615, P
value <0.001) between the differences in mRNA and protein
expression levels, and all genes were divided into four main
groups: 87 genes that were simultaneously upregulated (Hyper-
Up), 27 genes that were simultaneously downregulated (Hypo-
Down). KEGG functional enrichment analysis showed that the
Hyper-Up genes were mainly enriched in some classical
oncogenic pathways, metabolic pathways and immune
response-related pathways (Figure 4G). Further enrichment
analysis via the GO database showed that the DEGs were
notably enriched in the hypoxia, immune cell migration,
angiogenesis, matrix remodeling, and macrophage activation
pathways (Figure 4H). We then performed a univariate Cox
prognostic analysis of the proteins and identified 13 proteins
with significant prognostic significance (Supplementary
Figure 3B). We obtained the list of transcription factors (TFs)
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from the Cistrome database, and subsequently, we examined the
coexpression relationships between these prognosis-related
proteins and TFs. We used the criteria of Pearson |r|>0.5 and
P < 0.05 to obtain the coexpressed genes. Finally, we visualized
the coexpression network information using alluvial plots
(Figure 4I). The results suggested that the expression of the
proteins may be regulated by these TFs. We further analyzed the
relationship between nmf2-subtype genes and the GTMEIscore.
As shown in Supplementary Figure 3C, as the GTMEIscore
increased, the protein expression levels of these genes also
showed a gradual increase. Similar to results from the RNA-
seq data, the results of GSEA of the protein data also showed that
the MES signature was significantly enriched in the high
GTMEIscore group (Figure 4J, FDR=0.02). Moreover, the
GTMEIscore showed a remarkable positive correlation with
the expression of the MES markers CD44 and CHI3L1
(YKL40) at the protein level (Figure 4K). Our analysis
revealed that, consistent with the mRNA data, the
GTMEIscore was significantly and positively correlated with
the expression level of immune checkpoint proteins, myeloid
cell-derived macrophage-restricted chemokines, and MES-
representative and ECM-related proteins (Figure 4L). These
results facilitate the identification of important proteins
associated with the formation of GBM TME patterns.

