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Increased glutamine metabolism by macrophages is associated with development of
atherosclerotic lesions. Positron emission tomography/computed tomography (PET/CT)
with a glutamine analog (2S,4R)-4-18F-fluoroglutamine (18F-FGln) allows quantification of
glutamine consumption in vivo. Here, we investigated uptake of 18F-FGln by atherosclerotic
lesions in mice and compared the results with those obtained using the glucose analog 2-
deoxy-2-18F-fluoro-D-glucose (18F-FDG). Uptake of 18F-FGln and 18F-FDG by healthy
control mice (C57BL/6JRj) and atherosclerotic low-density lipoprotein receptor-deficient
mice expressing only apolipoprotein B100 (LDLR−/−ApoB100/100) was investigated. The
mice were injected intravenously with 18F-FGln or 18F-FDG for in vivo PET/CT imaging.
After sacrifice at 70 minutes post-injection, tracer uptake was analyzed by gamma
counting of excised tissues and by autoradiography of aorta cryosections, together with
histological and immunohistochemical analyses. We found that myocardial uptake of 18F-
FGln was low. PET/CT detected lesions in the aortic arch, with a target-to-background
ratio (SUVmax, aortic arch/SUVmean, blood) of 1.95 ± 0.42 (mean ± standard deviation).
Gamma counting revealed that aortic uptake of 18F-FGln by LDLR−/−ApoB100/100 mice
(standardized uptake value [SUV], 0.35 ± 0.06) was significantly higher than that by healthy
controls (0.20 ± 0.08, P = 0.03). More detailed analysis by autoradiography revealed that
the plaque-to-healthy vessel wall ratio of 18F-FGln (2.90 ± 0.42) was significantly higher
than that of 18F-FDG (1.93 ± 0.22, P = 0.004). Immunohistochemical staining confirmed
that 18F-FGln uptake in plaques co-localized with glutamine transporter SLC7A7-positive
macrophages. Collectively these data show that the 18F-FGln PET tracer detects inflamed
atherosclerotic lesions. Thus, exploiting glutamine consumption using 18F-FGln PET may
have translational relevance for studying atherosclerotic inflammation.
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INTRODUCTION

Atherosclerosis is a chronic inflammatory disease characterized
by inflammation and accumulation of macrophages.
Macrophages are highly plastic cells that play an important role
during inflammation and propagation of plaques, and during the
resolution of atherosclerosis (1). The vulnerability of
atherosclerotic plaques to rupture correlates with the number of
pro-inflammatory macrophages, whereas plaque stability
correlates with the number of inflammation-resolving
macrophages (2). These vital roles, together with their plasticity,
make macrophages attractive targets for diagnosis and for therapy
aimed at preventing or halting existing atherosclerosis.

Pro-inflammatory stimuli such as lipopolysaccharides (LPS)
(3, 4) or oxidized low-density lipoprotein (5, 6) increase
glycolytic capacity and glucose uptake by macrophages,
phenomena that may be associated with a high risk phenotype
for atherosclerotic plaques (7). This high glycolytic capacity of
macrophages has been utilized to identify atherosclerotic
inflammation by positron emission tomography (PET) using
glucose analog 2-deoxy-2-18F-fluoro-D-glucose (18F-FDG) (3, 8).
High glucose uptake, however, is not only a key hallmark of pro-
inflammatory macrophages; it is also a common attribute of anti-
inflammatory macrophages (3, 9, 10) along with all other
glucose-metabolizing cells. The normally high physiological
glucose uptake of myocardial cells further complicates the
accurate assessment and quantification of increases in 18F-FDG
uptake due to local inflammation. Therefore, using 18F-FDG PET
alone as a tool to detect macrophages associated with
atherosclerotic inflammation has its limitations and better tools
are required for assessing the heterogeneity of macrophage
activation and disease characterization.

Glutamine is an abundant amino acid and nutrient source
that plays a role in exercise recovery, wound healing,
metabolism, and promoting the growth of cancer cells (11).
Glutamine is transported to cells by many membrane-bound
solute carrier-type transporters (SLCs) (12). Experimental
studies show that glutamine is required for polarization of
macrophages, and that differently polarized macrophages show
changes in glutamine metabolism (4, 13). A recent study
demonstrated that combined assessment of 2-deoxyglucose and
glutamine metabolism improved the ex vivo identification of
macrophage polarization states (10). Furthermore, accumulation
of these substrates showed different patterns in atherosclerotic
lesions. However, the in vivo significance of glutamine uptake in
atherosclerosis remains to be studied. The glutamine analog
(2S,4R)-4-18F-fluoroglutamine (18F-FGln) allows quantification
of glutamine consumption in vivo by PET. Recently, we and
others showed that 18F-FGln is taken up preferentially by glioma
cells compared with healthy brain tissue, making it feasible for in
vivo imaging of enhanced glutamine uptake by PET (14, 15).

