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Patients with severe chronic graft-versus-host disease (cGVHD) always experience
debilitating tissue injury and have poorer quality of life and shorter survival time. The
early stage of cGVHD is characterized by inflammation, which eventually leads to
extensive tissue fibrosis in various organs, such as skin and lung, eventually inducing
scleroderma-like changes and bronchiolitis obliterans syndrome. Here we review the
functions of serum/glucocorticoid regulated kinase 1 (SGK1), a hub molecule in multiple
signal transduction pathways and cell phosphorylation cascades, which has important
roles in cell proliferation and ion channel regulation, and its relevance in cGVHD. SGK1
phosphorylates the ubiquitin ligase, NEDD4, and induces Th cells to differentiate into Th17
and Th2 phenotypes, hinders Treg development, and promotes inflammatory fibrosis.
Phosphorylation of NEDD4 by SGK1 also leads to up-regulation of the transcription factor
SMAD2/3, thereby amplifying the fibrosis-promoting effect of TGF-b. SGK1 also up-
regulates the inflammatory transcription factor, nuclear factor-kB (NF-kB), which in turn
stimulates the expression of multiple inflammatory mediators, including connective tissue
growth factor. Overexpression of SGK1 has been observed in various fibrotic diseases,
including pulmonary fibrosis, diabetic renal fibrosis, liver cirrhosis, hypertensive cardiac
fibrosis, peritoneal fibrosis, and Crohn’s disease. In addition, SGK1 inhibitors can
attenuate, or even reverse, the effect of fibrosis, and may be used to treat inflammatory
conditions and/or fibrotic diseases, such as cGVHD, in the future.

Keywords: serum/glucocorticoid regulated kinase 1 (SGK1), graft-versus-host disease (GVHD), Th2 cell, Th17 cell,
fibrosis, transplant, autoimmune
INTRODUCTION

With the increasing clinical application of haploidentical hematopoietic stem cell transplantation,
the incidence of chronic graft-versus-host disease (cGVHD) is increasing annually. Transplant
recipients with cGVHD have a reduced quality of life and an increased risk of long-term morbidity
and mortality compared with those without cGVHD (1). Patients with mild or moderate cGVHD
may have longer survival due to a lower relapse rate, but patients with severe cGVHD have poorer
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quality of life and shorter survival time. The manifestations of
cGVHD are heterogeneous and involved in most tissues. The
typical performances include skin lichenoid plaques and
sclerosis, sicca symptoms in the eyes, fibrosis in joints, skin
and lung. It is generally recognized that the pathophysiological
processes of cGVHD include three phases: (a) early
inflammation due to tissue injury, (b) thymic injury and T cell
and B cell dysregulation, and (c) fibrosis (2). The above stages
can exist independently or overlap with others. Not all stages
must occur nor do they have to happen sequentially (3). The
early stage of cGVHD is characterized by inflammation, which
leads to extensive tissue fibrosis and even severe disability (2).
More than 20% of patients with cGVHD will experience
sclerosis, which is characterized by thickening of the skin, or
fasciitis caused by collagen deposition and fibrosis (4, 5). Fibrosis
in various tissues, such as skin and lung, eventually leads to
scleroderma-like changes and bronchiolitis obliterans syndrome
(BOS). As the main infiltrating inflammatory cells, helper T (Th)
cells can differentiate into Th1, Th2, Th17, or regulatory T (Treg)
cells. Chronic GVHD is mainly characterized by Th17 other than
Th1-skewed responses, immune dysregulation and/or fibrosis,
which is immunologically different from acute GVHD (6).
However, the signaling pathways and molecular mechanisms
that mediate the imbalance in Th cell differentiation
remain unclear.
OVERVIEW OF SERUM/GLUCOCORTICOID
REGULATED PROTEIN KINASE 1