Correlation Between the GTMEIscore and
Protein Phosphorylation and Acetylation
The proteomic phosphorylation differential analysis data showed
that 3811 phosphorylation sites of 1438 proteins were dramatically
upregulated and 4873 phosphorylation sites of 1529 proteins were
significantly downregulated in the high GTMEIscore group
(Supplementary Table S10, FC > 1.2, P value < 0.05). KEGG
enrichment analysis showed that proteins with upregulated
phosphorylation were significantly enriched in oncogenic
signaling pathways, stromal activation pathways and immune-
related signaling pathways (Figure 5A). Downregulated proteins
were mainly involved in the neuronal system, mitotic cell cycle
processes, and so on (Supplementary Figure S4A). Further
analysis of the combined protein quantitative data showed a
significant positive correlation between phosphorylation level
and protein expression levels (Figure 5B and Supplementary
Table S11, Pearson r = 0.6527). Analysis of mutation distribution
in the TCGA and Wang datasets showed that the PTEN and NF1
mutation rates were greatly increased in both datasets, while the
BRAF mutation rate was significantly increased in the Wang
dataset (Figure 3E and Supplementary Figure 2C). Next, we
explored specific signaling pathways based on somatic mutations
and their downstream alterations (Figure 5C). As shown in the
heatmap, with increasing GTMEIscore, the expression levels of the
tumor suppressor proteins PTEN and NF1 showed a decreasing
trend, and we also observed that the phosphorylation levels of the
downstream signaling pathway proteins gradually increased
(Figure 5D). In addition, the tumor mutation distribution
analysis showed that the EGFR mutation rate was slightly
downregulated in the high GTMEIscore group, and the pathway
enrichment analysis showed that proteins with upregulated levels
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FIGURE 4 | Correlation between the GTMEIscore and proteomic characteristics. (A) Heatmap describing the relationship between the GTMEIscore and various clinical
features in the Wang cohort. miRNA, DNA methylation, multiomics, immune cell molecular, TCGA molecular subtype, age, sex, MGMT and IDH mutation status annotations
are provided as examples. (B) Heatmap and table of the distribution of GBM immune subtypes (im1, im2, im3 and im4) between the high and low GTMEIscore groups, chi-
square test showed P = 0.001. (C) GSVA showing differences in hallmark biological pathways between the high and low GTMEIscore groups. Scatter plots were used to
visualize these differences in pathways. The size of the circle indicates the size of the fold change (FC), and the color indicates the statistical significance of the difference. The
color red indicates statistical significance, and blue indicates statistical insignificance. (D) GSEA showing the gene sets enriched in high GTMEIscore subgroup (P < 0.05, FDR
< 0.25). (E) Summary enriched genes positively correlated with the GTMEIscore at the protein level in the PaGenBase database. (F) Dot plot of log2FC (mRNA expression)
versus log2FC (protein expression) values showing a positive correlation between the overall mRNA expression and protein expression levels (Pearson’s r = 0.2615; P < 0.001)
and the distribution of genes with significant changes in both the mRNA (|FC| > 2, P < 0.05) and corresponding protein expression (|FC| > 1.2, P < 0.05) levels in the high
GTMEIscore group compared with the low GTMEIscore group. Colored circles indicate significant changes in at least the mRNA or the protein expression of the gene. (G)
KEGG enrichment analysis of 87 genes (Hyper-Up) and 27 genes (Hypo-Down) that were significantly differentially expressed at both the mRNA and protein levels. (H) GO BP
enrichment analysis of 87 genes that were significantly upregulated at both the mRNA and protein levels. (I) Alluvial plot showing regulatory network relationships between
proteins with prognostic significance and transcription factors (TFs). (J) GSEA of mesenchymal signatures showing that GBM samples from the high GTMEIscore group were
enriched in the MES-subtype group compared to GBM samples from the low GTMEIscore group. NES, normalized enrichment score; FDR, false discovery rate. (K)
Correlation scatter plot showing that the GTMEIscore was positively correlated with the expression of CD44 and CHI3L1, markers of the MES subtype. (L) Spearman analysis
of the correlation between the GTMEIscore and the protein expression of immunosuppression-related genes (checkpoint molecule genes, macrophage immunosuppressive
genes, ECM-related genes and MES representative genes). Colors indicate correlation coefficients, with blue indicating a negative correlation and red indicating a positive
correlation. The size of the sector represents the correlation coefficient, and a larger angle means a stronger correlation.
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FIGURE 5 | Correlation between the GTMEIscore and protein phosphorylation and acetylation. (A) KEGG enrichment analysis of proteins with upregulated
phosphorylation levels. (B) Dot plot of log2 fold change (FC) (protein phosphorylation level) versus log2FC (protein expression) values showing a positive correlation
between the overall protein phosphorylation level and protein expression level (Pearson’s r = 0.6527) and the distribution of genes with significant changes in both
the phosphorylation level (|FC| > 1.2, P < 0.05) and corresponding protein expression (|FC| > 1.2, P < 0.05) in the high GTMEIscore group compared with the low
GTMEIscore group. (C) Schematic diagram showing specific proteins and their downstream alterations based on somatic mutations. (D) Heatmap showing somatic
mutation-based alterations in specific proteins and their downstream protein phosphorylation sites. (E) Dot plot of log2FC (protein acetylation level) versus log2FC
(protein expression) values showing a positive correlation between the overall protein phosphorylation level and protein expression level (Pearson’s r = 0.6527) and
the distribution of genes with significant changes in both the acetylation level (|FC| > 1.2, P < 0.05) and corresponding protein expression (|FC| > 1.2, P < 0.05) in the
high GTMEIscore group compared with the low GTMEIscore group. (F) KEGG enrichment analysis of proteins with significantly altered acetylation levels (|FC| > 1.2,
P < 0.05). (G) (Upper) Correlation of the GTMEIscore with histone acetylation sites and histone acetyltransferase, deacetylase, and reader levels. The size of the circle
represents the significance, and the color represents the correlation coefficient. (Lower) Correlation of the GTMEIscore with histone acetyltransferase, deacetylase,
and reader levels; the color represents the correlation coefficient. (H) Lollipop chart showing metabolites with a significant correlation with the GTMEIscore (Pearson r > 0.3,
P value <0.05). I Metabolites with a significant correlation with the GTMEIscore (Pearson |r| > 0.3, P value < 0.05). (I) Bubble plots showing significant correlations of the
GTMEIscore with lipids (Pearson |r| > 0.3, P value < 0.05).
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of phosphorylation were significantly enriched in the EGFR
tyrosine kinase inhibitor resistance pathway (Figure 5A). The
gene and protein expression levels of EGFR were also significantly
downregulated in the high GTMEIscore group (Supplementary
Table S9). We next analyzed the relationship between EGFR
protein and phosphorylation levels and the GTMEIscore, as
shown in Supplementary Figure S4B. The phosphorylation
levels of EGFR and its downstream proteins were downregulated
in the high GTMEIscore group, suggesting that EGFR activation
may inhibit the infiltration of immune cells into tumor tissue and
that GBM patients with a high GTMEIscore are insensitive to
EGFR inhibitors. These results contribute to our understanding of
the mechanisms underlying dysregulated protein expression and
phosphorylation, pathway dysregulation.