Here, we investigated uptake of 18F-FGln by inflamed
atherosclerotic lesions in mice and compared the results with
those obtained using 18F-FDG. First, we evaluated uptake of
intravenously (i.v) administered 18F-FGln or 18F-FDG to detect
atherosclerotic lesions using PET/CT imaging. Second, we used a
gamma counter to measure the radioactivity of the administered
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tracer in excised tissues. Finally, we used digital autoradiography
and immunohistochemistry of tissue cryosections to assess tracer
accumulation in the atherosclerotic aorta and its localization in
macrophage-rich lesions.
MATERIALS AND METHODS

Chemicals and Reagents
The tosylated precursor for 18F-FGln synthesis and the non-
radioactive reference compound FGln were provided by the
Organic Synthesis Core Facility at Memorial Sloan Kettering
Cancer Center, New York, NY, USA. The cassettes for 18F-FDG
synthesis were purchased from GE Healthcare (Waukesha,
WI, USA).

Radiosynthesis and In Vivo
Stability Analysis
The chemical structures of 18F-FGln and 18F-FDG are shown in
Supplementary Figure 1. 18F-FGln was prepared according to a
published method (16), with some modifications to fit into the
radiosynthesis device as described in our previous work (14).
Quality control of the obtained 18F-FGln was performed using
high-performance liquid chromatography (HPLC). 18F-FDG was
prepared in-house using a fully automated cassette-based system
and a FASTLab® radiosynthesis device (17). The synthesis
procedure was compliant with Good Manufacturing Practices.
Quality control of 18F-FDG before release of each batch was
performed using HPLC and thin-layer chromatography.

To assess the in vivo stability of 18F-FGln, blood samples were
taken at the end of PET/CT imaging. Whole-blood was weighed
and radioactivity measured (Triathler 3″; Hidex, Turku, Finland)
before being centrifuged at 700 ×g at 4°C for 5 minutes to
separate the plasma. All results were decay-corrected to the
corresponding animals’ time of sacrifice. A plasma sample was
then weighed and radioactivity measured before a subsample was
precipitated with 2.4 volumes of methanol, followed by vortexing
and centrifugation at 11,000 ×g for 10 minutes. The radioactivity
of the separated supernatant and resulting precipitated protein
pellet was measured. The precipitated plasma supernatants were
further analyzed using established HPLC methods (18) to
measure the fraction of intact 18F-FGln.

Mouse Model
To induce atherosclerosis, low-density lipoprotein receptor-
deficient male mice expressing only apolipoprotein B100
(LDLR− /−ApoB100/100, strain #003000 with C57BL/6J
background; Jackson Laboratory, Bar Harbor, ME, USA) were
fed with a high-fat diet (HFD; 0.2% total cholesterol; TD 88137;
Envigo, Madison, WI, USA) starting at the age of 2 months; this
diet was maintained for 3–5 months. C57BL/6JRj male mice (7
months old; Central Animal Laboratory of the University of
Turku) fed a regular chow diet were used as healthy controls. In
total, 12 LDLR–/–ApoB100/100 (45.4 ± 2.4 g) and 12 healthy
control mice (31.7 ± 3.9 g) were studied (Table 1). The mice
had access to food and water ad libitum throughout the study,
January 2022 | Volume 13 | Article 821423
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which was conducted at the Central Animal Laboratory of the
University of Turku. All animal experiments were approved by
the National Project Authorization Board of Finland (license
numbers: ESAVI/4567/2018 and ESAVI/11751/2021) and were
carried out in compliance with European Union Directive 2010/
63/EU.

