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Peritoneal dialysis (PD) is a valuable ‘home treatment’ option, even more so during the
ongoing Coronavirus pandemic. However, the long-term use of PD is limited by
unfavourable tissue remodelling in the peritoneal membrane, which is associated with
inflammation-induced angiogenesis. This appears to be driven primarily through vascular
endothelial growth factor (VEGF), while the involvement of other angiogenic signaling
pathways is still poorly understood. Here, we have identified the crucial contribution of
mesothelial cell-derived angiogenic CXC chemokine ligand 1 (CXCL1) to peritoneal
angiogenesis in PD. CXCL1 expression and peritoneal microvessel density were
analysed in biopsies obtained by the International Peritoneal Biobank (NCT01893710 at
www.clinicaltrials.gov), comparing 13 children with end-stage kidney disease before
initiating PD to 43 children on chronic PD. The angiogenic potential of mesothelial cell-
derived CXCL1 was assessed in vitro by measuring endothelial tube formation of human
microvascular endothelial cells (HMECs) treated with conditioned medium from human
peritoneal mesothelial cells (HPMCs) stimulated to release CXCL1 by treatment with either
recombinant IL-17 or PD effluent. We found that the capillary density in the human
peritoneum correlated with local CXCL1 expression. Both CXCL1 expression and
microvessel density were higher in PD patients than in the age-matched patients prior
to initiation of PD. Exposure of HMECs to recombinant CXCL1 or conditioned medium
org February 2022 | Volume 13 | Article 8216811
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from IL-17-stimulated HPMCs resulted in increased endothelial tube formation, while
selective inhibition of mesothelial CXCL1 production by specific antibodies or through
silencing of relevant transcription factors abolished the proangiogenic effect of HPMC-
conditioned medium. In conclusion, peritoneal mesothelium-derived CXCL1 promotes
endothelial tube formation in vitro and associates with peritoneal microvessel density in
uremic patients undergoing PD, thus providing novel targets for therapeutic intervention to
prolong PD therapy.
Keywords: end-stage renal disease (ESRD), peritoneal dialysis (PD), mesothelium, cytokine/chemokine-signaling,
angiogenesis, interleukin 17, CXC chemokine ligand 1 (CXCL1), COVID-19
INTRODUCTION

Kidney disease is a major public health burden with growing
medical need during the ongoing SARS-CoV-2 coronavirus
pandemic (1–4). Patients with kidney failure requiring regular
renal replacement therapy (RRT) are at particular risk of
infection and Coronavirus-induced disease 2019 (COVID-19)
(5–7). In addition to commonly used hemodialysis (HD)
(Figure 1A), peritoneal dialysis (PD) (Figure 1B) is a valuable
cost-effective ‘home-care’ RRT, which combines patients’
independence from HD centres with self-isolation, and thus is
of particular interest during the COVID-19 pandemic (10–15).

The effective long-term use of the peritoneal membrane as a
dialysis organ is still limited due to the inflammation-induced
deterioration of peritoneal membrane function, resulting from
peritoneal remodelling and angiogenesis (Figure 1C). Here, we
have studied a novel CXC chemokine ligand 1 (CXCL1)-
dependent angiogenic mechanism (Figure 1D) that leads to
peritoneal angiogenesis independent of vascular endothelial
growth factor (VEGF), which is typically associated with
maladaptive angiogenesis in the RRT setting (8, 16–19).

Maladaptive angiogenesis in the peritoneal membrane
contributes to ultrafiltration dysfunction and eventually leads
to RRT failure (20–22). When using conventional PD fluids, the
structural changes in the peritoneum include gradual thickening
of the sub-mesothelial collagenous zone, and hyalinization and
narrowing of blood vessels (23). In addition, patients with
membrane failure usually have a markedly increased density of
peritoneal blood vessels compared with patients with an
uncomplicated course of PD (23, 24). The development of
these alterations is presumed to be related to long-term
exposure to bioincompatible dialysis fluid components (21).
Intriguingly, a marked increase in peritoneal vascularity has
already been observed shortly after initiation of PD in
paediatric patients, when using solutions with a seemingly
improved biocompatibility profile (25).

Other factors implicated in adverse peritoneal remodelling
include repeated episodes of peritonitis and declining residual
renal function (21). The development of detrimental peritoneal
angiogenesis in PD increases the vascular area available for solute
transport (21). This leads to increased absorption of glucose from
PD fluids and premature loss of the glucose osmotic gradient
necessary for ultrafiltration and fluid removal, thus impairing PD
org 2
(26, 27). Indeed, the density of peritoneal microvessels predicts
glucose transport independent of other factors (25). On the
molecular level, VEGF is the best characterized mediator of
angiogenesis (28) and it plays a role in peritoneal membrane
dysfunction in PD (17, 29, 30). Prior studies identified the
mesothelium as an important source of VEGF in the
peritoneum and deciphered pathways of VEGF induction
during PD (16, 17, 31–34). However, VEGF is not the only
mediator of angiogenesis and prior attempts to inhibit VEGF in
cancer revealed the existence of alternative VEGF-independent
angiogenic programs, including one that can be initiated by
IL-17 (35). Interestingly, CXCL1 exhibits proangiogenic
activity that is related to presence of the three amino acid
motif ELR (Glu-Leu-Arg) in its N-terminal domain (36–38).
Proangiogenic activity of ELR+-CXC chemokines has been
documented in tumorigenesis, corneal neovascularization, and
pulmonary fibrosis (39, 40). CXCL1 is a potent neutrophil
chemoattractant (41) that can be induced in human peritoneal
mesothelial cells (HPMCs) upon stimulation with pro-
inflammatory cytokines, such as TNFa, IL-1b and IL-17 (42–
44). Mesothelial cell-derived CXCL1 plays the fundamental role
in peritoneal host defence by recruiting neutrophils and enabling
them to form elaborate traps for invading microorganisms on the
mesothelial cells surface (45). However, little is known about
whether CXCL1 can promote peritoneal angiogenesis during PD.