The proteome differential acetylation analysis data showed that
compared to the low GTMEIscore group, the high GTMEIscore
group showed 459 significantly upregulated acetylation sites in 207
proteins and 605 significantly downregulated acetylation sites in
288 proteins (Supplementary Table S12). KEGG and GO
biological process (BP) functional annotation analysis revealed
that the proteins with different acetylation levels were mainly
enriched in metabolism-related signaling pathways, the HIF-1
signaling pathway and immune-related signaling pathways
(Supplementary Figure S4C). Further correlation analysis with
proteomics data showed that the acetylation levels were positively
correlated with the protein expression levels (Pearson r = 0.6626),
with the levels of acetylation at 317 acetylation sites in 107 proteins
being simultaneously upregulated with protein expression levels,
the levels of acetylation at 214 acetylation sites in 106 proteins
being simultaneously downregulated with protein expression
levels (Figure 5E, Supplementary Table S13). Further KEGG
enrichment analysis of these two fractions of altered proteins
revealed that they were mainly enriched in metabolism-related
and apoptosis-related signaling pathways (Figure 5F). Researchers
detected more than 30 modified acetylation sites in histones (H1,
H2A, H2B, H3.3, and H4) in GBM, and further differential
analysis showed that two acetylation sites were significantly
upregulated in H4 histones and 25 acetylation sites were
significantly downregulated in H2B histones (Supplementary
Table S14). Further correlation analysis showed that the
GTMEIscore was significantly positively correlated with the
acetylation level of H4 group proteins and negatively correlated
with the acetylation level of H2 group proteins. Notably, some of
the H2B acetylation modification levels were positively correlated
with the protein expression of CREBBP/EP300 acetyltransferases
and some proteins of the BDR family (BRD3/4) and negatively
correlated with the GTMEIscore at both the RNA and protein
levels; on the other hand, these modification levels were negatively
correlated with the expression of the deacetylases HDAC10/11, the
expression of which was positively correlated with the
GTMEIscore at both the RNA and protein levels (Figure 5G,
Supplementary Table S15). Further survival analysis based on the
protein expression levels of these proteins revealed that CREBBP
and BRD3 were protective prognostic genes in GBM, while the
deacetylase HDAC10 was a prognostic risk factor (Supplementary
4D). These data suggest that increased levels of H2B acetylation
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modification may depend on the activities of CREBBP, BRD3 and
HDAC10, which regulate some protective genes to inhibit the
infiltration of immune cells.

Correlation Between the GTMEIscore and
Metabolomic and Lipidomic
Characteristics
The results of the above analysis revealed that some of the genes
and proteins associated with the GTMEIscore might be involved in
metabolic pathways (Figures 4G, 5A, F). We thus performed a
correlation analysis between the GTMEIscore and tumor
metabolite abundance and identified four metabolites that were
positively correlated and three metabolites that were negatively
correlated with the GTMEIscore (Figure 5H and Supplementary
Table S16, Pearson |r| > 0.3, P value <0.05). Further survival
analysis showed that leucine and DL-2-aminoadipic acid (spectral
match) were adverse prognostic factors for GBM patients
(Supplementary Figure 5A), suggesting that they may play an
essential role in the TIME.

Next, we analyzed the correlation of the abundances of 582
lipids with the GTMEI score in 75 GBM tumor tissues and found
a large number of lipids that were correlated with the GTMEI
score (Supplementary Table S17, Pearson |r| > 0.3, P value
<0.05). As shown in Figure 5I, the triacylglycerol (TG) content
showed a significant positive correlation with the GTMEIscore
and a significant negative correlation with the content of most
phosphatidylcholines (PCs) and sphingomyelin (SM).