PET/CT Imaging
Mice were fasted for 3–4 hours, anesthetized with isoflurane (4–
5% induction, 1.5−2.5%maintenance), and placed on a dedicated
heating pad in the PET/CT scanner (Inveon Multimodality;
Siemens Medical Solutions, Knoxville, TN, USA). The mice
received i.v. 18F-FDG (13.9 ± 0.9 MBq) or 18F-FGln (14.5 ± 0.8
MBq) via a tail vein cannula for the 60 minute dynamic PET
imaging. For anatomical reference, an iodinated intravascular
contrast agent (100 µL eXIATM160XL; Binitio Biomedical,
Ottawa, ON, Canada) was i.v. injected immediately after PET
imaging, and a 10 minute high-resolution CT was performed.
PET/CT images were analyzed using Carimas 2.10 software
(Turku PET Centre, Turku, Finland; www.turkupetcentre.fi/
carimas/). The regions of interest (ROI) in the aortic arch,
vena cava (representing blood), and myocardium were defined
using contrast-enhanced CT as an anatomical reference, as
previously described (18). The myocardial ROI was
consistently defined at the same site for all mice tested. The
results were expressed as standardized uptake values (SUVs),
which were normalized to the injected radioactivity dose and
animal body weight. The maximum target-to-background ratio
(TBR) at 40–60 minutes post-injection was calculated as follows:
SUVmax, aortic arch/SUVmean, blood according to the established
method (19).
Ex Vivo Biodistribution
At 70 minutes post-injection, mice were placed under deep
anesthesia, and blood samples were obtained by cardiac
puncture. The mice were euthanized by cervical dislocation,
and tissues were dissected and weighed. Radioactivity was
measured using a g-counter (Triathler 3″; Hidex, Turku,
Finland). The gamma counting was performed on the entire
Frontiers in Immunology | www.frontiersin.org 3
aorta, extending from the aortic arch to the iliac artery
bifurcation. After compensating for the remaining radioactivity
in the tail and cannula, the results were expressed as SUVs, which
is calculated as radioactivity concentration (becquerel per gram
of tissue) normalized for injected radioactivity dose and animal
body weight.

Autoradiography, Histology,
and Immunostaining
Following ex vivo gamma counting of excised tissues, the aorta was
embedded in optimal cutting temperature compound, frozen
at −70°C, and cut into 20 and 8 µm cryosections. The
quantitative digital autoradiography analysis of tracer distribution
was done using 20 µm cryosections, as previously described (20).
The sections were exposed to a Fuji Imaging Plate BAS-TR2025
(Fuji, Tokyo, Japan) for at least 4 hours and then scanned by a Fuji
Analyzer BAS-5000. After scanning, sections were stored at −70°C
until staining with hematoxylin–eosin (H&E). They were then
scanned with a digital slide scanner (Pannoramic 250 Flash;
3DHISTECH, Ltd., Budapest, Hungary). Tina 2.1 software
(Ravtest Isotopenmessgeräte, GmbH, Straubenhardt, Germany)
was used to analyze the autoradiographs. Uptake of 18F-FDG
and 18F-FGln was normalized to the injected radioactivity dose
per unit of body mass and corrected for radioactivity decay. Data
were expressed as photostimulated luminescence per square
millimeter (Normalized PSL/mm2).

Consecutive 8 µm sections were used to investigate co-
localization of 18F-FGln in Mac-3-positive macrophages and
glutamine transporter (SLC7A7 [solute carrier family 7, member
7])-positive macrophages. Briefly, sections were incubated with an
anti-mouse Mac-3 antibody (1:1,000; catalog number: 550292; BD
Biosciences, Franklin Lakes, NJ, USA) and an anti-SLC7A7
antibody (1:1,000; catalog number: PA5-113527; Thermo Fisher
Scientific, Waltham, MA, USA), followed by development of a
color reaction using 3.3′-diaminobenzidine (Bright-DAB, BS04-
110; ImmunoLogic, Duiven, the Netherlands).

Collected mouse hearts were preserved overnight at room
temperature in 10% formalin, followed by dehydration in 70%
ethanol. Hearts were embedded in paraffin prior to histological
characterization of atherosclerotic lesions at the level of the aortic root.
TABLE 1 | Characteristics of the investigated animals.