Recently, we have characterized the mechanism by which IL-
17 induces CXCL1 in HPMCs and how this contributes to
neutrophil recruitment during peritonitis (43, 46). Here, we
have examined how IL-17-induced CXCL1 is involved in
peritoneal angiogenesis in PD.
METHODS

Patient Characteristics and Peritoneal
Biopsy Collection
Peritoneal biopsies were collected by the International Peritoneal
Biobank in accordance with the Declaration of Helsinki and
according to the standardized protocol registered at www.
cl inicaltr ials .gov (NCT01893710) (25). The patient
characteristics are summarized in Table 1. For the current
analysis, samples from 13 children with stage 5 chronic kidney
disease (CKD5) and 43 children on chronic PD were selected.
February 2022 | Volume 13 | Article 821681

http://www.clinicaltrials.gov
http://www.clinicaltrials.gov
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Catar et al. CXCL1 in Peritoneal Angiogenesis
Groups were carefully matched by age to normalize for any
changes in the density of peritoneal capillaries that may occur
with age (47). Samples from CKD5 patients were collected at the
time of the catheter insertion in preparation for PD. In the PD
group, samples were obtained from children dialyzed with
neutral-pH low-GDP fluids for no less than one month. The
specimen was taken at a distance of at least 5 cm from the
catheter exit site. Patients with a history of recent (<5 weeks)
peritonitis were included only if successfully treated and
fully recovered.
Frontiers in Immunology | www.frontiersin.org 3
Tissue Immunohistochemistry
Tissue staining was performed on formalin fixed, paraffin
embedded 3 µm-thick tissue slices according to standard
procedures. Following dewaxing, rehydrating, exposure to
antigen retrieval buffer (Dako, Agilent, Santa Clara, CA, USA)
and blocking of endogenous peroxidases (Dako REAL®,
Agilent), primary antibodies in a background-reducing diluent
(Agilent) were applied at 4°C overnight. The diluent with no
antibody was used as a negative control. Appropriate
biotinylated secondary antibodies were applied at room
A

D

B C

FIGURE 1 | Clinical background and studied mechanism. (A) Global prevalence of hemodialysis (HD) and peritoneal dialysis (PD) (top left panel): hemodialysis is the
most common method of RRT, while PD is thought to be underutilized by only ~11% of patients (8, 9). (B) Visualization of the PD principle (top central panel):
Dialysis fluid is infused into the peritoneal cavity through a catheter. The fluid absorbs toxic waste products and excess water from blood vessels of the peritoneum
and then is drained into the effluent bag. (C) Medical need (top right panel): The long-term efficacy of PD is hampered by loss of the ultrafiltration capacity of the
peritoneal membrane due to detrimental remodelling and angiogenesis. (D) Cellular and molecular mechanism underlying peritoneal angiogenesis studied in this
manuscript (lower panel): The cytokine interleukin 17 (IL-17) acts on peritoneal mesothelial cells and activates the nuclear transcription factor SP1, which leads to
CXCL1 promoter activation, mRNA production, protein synthesis and release into the extracellular space. The released CXCL1 is a potent angiogenic stimulus, and
the amount of CXCL1 in the peritoneal membrane correlates with the density of peritoneal microvessels.
February 2022 | Volume 13 | Article 821681
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temperature for 30 minutes, followed by the avidin-biotin
complex (Vector Labs, Burlingame, CA, USA) and 3′,3′-
diaminobenzidine (DAB+, Agilent). Cell nuclei were
counterstained with haematoxylin (Leica, Wetzlar, Germany).
All antibodies are listed in Table 2.

Histological images were captured at 20× or 40×
magnification (resolution 0.46 mm/pixel) using the Hamamatsu
NanoZoomer 2.0-HT Scan System (Hamamatsu Photonics,
Hamamatsu, Japan). All staining was digitally analysed using
Aperio® Precision Image Analysis Software and Image Scope
version 11 (Aperio® Technologies, Inc., Vista, CA, USA),
applying algorithms, as described previously (47).