To further explore the molecules mediating these metabolic
changes, we performed a correlation analysis of the GTMEIscore
with 29 metabolic regulatory genes previously reported to be
associated with GBM prognosis (30) and further performed a
survival analysis of these genes based on their protein expression
levels. As shown in Supplementary Figures S5B, C, ALDH3A1,
PSME1 and RUFY1 were adverse prognostic factors that had a
significant positive correlation with the GTMEIscore. In contrast,
CHD9, PON1 and PON2 were protective prognostic factors. Our
results provide valuable insights into the lipid metabolic
characteristics of different immune microenvironment patterns
in GBM, and reveal possible metabolite targets, regulating the
immune microenvironment.

Correlation of the GTMEIscore With the
Efficacy of Immunotherapy and Drug
Sensitivity in GBM
We further evaluated its ability to predict patient response to ICB
therapy. Improved response to anti-PD-1 therapy has been
found to be associated with higher TMB in tumors across
multiple cancer types, including GBM (31). Survival analysis
showed that patients with high TMB in the TCGA dataset had
significantly better survival than those with low TMB
(Figure 6A), and further combined GTMEIscore analysis
showed that patients with a high GTMEIscore and low TMB
had a significant survival disadvantage (Figure 6B). Touat et al.
(32) recently found that mismatch repair (MMR)-deficient
gliomas were characterized by poor patient survival and a low
rate of response to anti-PD-1 therapy. Our data also showed that
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patients with low microsatellite instability (MSI) had
significantly better survival than those with high MSI
(Figure 6C), and further combined GTMEIscore analysis
showed a significant survival advantage for patients with a low
GTMEIscore and low MSI (Figure 6D), suggesting that
GTMEIscore combined with markers such as TMB and MSI
significantly improved the sensitivity and accuracy, and may be a
more effective way to screen the immune beneficiary GBM
population. In addition, the GTMEIscore showed a significant
positive correlation with immunochekpoint expression in GBM
patients at both the RNA and protein levels (Figures 3F, G,
Figure 4L). And survival analysis found that patients with a low
GTMEIscore showed a significant clinical advantage and
significantly prolonged survival (Figure 6E, P=0.007).
Similarly, survival, as measured from the start of treatment
with anti-PD1 therapy, was slightly increased in GBM patients
with a low GTMEIscore (Figure 6F, P=0.250). Patients with a
low GTMEIscore had significantly increased efficacy of ICI
treatment compared to those with a high GTMEIscore
(Figure 6G, response rate to anti-PD1 therapy: 70% vs. 43%).
ROC curve analysis demonstrated good predictive capability of
the GTMEIscore in predict ing the effect iveness of
immunotherapy in GBM patients (Figure 6H, AUC=0.740).

To quantify the risk assessment of individual GBM patients,
we proposed a comprehensive prognostic nom model using a
combinat ion of GTMEIscore combined with other
clinicopathological characteristics, an example of which is
shown by the arrow (Figure 6I). Calibration curves and time-
dependent ROC analysis of 0.5, 1 and 1.5-year OS prediction
demonstrated the nomogram exhibited much more powerful
capacity of survival prediction (Figures 6J, K).

Finally, we used the CMap database to predict potential drugs
for patients with high GTMEIscore. CMap mode of action
(MoA) analysis revealed a total of 38 mechanisms of action for
the 54 compounds with significant enrichment (Figure 6L and
Supplementary Table S18). These results provide potential
drugs that can be used for patients with a high GTMEIscore.