LDLR-/-ApoB100/100 atherosclerotic mice C57BL/6JRj control mice

Age, months 5−7 6
High-fat diet, months 3−5 ND
Male animals, no. 12 12
Weight, g 45.4 ± 2.4* 31.7 ± 3.9*
In vivo 18F-FGln PET/CT, no. 4 4
In vivo 18F-FDG PET/CT, no. 4 4
Ex vivo 18F-FGln gamma counting, no. 5 5
Ex vivo 18F-FGln autoradiography, no. 5 5
Ex vivo 18F-FDG autoradiography, no. 5 4
18F-FGln metabolite analysis, no. 4 7
Injected 18F-FGln (MBq/mice) 14.5 ± 1.1* 14.4 ± 0.5*
Injected 18F-FDG (MBq/mice) 13.7 ± 1.2* 14.2 ± 0.3*
January 2022 |
LDLR-/-ApoB100/100, low-density lipoprotein receptor-deficient mice expressing only apolipoprotein B100; ND, not done; no., number of investigated animals. *Values are presented as the
mean ± SD.
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Sections (6 µm thick) were cut transversely at the level of the
coronary ostia, and consecutive sections were stained with
modified Movat’s pentachrome or with the anti-mouse Mac-3
antibody to detect macrophages (20, 21). Furthermore, to detect
SLC family glutamine transporters, sections were stained with
anti-SLC1A5 (1:500;NBP1-59732;NovusBiologicals, Centennial,
CO, USA), anti-SCL3A2 (1:500; sc-390154; Santa Cruz
Biotechnology, Dallas, TX, USA), and anti-SLC7A7 (1:500;
PA5-113527; Thermo Fisher Scientific, Waltham, MA, USA))
antibodies, followed by development of a color reaction using
3.3′-diaminobenzidine.
Statistical Analysis
Results are presented as the mean ± standard deviation (SD).
Normality was examined by a Shapiro–Wilk test, and equality of
variances was tested with an F test. For normally distributed
datasets, a two-tailed unpaired Student’s t test in Microsoft Excel
was used to analyze differences between the groups. P-values
<0.05 were considered statistically significant.
Frontiers in Immunology | www.frontiersin.org 4
RESULTS

In Vivo Stability of 18F-FGln
18F-FGln was prepared as previously reported, with comparable
yield and purity (14). Seventy minutes after 18F-FGln
administration, all measured parameters of metabolism in both
control and diseased groups of mice were very similar. On average
(n = 11), red blood cell uptake of the radioactivity was 46.8% ± 1.5.
When analyzing plasma samples, an average (n = 11) of 24.6% ±
4.4 of the radioactivity was bound to proteins after approximately
70 minutes post-injection. HPLC analysis of precipitated plasma
supernatant indicated that the amount of intact 18F-FGln in
plasma was 78.2% ± 4.0 (Supplementary Figure 2).

18F-FGln Accumulates in Inflamed
Atherosclerotic Lesions in Mice
The in vivo PET/CT imaging studies of atherosclerotic mice
revealed that myocardial uptake of 18F-FGln (SUVmean 0.43 ±
0.06, n = 4) was significantly lower than that of 18F-FDG (SUVmean

10.84 ± 1.10, n = 4, P < 0.0001; Figures 1A, B). PET/CT images
A

B C

FIGURE 1 | (A) Representative coronal PET/CT images of atherosclerotic and control mice administered with 18F-FGln or 18F-FDG. White arrow indicate the aortic
arch (AA), and pink arrow indicates the myocardium. LV, left ventricle. (B) PET quantification of the myocardium, showing a significant difference between the tracers.
(C) 18F-FGln time-activity curves in the AA and blood (vena cava) of atherosclerotic mice show a statistically significant difference (n = 4). Values are presented as the
mean ± SD (n = 4). P-values were calculated using a two-tailed unpaired Student’s t test.
January 2022 | Volume 13 | Article 821423
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showed 18F-FGln uptake by the aortic arch of atherosclerotic mice,
whereas 18F-FDG was not detectable. The time-activity curve of
18F-FGln in the atherosclerotic aortic arch (SUVmax) was higher
than that in blood (SUVmean; Figure 1C). For comparison, all
SUVmax and SUVmean time-activity curves of 18F-FGln in the
aortic arch and blood of atherosclerotic mice are shown in
Supplementary Figure 3. The average TBR of 18F-FGln in the
aortic arch of atherosclerotic mice (1.95 ± 0.42) tended to be
higher than that in healthy control mice (1.44 ± 0.10, n = 4, P =
0.09). There was no difference in the TBR of 18F-FDG in the aortic
arch of atherosclerotic mice (2.77 ± 0.71) and that of healthy
control mice (2.74 ± 0.77, n = 4, P = 0.96).