SGK1 is a member of the protein kinase subfamily, and a serine/
threonine protein kinase with high homology to second
messengers, such as protein kinase B (PKB/Akt) (7). SGK1 also
has two specific Ser/Thr regulatory sites: Thr256 in its catalytic
domain and the Ser422 in its C-terminus. SGK1 is distributed in
the lung, kidney, heart, liver, and other tissues. Although its
expression levels are very low in most cells, it is sensitive to
external stimuli. When cells are stimulated by glucocorticoid or
serum, SGK1 gene expression increases rapidly by 5-10-fold
within 30 minutes; hence, it was named as serum/
glucocorticoid regulated protein kinase. SGK1 has a short
mRNA half-life (around 20 min) and its expression and
activity are regulated by a variety of stimuli through
transcriptional , translational and post-translational
mechanisms (8). Its transcription is stimulated by dehydration
and a modest increase of extracellular salt concentration,
excessive glucose concentration, high-salt diet, etc (9–12).
SGK1 transcription is also stimulated by some mediators like
glucocorticoids, mineralocorticoids, transforming growth factor
b (TGFb), interleukin-6, fibroblast and platelet-derived growth
factor (8, 13). SGK1 translation is triggered by phosphoinositide
3 kinase (PI3K) and dependent on actin polymerization and
regulated by several mechanisms including TGFb-dependent
transcription factors SMAD3 and SMAD4 (14). SGK1 is
ubiquitinated by Nedd4-2 and Rictor/Cullin-1, which trigger
SGK1 degradation (15). As a hub of multiple signal
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transduction pathways and cell phosphorylation events, SGK1
plays important roles in cell proliferation, ion channel regulation,
signal transduction, and other physiological processes, and is
recognized as having significant functions in inflammation.
MECHANISMS UNDERLYING SGK1
ACTIVITY IN INFLAMMATORY AND/OR
FIBROTIC DISEASES

SGK1 Regulation of the Th1/Th2
Inflammatory Axis
Th2 type T cells secret IL-4 to activate the proliferation of B cells
to promote B cell isotype switching, causing a series of
pathological changes, including autoantibody secretion and
collagen deposition, which are part of the mechanisms
underlying the development of cGVHD (3). SGK1 is activated
by the continuous phosphorylation of two specific serine/
threonine (Ser/Thr) sites, which involves phosphorylation by
PI3K-dependent protein kinase at Thr256 and by mTORC2 at
Ser422 (16). mTOR can form two different protein complexes:
mTORC1 and mTORC2. Genetic deletion of the mTORC2
adaptor protein, Rictor, leads to dysfunction of Th2 cells,
including inability to produce IL-4 (17). mTORC2 promotes
Th cell differentiation into the Th2 phenotype through the
SGK1-ubiquitin ligase NEDD4-2-JunB pathway (18)
(Figure 1). Luo et al. (19) also demonstrated that SGK1 kinase
activation promotes Th cell differentiation to the Th2 phenotype.
In a mouse model of allergic asthma, SGK1 deficiency
significantly reduces Th2 cell differentiation, while
bronchoalveolar lavage fluid from Sgk1 gene knockout mice
has lower concentrations of IL-4 and IgE, and mice were,
therefore, resistant to Th2 cell-mediated allergic asthma (20).

SGK1 Regulation of the Th17/Treg
Inflammatory Axis
Th17 cells and an activated Th17-prone, CD146-expressing,
CD4+ T-cell subset participate in the development of cGVHD
in the BO mouse model (21). By secreting IL-17, Th17 cells
promote the proliferation and migration of neutrophils, the
activation of endothelial cells, and the proliferation of
fibroblasts, which is crucial in the BOS response following
transplantation (22, 23). During BOS development after
transplantation, down-regulation of Th17 cells can reduce
damage of bronchioles. Granulocyte colony-stimulating factor
(G-CSF)-mobilized donor grafts cause murine cGVHD with
prominent scleroderma and high levels of Th17 cells, which
recruit macrophages and produce higher level of profibrotic
TGF-b, which are essential for lung and skin fibrosis (24, 25).