Overview of the GTMEIscore Across
Human 32 Cancers Types
We further assessed the differences in the GTMEIscore across 33
tumors, and as shown in Figure 7A, we found that the
GTMEIscore was highest in LAML, followed by KIRP, and
lowest in LIHC. Pancancer survival analysis showed that
overall survival was significantly shorter in the high
GTMEIscore group than in the low group (Figure 7B).
Differences in the GTMEIscore between different immune
subtypes were further investigated. Expression was significantly
different between the C1 (wound healing), C2 (IFN-g dominant,
inflammatory), C3 (lymphocyte depleted), C4 (lymphocyte
depletion), C5 (immunologically quiet) and C6 (TGF-b
dominant) subtypes, which are characterized by differences in
macrophage or lymphocyte signatures, and was higher in C2 and
C6 subtypes, with poorer prognosis (Figure 7C and
Supplementary Figure S6A). Additionally, Chen et al. (33)
proposed three immunophenotypes, namely immune-inflamed,
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immune-excluded and immune-desert, which are more
comparable to the subtypes we obtained (Supplementary
Figures S6B, C). As shown in Figure 7D, the proportion of
immune-excluded samples was almost equally distributed
between the two groups, but there were more immune-
inflamed samples and fewer immune-desert samples in the
GTMEI-high group than in the GTMEI -low group (p = 0.001,
chi-square test). Further Spearman correlation analysis showed
that GTMEIscore was positively correlated with infiltrating
immune cells, immune/stromal score and immunomodulatory
molecules, while negatively correlated with tumor purity in most
tumor types (Figure 7E). As shown in Figure 7F, we also found
that GTMEIscore was positively correlated with in most tumors,
indicating that the GTMEIscore is associated with enrichment
scores of typical cancer hallmarks in a wide range of cancer types.
The cancer-specific survival analysis also revealed a significant
association between the GTMEIscore and overall survival in
multiple cancer types: the GTMEIscore was a risk factor in 17
cancer types, and a protective factor in 7 cancer types (Figure 7G
and Supplementary Figure S7). These results demonstrated the
characteristics of the GTMEIscore in a broad range of cancer
types and highlight its potential value as a predictor of immune
cell infiltration and prognosis.

We further investigated the predictive power of GTMEIscore
for other cancer types of ICB therapy. Thus, we used urothelial
cancer cohorts of patients (IMvigor210) and two cohorts of
melanoma patients who received anti-PD1 therapy (22, 23) to
perform a complementary evaluation of the ability of
GTMEIscore to predict the immunotherapy response.
GTMEIscore was a risky factor in Urothelial Carcinoma, while
was a protective factor in melanoma (Figure 7G). And survival
analysis found that urothelial cancer patients with a low
GTMEIscore showed a significant clinical advantage and
significantly prolonged survival (Figure 8A, P=0.015), and had
significantly increased efficacy of ICI treatment compared to
those with a high GTMEIscore (Figure 8B, response rate to anti-
PD1 therapy: 27% vs. 14%). However, survival analysis found
that melanoma patients with a high GTMEIscore showed a
significant clinical advantage and significantly prolonged
survival (Figure 8C, E, G, P=0.015, 0.006 and 0.012,
respectively), and had significantly increased efficacy of ICI
treatment compared to those with a low GTMEIscore
(Figure 8D, F, H, response rate to anti-PD1 therapy: 64% vs.
0%, 32% vs. 17% and 37% vs. 12%, respectively).