Human Peritoneal Mesothelial Cell Culture
HPMCs were isolated from the specimens of omentum obtained
from consenting patients undergoing elective abdominal surgery,
as described elsewhere (16, 48). The cells were rendered
quiescent by serum deprivation for 48 hours and then
stimulated with recombinant cytokines (all from R&D Systems,
Bio-Techne; Wiesbaden, Germany) or dialysate effluent, as
specified in the legends to figures. All experiments were
performed with cells no older than from the third passage to
minimize the number of senescent cells.
Frontiers in Immunology | www.frontiersin.org 4
Endothelial Cell Culture and Tube Assay
Human microvascular endothelial cells (HMECs; catalogue no.
CRL-3243) were purchased from ATCC® (Manassas, VA, USA)
and used at passages 2–6 (19). Endothelial tube formation assays
were performed as introduced earlier (17, 19, 49). Briefly,
Matrigel (Corning, Tewksbury, MA, USA) was poured into a
96-well plate (50 µl/well) and solidified at 37°C for 30 min.
HMECs were seeded onto the Matrigel at density of 2×104 cells/
well (50) and cultured in MCDB131 medium (Thermo Fisher
Scientific, Waltham, MA, USA) with or without 10% (v/v)
conditioned medium from HPMCs pre-treated as described in
the figure legends. Capillary networks of tubes formed were
photographed under the microscope (Zeiss Axiovert 40 CFL
Oberkochen, Germany) and five randomly selected fields from
each well were analysed for the number of newly formed
segments, junctions and meshes, using the Angiogenesis
Analyzer on ImageJ 1.43 software (National Institutes of
Health, Bethesda, MD, USA), as exemplified in Figure 3B.

Gene Expression Analysis and
Transfection Studies
Gene expression was assessed with reverse transcription
quantitative PCR (RT-qPCR), as described earlier (16, 17, 19,
TABLE 2 | List of antibodies used in this study.

Antibody Type/Clone Source Application Dilution/
Concentration

CXCL1 Rabbit polyclonal IgG Abcam, Cambridge, UK; (#ab86436) IHC 1:500
CXCL1 Polyclonal goat IgG R&D Systems, Bio-Techne, Wiesbaden, Germany;

(#BAF275)
Blocking 1 µg/mL

Isotype IgG control for anti-
CXCL1

Polyclonal goat IgG Thermo Fisher Scientific, Waltham, MA, USA;
(#02-6202)

Blocking 1 µg/ml

CD31 Mouse monoclonal (clone JC70A) IgG Agilent, Santa Clara, CA, USA; (#M0823) IHC 1:25
IL-17 Mouse monoclonal (clone 4K5F6) IgG Abcam, Cambridge, UK; (#ab189377) IHC 1:50
IL-17 Mouse monoclonal (clone 41802) IgG R&D Systems, Bio-Techne, Wiesbaden, Germany;

(#MAB3171)
Blocking 0.5 µg/mL

Isotype IgG control for anti-
IL17

Mouse monoclonal (clone #11711) IgG R&D Systems, Bio-Techne, Wiesbaden, Germany;
(#MAB002)

Blocking 0.5 µg/ml

CD45 Mouse monoclonal (clone 2B11 + PD7/
26) IgG

Agilent, Santa Clara, CA, USA; (#M0701) IHC 1:100

Secondary anti-mouse Goat anti-mouse IgG Vector Laboratories, Burlingame, CA, USA IHC 1:100
Secondary anti-rabbit Goat anti-rabbit IgG Vector Laboratories, Burlingame, CA, USA IHC 1:300
February 2022
 | Volume 13
IHC, immunohistochemistry; IgG, immunoglobulin G; CD31/45, clusters of differentiation number 31 or 45; IL-17, interleukin 17; and CXCL1, CXC chemokine ligand 1.
TABLE 1 | Patient characteristics and functional parameters related to PD and CKD5.

Patient Parameter CKD5 (n=13) PD (n=43) P-value

Age (years) 8.2 (1.8, 12.9) 6.0 (2.5, 12.2) 0.897
PD duration (months) n.a. 15 (7, 32) n.a.
Glucose exposure (g/day/m2) n.a. 103 (68, 152) n.a.
Albumin (g/l) 37.5 (33.2, 42.6) 34.5 (30.2, 38.6) 0.198
Creatinine (mg/dl) 5.2 (3.8, 7.6) 6.8 (4.2, 8.6) 0.265
Hb (g/dl) 11.0 (10.7, 12.1) 11.3 (10.0, 11.9) 0.853
Ca (mmol/l) 2.4 (2.2, 2.5) 2.4 (2.3, 2.5) 0.538
P (mmol/l) 1.9 (1.6, 2.1) 1.6 (1.3, 1.9) 0.131
PTH (pmol/l) 26 (19, 41) 23 (12, 49) 0.649
BUN (mg/dl) 44.8 (29.9, 70.0) 42.5 (27.0, 56.9) 0.432
History of peritonitis (n, %) n.a. 12 (28%) n.a.
| Article
Data presented as medians with interquartile range; CKD5, chronic kidney disease stage 5; PD, peritoneal dialysis; Hb, hemoglobin; Ca, calcium; P, phosphorus; PTH, parathyroid
hormone; and BUN, blood urea nitrogen.
821681
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51). PCR primer sequences were as follows: b2-microglobulin
(b2M ; GenBank NM_004048.2) forward primer 5 ’-
GTGCTCGCGCTACTCTCTCT-3’ and reverse primer (5’-
CGGCAGGCATACTCATCTTT -3’), and CXCL1 (GenBank
NM_001511.4) forward primer 5’- AGGGAATTCACCCC
AAGAAC-3’) and reverse primer 5’- TAACTATGGGGGA
TGCAGGA-3’. Transient transfection and luciferase assays
were performed as previously described in detail (16, 19).
Transfections with siRNAs were performed with the siRNA
Transfection Reagent and siRNAs for CXCL1 (sc-43816), SP1
(sc-29487), or with scrambled siRNA control (sc-37007), as per
manufacturer’s instructions (all materials were from Santa Cruz
Biotechnology (Heidelberg, Germany).