SGK1 is regulated at the transcription level (for example, by
high-salt diet and p38MAPK) and at the post-translational level
(for example, by PI3K). Further, SGK1 inhibits sodium channel
degradation by phosphorylating the ubiquitin ligase, NEDD4-2,
thereby promoting cell absorption of Na+ (26). SGK1 activates
epithelial cell sodium channels in response to stimulation by high
salt concentration, and promotes IL-23R expression to mediate
February 2022 | Volume 13 | Article 822303
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Th17 cell differentiation. SGK1 is also regulated by PI3K
phosphorylation, which promotes Th17 cell differentiation
(Figure 1), hinders Treg cell formation, and accelerates
autoimmune disease development (27). Further, the harmful
effects of high salt concentrations on Th cell differentiation can
be reversed by SGK1 inhibitors (10). Hence, SGK1 is a key kinase
that induces Th17 cell differentiation, and p38/MAPK, NFAT5,
or SGK1 gene silencing inhibit Th17 cell differentiation induced
by high salt (28).
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Recent studies have shown that SGK1 regulates the balance
between Th17 and Treg cells, and that deficiency of SGK1 can
correct autoimmune diseases caused by Th17/Treg ratio
imbalance (9, 27). SGK1 can phosphorylate and inactivate
FOXO1, preventing it from binding to FOXP3, thereby
restricting FOXP3 expression and hindering Treg cell
expansion (27). Treg cells cultured in high salt concentrations
have a pro-inflammatory phenotype, characterized by increased
IFN-g secretion, that leads to loss of Treg cell function (29).
FIGURE 1 | SGK1 mediates imbalanced differentiation of Th17 and Th2 cells. SGK1 regulation occurs both at the level of transcription (for example, by a high-salt
diet, p38MAPK, or TGF-b) and at the post-translational level. SGK1 phosphorylates the ubiquitin ligase, NEDD4, and induces Th cell differentiation into Th17 and Th2
phenotypes, hinders Treg development (promotes Treg differentiation in a few studies), and promotes up-regulation of the transcription factor, SMAD2/3, thereby
amplifying the pro-fibrotic effects of TGF-b. Further, SGK1 up-regulates the inflammatory transcription factor, nuclear factor-kB (NF-kB), which in turn stimulates the
expression of multiple inflammatory mediators, including connective tissue growth factor (CTGF). Together, the processes described above promote the occurrence
of inflammation and fibrosis.
February 2022 | Volume 13 | Article 822303
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Feeding a high-salt diet to mice following allogeneic heart
transplantation accelerated heart transplantation rejection, and
the harmful effects of a high-salt diet on Treg cells in
transplanted mouse were offset by absence of SGK1 (30). On
the other hand, it was also reported that the salt-SGK1 signaling
axis endows Treg cells a Th17-like RORgt+ Foxp3+ phenotype in
vitro and in vivo. These functionally specialized Treg cells are
adaptive to high salt conditions and maintain their suppressive
functions. The exact function of RORgt+ Foxp3+ Treg cells in
inflammation need to be clarified (9). These results suggest that
the effects of SGK1 on Treg need further investigation.