Ex vivo gamma counting showed that uptake of 18F-FGln in
the whole aorta of atherosclerotic mice (SUV 0.35 ± 0.06) was
significantly higher than that in healthy controls (SUV 0.20 ±
0.08, n = 5, P = 0.03; Table 2). In both mouse strains, the highest
radioactivity concentration was observed in pancreas, and the
difference in this organ between LDLR-/-ApoB100/100 and C57BL/
6JRj mice was statistically significant (P = 0.004). The lowest
uptake of 18F-FGln was observed in brain, brown adipose tissue
and white adipose tissue, respectively.

Macrophages in Atherosclerotic Plaques
Express Glutamine Transporters
Two types of samples were taken from each mouse: 1) the aorta,
which extended from the aortic arch to the iliac artery bifurcation,
was frozen for longitudinal cryosections, 2) paraffin-embedded
aortic root was cut into cross-sections at the level of the left
coronary artery ostium. According to histological and Mac-3
macrophage staining of aortic roots and aortas, the LDLR-/-

ApoB100 /100 mice had prominent , macrophage-r ich
atherosclerotic lesions, while C57Bl/6JRj mice had no signs of
atherosclerosis (Figures 2, 3 and Supplementary Figures 4, 5).
Frontiers in Immunology | www.frontiersin.org 5
Immunostaining of aortic root sections from atherosclerotic
mice showed that plaque regions were enriched with Mac-3-
positive macrophages. Furthermore, SLC1A5, SLC3A2, and
SLC7A7 glutamine transporters were expressed in atherosclerotic
lesions, but with unique expression profiles. SLC1A5 was
expressed predominantly in aortic valve leaflets, whereas
SLC3A2 was expressed in atherosclerotic lesions. Expression of
SLC7A7 was prominent in both the aortic valve and
atherosclerotic lesions. Noticeably, SLC7A7-positive cells co-
localized with Mac-3-positive macrophages (Figure 2). However,
in control aortic roots without plaques, minimal staining with
either Mac-3 or glutamine transporter antibodies was visible
(Supplementary Figure 4).

18F-FGln Uptake Is Associated With
SLC7A7-Positive Macrophage-Rich
Lesions in Atherosclerotic Mice
To further elucidate the localization of 18F-FGln and 18F-FDG
uptake in the aortas of atherosclerotic mice, we compared
autoradiographs with histological and immunohistochemical
staining. The results revealed that uptake of both 18F-FGln and
18F-FDG co-localized with Mac-3-positive macrophage-rich
lesions. Notably, those macrophages were also positive for
SLC7A7 (Figure 3A). Furthermore, detailed analysis of 18F-
FGln uptake in atherosclerotic aortas showed that plaque
regions had higher uptake of 18F-FGln (PSL/mm2 89.05 ±
18.09, n = 5) than the vessel wall (PSL/mm2 34.60 ± 5.23, P =
0.002) or adventitia (PSL/mm2 35.48 ± 10.34, P = 0.001). There
was no difference in uptake of 18F-FGln between the vessel wall
and adventitia in either the atherosclerotic or control groups
(Figure 3B). Furthermore, the average plaque-to-healthy vessel
wall ratio of 18F-FGln (2.90 ± 0.42) was significantly higher than
that of 18F-FDG (1.93 ± 0.22, n = 5, P = 0.004; Figure 3C).
TABLE 2 | Ex vivo biodistribution of 18F-FGln at 70 minutes post-injection into mice (expressed as SUV).

Tissue LDLR-/-ApoB100/100 atherosclerotic mice (n = 5) C57BL/6JRj control mice (n = 5) P-value