Immunoassays
The CXCL1 concentration in cell culture supernatants was
measured using a DuoSet Immunoassay Kit (R&D Systems,
Bio-Techne; Wiesbaden, Germany) (43, 44).

Peritoneal Dialysis Effluent
Samples of peritoneal dialysis effluent (PDE) were collected and
processed essentially as described previously (52). Cytokine
concentrations in PDE were measured using Quantikine ELISA
kits (R&D Systems, Wiesbaden, Germany). An exemplary
infected PDE was collected from a patient presenting with an
episode of acute Enterobacter cloacae-induced peritonitis.
Cytokine concentrations in this PDE were as follows: IL-17 – 4
pg/ml, TNFa – 231 pg/ml, and CXCL1 - 471 pg/ml. In addition,
PDE was collected from 3 stable patients on PD after a routine
overnight PD. PDE from these patients did not contain
detectable amounts of IL-17, IL-1b, and TNFa.

Statistics
Statistical analysis was performed using GraphPad Prism 9.3.0
software (GraphPad Software, La Jolla, CA, USA). Data from in
vitro experiments were analysed with ANOVA. Human samples
were analysed the Mann-Whitney test, Fisher’s test and
Spearman correlation. Results from in vitro experiments were
expressed as the mean (± SD) fold change from the control.
Other results are presented as specified in the legends to figures
and tables. Findings with a P value <0.05 were considered
significant. Asterisks represent P values as follows: * for
P<0.05, ** for P<0.01, *** for P<0.001, and **** for P<0.0001.
RESULTS

Clinical Background and Patient
Description
In addition to the pre-existing high incidence of CKD and
socioeconomic burden of RRT (1–3), the recent COVID-19
pandemic has led to a further increase in kidney disease cases,
with 25% requiring RRT (4). Hemodialysis (HD) is the most
common method of RRT (8, 9), while PD is used by ~11% of
patients worldwide (with large regional differences ranging from
0% to 75%) (9) (Figure 1A). Being more suited for ‘home
Frontiers in Immunology | www.frontiersin.org 5
dialysis’, PD may reduce the risk of virus transmission to
susceptible patients. A visualization of the PD method is
shown in Figure 1B. Briefly, a dialysis fluid is infused into the
peritoneal cavity of the abdomen through an implanted catheter.
The fluid absorbs toxic waste products and excess water from
blood vessels in the peritoneum and then is drained into the
effluent bag. The long-term efficacy of the PD process is
considerably hampered by the adverse structural remodelling
and angiogenesis in the peritoneal membrane (Figure 1C),
which substantially compromises its ultrafiltration capacity.
Here, we show that inflammatory mediators acting on the
mesothelium upregulate CXCL1, which in turn can promote
the maladaptive angiogenesis that considerably impairs long-
term PD efficacy (Figure 1D).

Detailed patient characteristics are summarized in Table 1.
For the comparative in vivo analysis in this study, the samples
from 13 children with stage 5 CKD (CKD5; samples collected at
time of catheter insertion for PD) and 43 children on chronic PD
(with a median PD duration of 15 months and with a median
glucose exposure of 103 g/day/m2) were selected. Both groups
were carefully matched by age to normalize for any changes in
the density of peritoneal capillaries that may occur with age
(median age 8.2 and 6.0 years, for CKD5 and PD patients,
respectively, P=0.897) (47). There were no apparent differences
in the levels of serum albumin, creatinine, hemoglobin (Hb),
calcium (Ca), phosphorus (P), parathyroid hormone (PTH), and
blood urea nitrogen (BUN) between the two groups.

CXCL1 Expression Correlates With
Peritoneal Vascularity in Biopsy Material
First of all, we found that the peritoneum of both PD and CKD5
patients showed an extensive strong positive staining for CXCL1
(Figure 2A) with higher peritoneal CXCL1 expression in
patients treated with PD, as quantified with observer-
independent whole tissue digital image analysis (P<0.05,
Figure 2G). This was evident in both mesothelial cells and
submesothelial tissue. The difference in CXCL1 between PD
and CKD5 patients was accompanied by a similar difference in
the density of peritoneal microvessels (P<0.05, Figures 2B, H).
In an undivided group of PD and CKD5 patients, total peritoneal
area staining for CXCL1 was associated with the density of
CD31-positive microvessels (Spearman’s correlation r=0.40 and
P=0.007, Figure 2C). This relationship was even stronger when
expression of CXCL1 in the submesothelial tissue was tested
(Spearman’s correlation r=0.618, n=45, P<0.0001, not shown).
This may be due to the fact that in many specimens the surface
mesothelium was not completely preserved (25). Samples with a
discontinuous mesothelial monolayer were found more often in
PD patients than in CKD5 patients (22/43 vs. 0/13, respectively,
P=0.0007 obtained with Fisher’s test). In our earlier study we
have occasionally observed incomplete mesothelial coverage of
the peritoneum both in CKD5 patients and in healthy controls
(25). In addition, peritoneal CXCL1 correlated with the number
of CD45-positive leukocytes (Spearman’s correlation r=0.32,
n=45, P<0.05, Figures 2D, F), which were more abundant in
PD patients than in CKD5 patients (P=0.0029; numbers per high
February 2022 | Volume 13 | Article 821681
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power field (hpf) being 16 ± 12 vs. 4 ± 2, respectively). Only a
weak staining for IL-17 (<0.5% positive area per peritoneal tissue
area) could be detected in both PD and CKD5 patients
(Figure 2E), with no major difference between the groups (ns,
Figure 2I). In addition, in the analysed group of 43 PD patients,
peritoneal expression of CXCL1 did not significantly correlate
with the duration of therapy, the number of peritonitis episodes,
or the total dialysis exposure to glucose (Table 3).