To further understand the impact of the GTMEIscore on drug
response in 32 cancer types, we obtained the differential genes for
each cancer type in GTMEIscore high group by grouping
according to the optimal survival cut value (Supplementary
Table S19), and further predicted the relevant compounds by
inputting the most significantly up- and down-regulated 1000
genes to the cmap database. We show only the compounds found
to be significantly associated with GTMEIscore in at least ten
cancer types (Figure 8I and Supplementary Table S20A).
Tumors with a better prognosis are sensitive to drugs with a
high enrichscore and conversely tumors with a poor prognosis
are sensitive to drugs with a low enrichscore. Further, we
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FIGURE 6 | Correlation of the GTMEIscore with the efficacy of immunotherapy and drug sensitivity in GBM. Kaplan-Meier curves for the OS of TCGA GBM patients
with (A) TMB (log-rank test P = 0.062); (B) stratified by GTMEIscore and TMB (log-rank test P < 0.001); (C) MSI (log-rank test P < 0.001); and (D) GTMEIscore and
MSI (log-rank test P = 0.001). Kaplan-Meier curves for (E) the OS of GBM patients (log-rank test P = 0.007) and (F) survival duration after anti-PD1 treatment (log-
rank test P = 0.250 in the PD1 dataset). (G) Proportions of patients who responded to anti-PD1 immunotherapy in the low and high GTMEIscore groups. (H) ROC
curve quantifying the predictive value of the GTMEIscore in GBM patients treated with anti-PD1 therapy (AUC, 0.740). (I) A personalized scoring nomogram was
constructed to predict the OS probability for 9 parameters at 0.5, 1, and 1.5 years, an example of which is shown by the arrows. (J) Time-dependent ROC analysis
demonstrated that the nomogram exhibited a powerful capacity for survival prediction. (K) Calibration curves showing that the predicted 0.5-year (green dashed line),
1-year (blue dashed line) and 1.5-year (red dashed line) OS values were close to the ideal values (45-degree line). (L) CMap mode of action (MoA) analysis revealed a
total of 38 mechanisms of action for the 54 compounds significantly related to GTMEIscore, sorted by descending number.
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FIGURE 7 | Overview of the GTMEIscore across 32 human cancer types. (A) The GTMEIscore for all samples grouped by cancer type, ranked from lowest to
highest. (B) Kaplan-Meier curves for the OS of 10067 patients with a high GTMEIscore (n = 4327) and a low GTMEIscore (n = 5740), and the log-rank test showed
P < 0.001. (C) Differences in the GTMEIscore between six different immune molecular subtypes. The Kruskal-Wallis test was used to determine the significance of
differences between the six immune molecular subtypes. (D) Heatmap and table of the distribution of three immune molecular subtypes between the high and low
GTMEIscore groups, chi-square test showed P=0.001. (E) Spearman analysis of the correlation of the GTMEIscore with immunomodulators, 28 immune cell types,
immune and stromal scores, and tumor purity. Colors indicate correlation coefficients, with yellow indicating a negative correlation and red indicating a positive
correlation. Asterisks indicate statistically significant P values calculated using Spearman correlation analysis. *P < 0.05; **P < 0.01; ***P < 0.001. (F) Bubble plots
showing the correlation between the GTMEIscore and classical cancer pathways. The color of the circle represented the correlation coefficient, and the size
represent the p value. (G) Summary of the correlation between expression of GTMEIscore and 32 cancer type patients survival. Red represents a higher expression
of GTMEIscore associated with worse survival, and blue represents an association with better survival. Only p values < 0.05 are shown.
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FIGURE 8 | Correlation of the GTMEIscore with the efficacy of immunotherapy and drug sensitivity in other 32 cancer types. (A) The Kaplan–Meier survival curves
showed that GTMEIscore was a prognostic risk factor in the urothelial cancer patients in IMvigor210 dataset that received anti-PD1 therapy(log-rank test P = 0.015).
(B) Proportions of urothelial cancer patients who responded to anti-PD1 immunotherapy in the low and high GTMEIscore groups in IMvigor210 dataset. (C) The
Kaplan–Meier survival curves showed that GTMEIscore was a prognostic protective factor in the melanoma patients in GSE78220 dataset that received anti-PD1
therapy(log-rank test P = 0.004). (D) Proportions of melanoma patients who responded to anti-PD1 immunotherapy in the low and high GTMEIscore groups in
GSE78220 dataset. (E) The Kaplan–Meier survival curves showed that GTMEIscore was a prognostic protective factor in the melanoma patients in GSE91061
dataset that had not received anti-PD1 therapy (log-rank test P = 0.006). (F) Proportions of melanoma patients who responded to anti-PD1 immunotherapy in the
low and high GTMEIscore groups in GSE91061 dataset that had not received anti-PD1 therap. (G) The Kaplan–Meier survival curves showed that GTMEIscore was
a prognostic protective factor in the melanoma patients in GSE91061 dataset that received anti-PD1 therapy (log-rank test P = 0.012). (H) Proportions of melanoma
patients who responded to anti-PD1 immunotherapy in the low and high GTMEIscore groups in GSE91061 dataset received anti-PD1 therapy. (I) The left heatmap
showing the summary of the correlation between expression of GTMEIscore and other 32 cancer type patients survival. Pink represents a higher expression of
GTMEIscore associated with worse survival, and green represents an association with better survival. Only p values < 0.05 are shown. The right heatmap showing
the enrichment fraction of each compound in CMap for other 32 cancer types (positive in blue, negative in red). Compounds are sorted from right to left by
decreasing number of significantly enriched cancer types.
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demonstrated the targeting mechanism of these drugs using
MOA analysis of cmap (Supplementary Figure S8A and
Table S20B). These results provide potential drugs that can be
used for patients with a high GTMEIscore, offering potential
therapeutic prospects for improving the prognosis of
cancer patients.
DISCUSSION