Aorta 0.35 ± 0.06 0.20 ± 0.08 0.03
Brown adipose tissue 0.29 ± 0.03 0.48 ± 0.09 0.04
Bone (skull) 4.07 ± 1.56 4.62 ± 0.36 0.38
Bone + marrow (femur) 3.06 ± 1.18 3.48 ± 0.18 0.36
Blood 0.52 ± 0.10 0.51 ± 0.02 0.86
Brain 0.27 ± 0.08 0.29 ± 0.02 0.66
Heart 0.78 ± 0.18 0.96 ± 0.15 0.10
Intestine, small (empty) 2.71 ± 1.50 2.92 ± 0.49 0.94
Intestine, large (empty) 0.93 ± 0.30 1.30 ± 0.20 0.05
Kidney 2.29 ± 0.92 2.41 ± 0.31 0.74
Lungs 0.85 ± 0.22 1.07 ± 0.26 0.40
Liver 1.20 ± 0.24 1.90 ± 0.14 0.0001
Lymph nodes 0.94 ± 0.30 1.28 ± 0.11 0.06
Muscle 0.67 ± 0.28 0.91 ± 0.06 0.14
Pancreas 2.64 ± 0.62 4.77 ± 0.90 0.004
Plasma 0.60 ± 0.11 0.61 ± 0.02 0.86
Spleen 1.04 ± 0.37 1.38 ± 0.16 0.06
Stomach 1.05 ± 0.24 1.34 ± 0.20 0.04
Thymus 0.90 ± 0.38 0.94 ± 0.09 0.95
White adipose tissue 0.08 ± 0.04 0.09 ± 0.01 0.69
January 2022 | Volume 13 | Article
SUV, standardized uptake value, which is calculated as radioactivity concentration (becquerel per gram of tissue) normalized for injected radioactivity dose and animal body weight. Values
are presented as the mean ± SD. P-values were calculated using a two-tailed unpaired Student’s t test.
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However, there was no clear tracer uptake by control aorta
(Supplementary Figure 5).
DISCUSSION

Imaging of atherosclerotic lesions with 18F-FDG may be difficult
due to physiological uptake by the myocardium and because
non-inflammatory cells may consume large amounts of glucose
during inflammation. Uptake of 18F-FGln, a glutamine analog
that is used for PET imaging of cancer (22–26) correlates with
upregulation of alanine-serine-cysteine transporter 2 (ASCT2), a
sodium-dependent neutral amino acid transporter of glutamine (27);
Frontiers in Immunology | www.frontiersin.org 6
as such, it detects lesions more sensitively than 18F-FDG (23).
Recently, we and others showed that uptake of 18F-FGln by
gliomas is higher than that by healthy brain tissue (14, 15).

In addition to cancers, glutamine metabolism is altered in
some inflammatory conditions. A study by Tavakoli and co-
workers showed a difference in the uptake of glutamine and 2-
deoxyglucose by in vitro-polarized macrophages (10).
Macrophages polarized with IL-4 (MFIL-4) show higher uptake
of glutamine than macrophages polarized with interferon-
gamma and tumor necrosis factor alpha (MFINF-g + TNF-a), or
unstimulated macrophages (MF0). In the same study, an ex vivo
experiment with 14C-glutamine showed uptake by macrophage-
rich atherosclerotic lesions in the aortas of mice.
FIGURE 2 | Expression of Mac-3 and glutamine transporters by mouse aortic plaque macrophages. Movat’s pentachrome staining of the aortic root demonstrates
that atherosclerotic plaques were composed mostly of a fibrous cap and a necrotic region. Immunostaining of adjacent sections shows that Mac-3-positive
macrophages are also positive for glutamine transporters SLC1A5, SLC3A2, and SLC7A7. Higher magnifications of the valve and plaque vessel regions are shown in
the black and red rectangular boxes, respectively. Expression of SLC1A5 is prominent in the aortic valve region but not in the vessel plaque region. Expression of
SLC3A2 is absent from the valve region but present in the vessel plaque region. Expression of SLC7A7 is clear in both the valve and vessel plaque regions. Scale
bar = 200 µm; zoomed region scale bar = 50 µm.
January 2022 | Volume 13 | Article 821423
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A

B C

FIGURE 3 | (A) Representative images showing hematoxylin–eosin (H&E) staining, autoradiographs, Mac-3 macrophage staining, and SLC7A7 glutamine transporter
staining in consecutive aorta cryosections from atherosclerotic mice. Black rectangles denote the plaque region shown at higher magnification. Scale bar = 500 µm;
zoomed region scale bar = 50 µm. A, arch; AA, ascending aorta; B, brachiocephalic artery; D, descending thoracic aorta; L, lesion; LC, left common carotid artery; LS,
left subclavian artery; W, vessel wall. (B) Quantification of 18F-FGln ex vivo autoradiography data showing differences in tracer uptake between plaques, vessel wall, and
adventitia in LDLR-/-ApoB100/100 atherosclerotic and C67BL/6JRj healthy control mice aortas. Values are expressed as the mean ± SD (n = 5). (C) Quantification of
autoradiography data showing a significant difference between the tracers (n = 5). Values are expressed as the mean ± SD. P-values were calculated using a two-tailed
unpaired Student’s t test.
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Here, we report for the first time that after i.v. administration,
18F-FGln accumulates in inflamed atherosclerotic lesions in
mice, which, combined with low myocardial uptake, facilitates
visualization of aortic arch lesions in vivo by PET/CT. The
myocardial uptake of 18F-FGln was 25-fold lower than that of
18F-FDG (Figure 1B). Uptake of tracers by inflamed lesions was
further confirmed by a more detailed analysis using ex vivo
digital autoradiography of aorta sections, which showed a higher
plaque-to-healthy vessel wall ratio for 18F-FGln than for 18F-
FDG (Figure 3C). Immunohistochemical staining confirmed
that uptake of 18F-FGln accumulated in plaques rich in Mac-3
and SLC7A7-positive cells. However, our results do not preclude
that other cell types and glutamine transporters could be
responsible for part of 18F-FGln uptake in atherosclerotic lesions.