Mesothelial Cell-Conditioned Medium and
Peritoneal Dialysate Promotes Endothelial
Tube Formation by Microvascular HMECs
in an IL-17 and CXCL1-Dependent Manner
To establish whether the observed association between CXCL1
expression and the density of peritoneal microvasculature in
Frontiers in Immunology | www.frontiersin.org 6
patients could be of a causal nature, we assessed the potential of
CXCL1 to induce angiogenesis by using an in vitro endothelial
tube formation assay, as employed in earlier studies by our group
(17, 19, 49).

Indeed, under these conditions recombinant CXCL1 was
found to promote tubular endothelial morphogenesis in as
dose-dependent manner (Figures 3A, B). At the highest
concentration of CXCL1 tested (1000 pg/ml), the total length
of newly formed endothelial segments was almost twice as much
as in untreated controls (P<0.01, Figure 3B). These segments
were more connected to form junctions and meshes. The length
of segments correlated strongly with both the number of
junctions (Spearman r=0.86, p<0.0001) and the number
of meshes (Spearman r=0.91, p<0.0001). Therefore the results
of subsequent experiments were expressed as changes in the total
A B C

D E F

G H I

FIGURE 2 | Correlation between peritoneal CXCL1 expression and CD31+ microvessels and CD45+ leukocyte infiltration in PD patients and CKD5 individuals.
Peritoneal histology analysis comparing peritoneal dialysis (PD; n=43) patients and chronic kidney disease stage 5 (CKD5; n=13) patients before initiation of PD for
expression of CXCL1, CD31, CD45 and IL-17: (A, B) Representative immunostaining for (A) CXCL1 (insets focusing on the mesothelium, magnification 20× or 40×
in insets) and (B) CD31+ microvessels and (C) Spearman correlation between peritoneal CXCL1 staining and density of CD31-positive microvessels; and (D, E)
Representative immunostaining for (D) CD45 and (E) IL-17 and (F) Spearman correlation between peritoneal CXCL1 staining and number of CD45-positive
leukocytes; and (G, H, I) Violin plots with quantification of obtained results for CXCL1, CD31, and CD45, depicting the individual measurements, medians and
quartiles.
February 2022 | Volume 13 | Article 821681
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segment length. Since we had previously observed that
comparable amounts of CXCL1 could be secreted by HPMCs
in response to IL-17 (43, 44), we next exposed HMECs to
conditioned medium (CM) from HPMC stimulated with IL-17.
Interestingly, the formation of endothelial tubes by HMECs
treated in this manner increased in proportion to the dose of
IL-17 used for HPMC stimulation (P<0.05, Figure 4A).

If, however, HPMC were stimulated with IL-17 in the
presence of anti-IL-17 antibody, the strong upregulation of
CXCL1 mRNA expression and CXCL1 protein release by
HPMCs (4-fold and 37-fold increase, respectively) was reduced
by approximately 45% (P<0.0001 for both, Figure 4B) and the
subsequent angiogenesis-promoting effect of CM was largely
abolished (P<0.05, Figure 4C). Importantly, the use of a non-
specific control antibody did not produce such an inhibition.

In order to determine whether the stimulatory effect of IL-17
was indeed mediated by CXCL1, the CM from IL-17-treated
HPMCs was applied to HMECs together with CXCL1-
neutralizing antibody (Figure 5). Indeed, the presence of anti-
CXCL1, but not of control IgG, significantly reduced the
stimulation of endothelial tube formation (P<0.05, Figure 5A).
A similar inhibition of mesothelial CXCL1 induction occurred
Frontiers in Immunology | www.frontiersin.org 7
when the CM was collected from HPMCs treated with IL-17 in
the presence of CXCL1-targeting siRNA, but not by the
unspecific scrambled control siRNA. In this case, both the
expression of CXCL1 mRNA in HPMCs (P<0.0001, Figure 5B)
and the release of CXCL1 protein by HPMC (P<0.0001,
Figure 5C) and the subsequent degree of endothelial tube
formation was significantly reduced (P<0.01, Figure 5D).

Since the production of CXCL1 by IL-17-stimulated HPMC
was previously found to be controlled by the transcription factor
SP1 (43), we also obtained the CM from HPMCs with SP1
transiently silenced with the appropriate siRNA (Figures 5B–D).
Similarly, these cells expressed significantly less CXCL1 mRNA
(P<0.0001, Figure 5B) and produced less CXCL1 protein
(P<0.0001, Figure 5C) and the resultant angiogenic potential
of their CM was also markedly reduced (P<0.01, Figure 5D).