Recent advances in tumor immunotherapy have created great
enthusiasm and anticipation for the effective treatment of GBM
(20, 34). The TME, especially the TIME, plays an important role
in clinical survival and response to therapy as a key mediator of
tumor progression and treatment outcome (9–11, 35). Analyzing
the TIME of GBM patients may provide new insights into the
development of immunotherapeutic strategies for GBM. In this
study, we integrated transcriptome information from 796 GBM
samples, used single sample gene-set enrichment analysis
(ssGSEA) to estimate the relative abundances of 25 immune
cell types, and provided a comprehensive outlook on the immune
landscape within GBM tumors. We revealed three distinct
GTMEI patterns with different clinical outcomes and
modulated biological pathways. Moreover, we developed a
scoring system to quantify the immune infiltration pattern of
individual GBM sample, termed GTMEIscore. To understand
the intrinsic tumor characteristics and tumor immune
infiltration patterns associated with the GTMEIscore, we
comprehensively analyzed the genomic characteristics,
molecular subtypes and clinicopathological features as well as
proteomic, phosphoproteomic, acetylomic, lipidomic and
metabolomic properties associated with the GTMEIscore,
revealing lots of novel dysregulated pathways and precise
targets in GBM. Moreover, GTMEIscore accurately quantified
the immune status of many other cancer types. Clinically,
GTMEIscore was found to have significant potential
therapeutic value for chemotherapy/radiotherapy, immune
checkpoint inhibitor (ICI) therapy and targeted therapy. Our
systematic identification and characterization of molecular
subtypes of the immune microenvironment of GBM revealed
many novel dysregulated signaling pathways and precise targets
in GBM and provides a theoretical basis for identifying more
effective predictive biomarkers and developing more effective
and targeted clinical treatment strategies for GBM.

This paper highlights the important role of TME, particularly
macrophages, in shaping the MES-like cellular state. Several
immune microenvironment studies for other tumors display
better prognosis for immune inflamed subtype which more
effective immune infiltration in tumor stroma (12, 17).
However, the result of immune infiltration in GBM, the
GTMEI cluster C which had better prognosis did not show the
increased immune infiltration and the activated immune state,
which may be due to the special intracranial microenvironment.
Recently, using scRNA-seq, malignant cells in GBM were
classified into four potentially plastic cell states: neural
progenitor cell-like (NPC-like), oligodendrocyte progenitor
Frontiers in Immunology | www.frontiersin.org 16
ce l l - l ike (OPC-l ike) , as trocyte- l ike (AC-l ike) , and
mesenchymal-like (MES-like) (35). Hara et al. (36) further
showed striking similarities between the MES-like state and the
TCGA-MES subtype; both were rich in macrophages, and the
GBM MES-like state was also associated with increased
abundance and cytotoxicity of T cells. Our study showed that
the characteristics of the immunoinflammatory subtypes
(GTMEI clusterA) identified in our study are also highly
similar to those of the previously reported MES subtypes.
Whereas Ester Gangoso et al. (10) recently found that a key
component of the previously reported “mesenchymal” signature
is the transcriptional module acquired in GBM cells after
immune attack, the observed transformation of GBM tumor
subtypes can be explained by the extent to which the tumor
immune microenvironment encroaches on their epigenetic
landscape and alters the regulatory network of transcription
factors. However, these results suggest that, at least in
glioblastoma, the MES-like status of macrophages and cancer
cells may also represent a therapeutic opportunity, as they are
associated with high levels T cells that tend to be in a cytotoxic
state, which may affect the response to immunotherapy. Thus,
induction of MES-like states by safe and effective means and in
combination with immunotherapeutic approaches may provide
a new therapeutic option.