To assess the in vivo stability of 18F-FGln, blood samples were
collected 70 minutes after radiopharmaceutical administration
and subjected to multiple assays. Very little difference was
observed between control and disease populations with respect
to red blood cell uptake, plasma protein binding, and the purity
of the plasma fraction. Based on HPLC analysis, an average of
78.2% of plasma radioactivity detected 70 minutes post-injection
was derived from intact 18F-FGln, indicating good in
vivo stability.

Furthermore, immunostaining of aortic roots showed that
atherosclerotic plaques were rich in macrophages (Mac-3), and
that not all of the glutamine transporters are expressed uniformly
in the plaque region. In line with previous studies, we observed
that expression of SLC1A5 and SLC3A2 in the plaque region was
not ubiquitous (10). However, we noticed that SLC7A7
expression was universal in macrophages in plaques of the
aortic root, which supports the possibility that SLC7A7 is the
prominent glutamine transporter in macrophage-rich plaques of
the atherosclerotic aorta. Interestingly, a previous study has
reported that downregulating SLC7A7 in human macrophages
by using small interfering RNA triggers an inflammatory
phenotype (28) suggesting SLC7A7 contribution in
macrophage polarization

When we compared the plaque-to-healthy vessel wall ratio of
18F-FGln (2.90 ± 0.42) with that of other tracers using a similar
protocol for detection of atherosclerotic lesions, we found that it
was higher than that of 18F-FDG (1.93 ± 0.22), 18F-FOL (2.6 ±
0.58), 68Ga-FOL (2.44 ± 0.15), and 68Ga-NODAGA-exendin-4
(1.6 ± 0.10) (19, 29, 30).

We acknowledge that this study has some limitations. It
should be noted that because the size of atherosclerotic plaques
in mice is small in relation to the spatial resolution of PET
scanner, spill over from adjacent tissue with low tracer uptake is
likely to artificially reduce the measured uptake in small lesions.
We did not perform 18F-FGln blocking studies in vivo or in vitro.
Furthermore, we did not illustrate how glutamine consumption
changes in a plaque regression model. In vitro blocking studies
might provide insight into the specific solute carrier transporter
involved in transport of glutamine during atherosclerotic
inflammation. Further studies should determine whether
blocking one transporter in the family might decrease uptake
of glutamine, or whether blocking allows other transporters in
Frontiers in Immunology | www.frontiersin.org 8
the family to take over and compensate for any loss of
glutamine uptake.

A study suggested that combined imaging of glucose and
glutamine metabolism is a potential approach to better
discriminate macrophage subtypes in atherosclerotic lesions
with higher ratio of glutamine to 2-deoxyglucose representing
the predominance of an anti-inflammatory macrophage
population (10). Our autoradiography results indicate that
indeed, both 18F-FDG and 18F-FGln accumulate in
atherosclerotic lesions showing relatively similar distribution in
macrophage-rich areas. However, we were not able to compare
uptake of these tracers directly in the same atherosclerotic lesions
due to limited 18F-FDG signal in PET images and the use of same
radionuclide precluding dual tracer autoradiography. Given the
feasibility of detecting atherosclerotic lesions with 18F-FGln,
evaluation of the ratio of glutamine to 2-deoxyglucose seems a
feasible approach in future studies.

The results presented herein provide preclinical evidence that
18F-FGln is taken up by inflamed atherosclerotic lesions in mice.
Further studies using 18F-FGln in different atherosclerotic
settings and models would strengthen data supporting the
translational use of 18F-FGln as a tracer to image
atherosclerotic inflammation.
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