CXCL1 can be induced in HPMCs in vitro not only in
response to recombinant IL-17, but also to IL-17-containing
peritoneal effluent from PD patients with peritonitis (43). Thus,
we treated HPMCs with such a PD effluent (25% v/v) to generate
CM (Figures 5E–G). When applied onto HPMCs, this PD
effluent promoted a strong induction of CXCL1 mRNA
(P<0.0001, Figure 5E) and CXCL protein (P<0.0001,
A

B

FIGURE 3 | CXCL1 promotes tube formation by microvascular endothelial cells. (A) Representative microscopic images of HMECs (magnification 100x) embedded
in Matrigel and treated for 16 hours with recombinant human CXCL1 at doses indicated; and (B) Quantification of the total segment length, and the number of
junctions and meshes in CXCL1-treated HMECs (n=4, ANOVA) and an exemplary analysis of the parameters characterizing the endothelial network using the
Angiogenesis Analyzer on ImageJ software. *P < 0.05 and **P < 0.01.
TABLE 3 | Correlation between the abundance of peritoneal CXCL1 staining and selected clinical parameters in PD patients (n=43).

Parameter Spearman’s rank correlation coefficient P-value

Patients’ age (years) -0.0959 0.5952 (ns)
PD duration (months) 0.1035 0.5666 (ns)
Total dialytic glucose exposure (g) 0.0190 0.9205 (ns)
Number of peritonitis episodes (n) 0.0982 0.5991 (ns)
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Figure 5F). Importantly, when the CM from these HPMCs was
added to microvascular HMECs, it promoted a strong angiogenic
response (P<0.0001, Figure 5G), and again this effect could be
partially blocked when the anti-IL-17 antibody was added to PD
effluent used to generate CM by HPMCs (P<0.01, Figure 5G).

Moreover, when the process of medium conditioning was
performed on HPMCs treated with CXCL1-siRNA or SP1-
siRNA, but not with the corresponding scrambled control
siRNA, both CXCL1 mRNA induction and protein secretion,
as well as endothelial tube formation-promoting activity of the
CM was reduced to control levels (P<0.0001 and P<0.01,
respectively, Figures 5E–G).

Next, we studied the potential consequences of elevated IL-17
presence in the (inflamed) peritoneum. The levels of IL-17 in
peritoneal dialysis effluent (PDE) follow temporary peaks in
patients with acute peritonitis (53, 54). However, these are rare
events with approximately 0.5 episodes per patient-year (55), so
the experiments shown in Figures 5E–G were performed with
PDE from a single donor with high IL-17 levels. On the other
Frontiers in Immunology | www.frontiersin.org 8
hand, IL-17 concentrations often fall below the detection limit in
PDE from stable donors without ongoing infection. Indeed,
when studying PDE from non-infected PD patients we did not
find any detectable amounts of IL-17 (data not shown) and such
fluids did not promote CXCL1 secretion when added to HPMCs
in culture (Figure 6). However, when these PDEs were spiked
with increasing doses of IL-17, they began to stimulate CXCL1
secretion by HPMCs in an IL-17 dose-dependent manner, thus
confirming the importance of IL-17 for CXCL1 induction in the
peritoneal milieu established in the earlier experiments.
DISCUSSION

Kidney disease is now recognized as a major public health
burden (1–3). The population prevalence of CKD is ~10% (1).
The number of patients with CKD requiring RRT is rising
steadily and projected to reach 5.4 million by 2030 (2). The
situation has been aggravated by the recent SARS-CoV-2/
A

B C

FIGURE 4 | Conditioned medium from Il-17-stimulated mesothelial cells promotes tube formation by microvascular endothelial cells in an IL-17-dose dependent
manner. Conditioned medium (CM) was collected from HPMCs treated with IL-17 for 24 hours and then added (10% v/v) to HMECs in Matrigel. After another 16
hours, the HMEC network was analysed; (A) Quantification of total segment length in HMECs exposed to CM from HPMCs stimulated with IL-17 at the indicated
doses. In control, HMECs were incubated with CM derived from HPMCs not exposed to IL-17 (n=3, ANOVA). Representative images of thus treated HMECs are
presented; (B) CXCL1 mRNA levels (fold change) and cytokine levels (pg/µg of cell protein) in HPMCs stimulated with IL-17 (100 ng/ml) for 24 hours in the presence
of either IL-17-blocking antibody or irrelevant (irr.) control antibody at the same dose of 1 µg/ml (n=6, ANOVA); and (C) CM generated as in B was added (10% v/v)
to HMECs for 16 hours and total segment lengths were assessed. In control, HMECs were treated with CM from unstimulated HPMCs (n=4-8, ANOVA vs. cells
exposed to CM from HPMCs treated with IL-17 alone). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001; ns, not significant.
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COVID-19 pandemic, which has led to an increase in new cases
of kidney disease (3), almost 25% of whom will require RRT (4).
Thus, increased scientific efforts are currently ongoing to
improve already existing well-established RRT methods, such
as HD and PD, and to develop novel technologies (e.g. cellular
therapy) to maintain, improve, or replace (lost) kidney
(transplant) function (8, 56–58).

The socioeconomic burden of RRT is high, since conventional
HD is rather costly for healthcare providers, with substantial
differences in funds available per capita across different countries
(58). As alternative to HD (8), PD is a well-established and viable
option for home RRT, which minimizes potential virus exposure
and the associated health risks (10–15). However, its long-term
use is limited due to the decline in peritoneal ultrafiltration that
typically occurs 2-4 years after initiation of PD (22).
Frontiers in Immunology | www.frontiersin.org 9
Surprisingly, even PD using dialysis fluids regarded as
biocompatible seems to induce early alterations and
angiogenesis in the peritoneal membrane (25), which may
initiate or accelerate the deterioration in peritoneal function.
Such observations underline the need for more detailed studies of
the angiogenesis pathways.