Genomic alterations and alterations in downstream
oncogenic signaling pathways in tumors have been shown to
affect antitumor immunity and TME activity (18, 20, 26). As
such, we investigated the link between tumor mutations and the
GTMEIscore and found that compared to the low GTMEIscore
group, the GTMEIscore group had significantly higher PTEN
and NF1 mutation rates (Figure 3E and Supplementary
Figure 2C), and PTEN and NF1 mutations have been shown
to cause increased infiltration of TAMs into tumor tissue (26, 27,
35). Single-cell sequencing studies have shown that TAMs are the
mos t abundant component o f the GBM immune
microenvironment, originating from two independent sources
(BMDM TAMs and MG TAMs) (9, 11), and they respond
differently at different stages of tumor progression and perform
different functions (37). These differences may be partly
explained by the fact that the two cell populations are derived
from different progenitor cells, which are selectively distributed
in different locations, and employ different TFs for gene
regulation (37). Numerous studies have demonstrated that the
macrophage population that exerts immunosuppressive and
proangiogenic effects is generally of bone marrow origin (9, 10,
26, 27), and our study found that the GTMEIscore was positively
correlated with TAM BMDMs and negatively correlated with
TAM MGs (Figure 2J). We also identified and validated a
significant positive correlation between the GTMEIscore and
myeloid-derived macrophage-restricted chemokines and genes
encoding ECM and matricellular proteins (Figures 2F, G, 4L).
Our results showed that the GTMEIscore predicted GBM
heterogeneity as well as the functional status of macrophages.
Therefore, considering the significant differences in biological
functions, TAM components and T cell abundance among GBM
infiltrating immune cell subtypes, this study may provide more
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ideas for the future development of subtype-specific combination
immunotherapy strategies.

Proteomic analysis revealed a large number of differentially
expressed proteins in GBM tumors with different immune
infiltration patterns, and some tumors showed significant
downregulation of cell cycle- and DNA repair-related proteins
and upregulation of apoptosis-, EMT-, metabolism- and immune
response-related proteins (Figure 4), in line with the
transcriptomic analysis results (Figure 3). Furthermore,
phosphoproteomics analysis also identified a large number of
dysregulated protein phosphorylation sites in GBM tumors with
different immune infiltration patterns, revealing a number of
proteins associated with apoptosis, ECM, metabolism, and the
immune response and further providing candidates for targeted
therapy of GBM (Figures 5A, B). In addition, somatic mutation
analysis of the high GTMEIscore group revealed significantly
increased rates of PTEN, NF1 and BRAF mutation, and
subsequent proteomics and phosphoproteomics analysis
revealed dysregulation of downstream signaling pathway
proteins and phosphorylation sites (Figures 5C, D). We also
characterized the acetylation patterns of tumors with different
immune infiltration patterns, revealing a large number of
proteins with dysregulated acetylation, which were mainly
involved in metabolic pathways (Figures 5E, F). In addition,
analysis of histone modifications revealed significant
downregulation of multiple acetylation site modification
levels in H2B histones in the high GTMEIscore group, which
may be dependent on CREBBP/EP300/BRD3/BRD4 activity
(Figure 5G). For the first time, we employed a multilevel and
multiplatform strategy to construct a multidimensional
molecular map of tumors with different immune infiltration
patterns. The results will help comprehensively reveal the
molecular mechanisms of GBM development and immune
microenvironment dysregulation, and provide an important
scientific basis for improving the clinical treatment and
prognosis of GBM.

In addition, we also demonstrated the immunomodulatory
landscape in other 32 cancer types with a TCGA dataset and
found significant correlations of the GTMEIscore with the
immune status and biological functions of most tumors
(Figure 7). We demonstrated that the GTMEIscore can be
used not only as an independent prognostic biomarker for
predicting survival in GBM, BLCA and SKCM patients but
also for predicting the response to anti-PD1 antibody
immunotherapy in these cancers. Drug sensitivity is a constant
factor at the core of individualized cancer chemotherapy, we also
predicted potential drugs that can be used for patients with a
high GTMEIscore for 33 cancer types (Figure 8). TGF-beta is an
important factor contributing to PD-L1/PD-1 antibody
resistance by limiting T cell infiltration in the TME. Therefore,
blocking TGF-beta significantly enhanced the efficacy of anti-
PD-1/PD-L1. Recently, bispecific antibodies targeting TGF-Beta
and PD-L1 exhibited superior antitumor activity (38–40),
indicating that the combination of these drugs with ICIs, as
well as antibodies targeting TGF-Beta may have better
therapeutic effects for patients.
Frontiers in Immunology | www.frontiersin.org 17
In conclusion, our systematic identification and characterization
of molecular subtypes of immune microenvironments in GBM
revealed many novel dysregulated signaling pathways and
precise targets in GBM. Based on this multiomics data
study, we found that the GTMEIscore is a reliable prognostic
biomarker that can robustly predict the effect of ICIs and
combination therapy with chemotherapy/radiotherapy. These
findings might provide a theoretical basis for identifying
more effective GBM predictive biomarkers and developing
more effective and targeted clinical treatment strategies,
ultimately guiding GBM clinical treatment and achieving
precision medicine.
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