While it is recognized that the gradual decline in peritoneal
membrane function during PD is partly due to adverse tissue
remodeling and angiogenesis (21), the molecular mechanisms
underlying these processes are still poorly understood to date
(59). So far, vascular changes in the dialyzed peritoneum have
been analysed almost solely in relation to VEGF expression (17).
Although the role of VEGF in peritoneal angiogenesis is
supported by the relationship between VEGF levels and solute
transport rates (25, 60, 61), the involvement of other angiogenic
A C DB

E GF

FIGURE 5 | CXCL1 is a mediator of angiogenesis in mesothelial cell conditioned medium stimulated with either recombinant IL17 or IL-17-containing peritoneal
dialysate. (A) HMECs were exposed for 16 hours to CM from IL-17-stimulated HPMCs in the presence of either CXCL1-neutralizing antibody or irrelevant (irr.) control
IgG at the same dose (1 µg/ml), and analysed for total segment length. In control, HMECs were incubated with CM derived from HPMCs not exposed to IL-17 (n=4,
ANOVA); and (B, C) HPMCs were transiently transfected with 10 nM CXCL1 siRNA, SP1 siRNA or scrambled (scramb.) control siRNA and then stimulated with IL-
17 (100 ng/ml) for 24 hours and assessed for CXCL1 mRNA or protein expression (fold change or pg/ug of protein, respectively; n=6, ANOVA); and (D) CM
generated as generated in (B, C) was added (10% v/v) to HMECs for 16 hours and total segment lengths were assessed. In control, HMECs were treated with CM
from unstimulated HPMCs (n=4-8, ANOVA); and (E, F) CXCL1 mRNA and protein levels in HPMCs incubated for 24 hours with PD effluent (PDE, 25% v/v) from a
patient with acute peritonitis. HPMCs were either transiently transfected with 10 nM siRNAs (CXCL1, SP1, scrambled control) or exposed to PDE in the presence of
anti-IL-17 antibody or control IgG (1 µg/ml); and (G) CM generated as in (E, F) was added (10% v/v) to HMECs for 16 hours and total segment lengths were
assessed. Data are presented as the mean (± SD) fold change from HMECs exposed to CM from HPMCs treated with PDE alone (n=4-8, ANOVA). *P < 0.05,
**P < 0.01, ***P < 0.001, and ****P < 0.0001.
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factors has not yet been investigated in detail. The present study
demonstrates the angiogenic potential of the mesothelium-
derived chemokine CXCL1 in vitro and reveals its association
with the density of peritoneal vasculature in patients on PD.

ELR+-CXC chemokines, as exemplified by CXCL1, have shown
their potent angiogenic activity in contexts other than PD (36, 37,
39, 40) either by directly stimulating endothelial cells or by
recruiting leukocytes, which then release other angiogenic
stimuli, including VEGF (62). Here, we show that CXCL1
secreted by HPMCs can directly promote endothelial tube
formation of microvascular HMECs. The mechanisms by which
CXCL1 acts on endothelial cells are initiated by signalling through
CXCR2 receptor (39) and include reorganization of cytoskeleton,
activation of extracellular signal-regulated protein kinases,
enhanced cell proliferation, and migration (63).

Secreted CXCL1 is largely immobilized on cell surfaces or
extracellular matrix, including mesothelial cells and the
peritoneum (43, 45). Indeed, in the peritoneal biopsy analysis
we have observed an extensive presence of CXCL1 in both the
mesothelium and the submesothelial tissue. Importantly, by
interacting with various glycosaminoglycans (64), CXCL1 can
Frontiers in Immunology | www.frontiersin.org 10
be retained in select tissue compartments, which facilitates the
formation of gradients guiding the migration of CXCR2-
expressing leukocytes or endothelial cells.

In addition, CXCL1 is possibly produced more extensively by
HPMCs that have undergone epithelial-to-mesenchymal
transition (EMT) and have migrated from the peritoneal
surface into the interstitium (65). This would explain the
abundant CXCL1 staining even in samples without the
preserved mesothelial monolayer, as shown in the present
study. Interestingly, it has been observed previously that PD
patients with evidence of EMT had more microvessels in the
submesothelial area compared to patients without EMT (25).
Also cells other than mesothelial cells, such as peritoneal
fibroblasts (52), macrophages (66, 67), and endothelial cells
(68), can contribute to the peritoneal production of CXCL1.

Both ELR+-CXC chemokines and VEGF can interact during
angiogenesis by triggering each other’s expression or by
modulating the signalling from their receptors (62). The extent
of these interactions is further modulated by the local specificity
of endothelial cells involved and the underlying pathological
condition. Additional level of regulation may be related to the
type of stimulus for angiogenic factor production. In this respect,
IL-17 has drawn attention as a trigger for mobilization and
recruitment of myeloid cells capable of secreting angiogenic
factors independent of VEGF (35). To study the interplay
between of VEGF and other angiogenic factors and the exact
involvement of IL-17 requires further in-depth in vitro studies
and validation by ex-vivo analysis of human peritoneal tissue.

The importance of IL-17 for intraperitoneal homeostasis in
PD is increasingly recognized (46). While IL-17-producing TH17
and gd T cells are found in the peritoneum only sporadically in
healthy individuals, they seem to gradually accumulate in the
dialyzed peritoneum, which correlates with inflammation and
fibrosis (69). It has been demonstrated that differentiation of
naïve T-cells into TH17 cells can be a consequence of PD fluid-
induced osmotic and oxidative stress (70).

In this study, we focused on the effect of IL-17 on mesothelial
cells, as they are one of the main producers of peritoneal CXCL1,
as also shown in our patient peritoneal biopsy analysis. Although
IL-17 can act directly on endothelial cells to stimulate CXCL1
(71), the contribution of this pathway is probably of lesser
significance given that the conditioned medium from IL-17-
stimulated mesothelial cells with silenced CXCL1 gene
expression did not promote endothelial angiogenesis. This
observation indicates that IL-17 present in the conditioned
medium had a negligible effect on the endothelium.

In the future, it may be of particular interest to investigate
how peritoneal expression of CXCL1 changes with time on PD,
as compared to changes in microvascular density and specific
dialysis parameters. This may require longitudinal studies both
in children and adults, as the immune response to PD and CKD
may change with age. The tissues in children are uniquely suited
to study CKD- and PD-induced peritoneal alterations, since they
are hardly affected by lifestyle- and aging-related factors, and the
diseases requiring RRT (such as congenital abnormalities of the
kidney and urinary tract) do not per se affect the peritoneum.
FIGURE 6 | Spiking of recombinant IL-17 into peritoneal dialysis effluent
promotes CXCL1 induction in a dose-dependent manner. PDEs from stable
non-infected PD patients (n=3) were spiked with increasing doses of IL-17 (1,
10, 100 ng/ml) and applied to HPMC cultures with readout of CXCL1 protein
production (pg/µg of protein) 24 hours later. ***P < 0.001, ****P < 0.0001;
ns, not significant.
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Although the density of peritoneal blood capillaries changes
with age in a U-shaped fashion (47), age alone did not predict
peritoneal vessel density in multivariate analysis in children on
PD (25). Still, in the smaller cohort of patients studied here, we
can not rule out that age-related differences in vascular density
may have masked the effects related to PD exposure. This may
partially explain the lack of a clear correlation in our cross-
sectional analysis between the time spent on PD and
CXCL1 expression.

Due to the apparent toxicity of GDPs, fluids low in GDPs are
increasingly used in clinical practice in most European dialysis
centres (25). All children analysed in the present study were
treated with such solutions. However, it has recently been
demonstrated that even fluids with neutral pH and low GDP
can induce substantial peritoneal angiogenesis, together with
cellular infiltration, cytokine release and EMT (25). Thus, the
role of CXCL1 could be of particular relevance in patients treated
with such fluids.

In contrast, in children dialyzed with fluids with a high GDP
content, angiogenesis and inflammatory cell infiltration is less
pronounced, but associated with a diminished immune response,
activation of cell death pathways and fibrosis, and accelerated
arteriolopathy with significant lumen narrowing (72). Likewise,
rapidly progressing peritoneal hyalinizing vasculopathy with no
consistent increase in the number of CD31-positive vessels has
been reported in adult patients treated with high GDP-
containing fluids (73, 74). Thus, it becomes clear that further
research in this direction is essential to understand
this phenomenon.
CONCLUSIONS AND LIMITATIONS

We here show that CXCL1 induced by IL-17 in mesothelial cells
displays angiogenic activity, which further adds to the
complexity of mechanisms controlling vascular remodelling in
the dialyzed peritoneum. This aspect of peritoneal angiogenesis
control should be anticipated and understood in order to
mitigate the adverse consequences of increased vascularity for
PD. The main finding of this study is the apparent association
between the extent of peritoneal CXCL1-positive staining and
peritoneal vascularity and, secondly, the observation that CXCL1
expression and the density of microvessels increase in PD as
compared to patients with CKD5, pointing to a PD-specific
aspect of the CXCL1-induced peritoneal angiogenesis.
Furthermore, we verified the relationship between observations
in patients by detailed studies of the corresponding mechanisms
studied in vitro. Based on our prior studies (43), we have chosen
to employ IL-17 as one representative inducer of CXCL1 in the
PD setting. However, also other factors, such as TNFa and IL-6,
can have a triggering or amplifying effect on endothelial
dysfunction in the context of (hemo)-dialysis (8). While the in
vitro induction and blocking experiments using the peritonitis
effluent clearly demonstrate the pro-angiogenic potential of the
IL-17/CXCL1 axis, the histological material from a rather small
group of PD patients showed no apparent association between
Frontiers in Immunology | www.frontiersin.org 11
peritoneal IL-17 expression and vascularity. However, in a
previous study on a larger cohort of PD patients treated with
both low- and high-GDP fluids, the abundance of peritoneal IL-
17 indeed correlated with microvessel density (72), thus
supporting our current results. As PD-associated peritoneal
remodeling develops gradually over the years, we are now
conducting additional studies in a larger group of patients to
characterize the time course of CXCL1- and VEGF-induced
peritoneal angiogenesis, relative to inflammatory pathways.
These findings should provide an interesting starting point for
future interventions aiming at preserving long-term peritoneal
membrane integrity and function.
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