Fibrogenic Effects of SGK1
The hallmark of fibrosis in cGVHD is aberrant tissue repair
promoted by activated macrophages that produce TGF-b and
platelet-derived growth factor a (PDGF-a), which leads to
fibroblast activation. Extracellular matrix collagen and biglycan
are produced by the activated fibroblasts, which cross-link
collagen and increase tissue stiffness (6). Tissue fibrosis and
macrophage activation have been reported in patients with
chronic GVHD (31, 32). Pathogenic Th17 cells are observed in
patients with lichenoid chronic GVHD and contribute to the
development of chronic disease (33). Increased Th17/Treg ratio
plays an important role in liver fibrosis formation in cGVHD
(34). By secreting of IL-17, Th17 cells can mobilize, activate, and
recruit neutrophils, promote neutrophil proliferation and
migration, and influence the activation of endothelial cells, as
well as activation and proliferation of fibroblasts (35). The
characteristic of Th2 cells is the production of signature
cytokines including IL-4, IL-5 and IL-13. Th2 cells together
with eosinophils, basophils, macrophages, and type 2 innate
lymphoid cells (ILC2) participate in the pathological process of
Th2 immunity-induced fibrosis (36). SGK1 promotes Th cell
differentiation to Th2 and Th17 phenotypes, and limits Treg
proliferation. In addition, SGK1 expression is up-regulated after
induction by the powerful fibrosis-promoting factor, TGFb. The
increase in cell volume caused by TGF-b1 contributes to the
formation of fibrosis, and SGK1 promotes sodium ion influx to
increase cell volume and accelerate fibrosis formation.
Waldegger et al. cultured human intestinal mucosa, liver
cancer cell lines, and the U937 cell line in vitro and found that
SGK1 can be upregulated by TGF-b1 transcription (37). Further,
Waerntges et al. demonstrated that TGF-b1 can up-regulate
SGK1 expression in human lung fibroblasts, and that this can
be partially reversed by p38 kinase antagonists (38). High
concentrations of TGFb in the target tissues of patients with
cGVHD contribute to scleroderma and BOS development, and
reducing TGFb production, may improve organ function and
reverse cGVHD fibrosis (32, 39, 40).

TGF-b-stimulated fibrosis is partly mediated by upregulation
of the transcription factor, SMAD2/3, which is degraded by the
ubiquitin ligase, NEDD4L (8). SGK1 phosphorylates NEDD4L,
which prevents its interaction with SMAD2/3, thereby
amplifying the pro-fibrotic effects of TGF-b (8). Further, SGK1
activates nuclear factor-kB (NFkB), mediating inflammation and
fibrosis (13). Overexpression of SGK1 phosphorylates and
activates IKK, which in turn phosphorylates IkB, the inhibitor
Frontiers in Immunology | www.frontiersin.org 4
of NFkB, triggers IkB degradation, releases NFkB inhibition, and
improves its activity and nuclear translocation (13). Further, it
stimulates the expression of a variety of inflammatory mediators,
including connective tissue growth factor (CTGF) (13, 41).
SGK1-dependen t exp r e s s i on o f CTGF as s i s t s i n
mineralocorticoid-stimulated cardiac fibrosis and skin aging
(13, 42). Overexpression of SGK1 has been observed in various
fibrotic tissues, including pulmonary fibrosis, diabetic renal
fibrosis, liver cirrhosis, and hypertensive cardiac fibrosis, and
SGK1 inhibitors can significantly reduce the degree of fibrosis in
various tissues, suggesting that SGK1 has an important role in
the development of inflammation and fibrosis (43–48).

SGK1 Inhibitors
SGK1 has been found to participate in multiple pathological
conditions and it may serve as a potential therapeutic target in
various diseases. Research efforts have been made to develop
SGK1 inhibitors that block or inhibit its activity. The pyrrolo-
pyridine compound GSK650394 is a potent SGK1 inhibitor,
developed by GlaxoSmithKline that has a higher selectivity of
more than thirty folds for SGK1 over AKT and other related
kinases (49). But GSK650394 has been reported to have
comparable potency for some other kinases and it is not totally
selective of SGK1 (50). GSK650394 has been shown to delay
cancer progression by inhibiting cell growth and inducing
apoptosis in prostate cancer cells (49, 51, 52). The epithelial-
mesenchymal transition of renal tubular epithelial cells is
inhibited by GSK650394 in the diabetic nephropathy mice
(53). The brain ischemic area decreases in a mouse model and
the reduction of cortisol-induced neurogenesis is avoided in
hippocampal progenitor cells with the administration of
GSK650394, suggesting its therapeutic potential in stress and
depression (54, 55).

SGK1 inhibitor EMD638683 is developed by Merck with an
IC50 of 3 mM in vitro and demonstrated efficacy in vivo (56).
EMD638683 inhibit cardiac fibrosis and remodeling through
attenuating cardiac inflammation in an angiotensin II infusion-
induced hypertension mouse model (48). Macrophage
infiltration and pulmonary arterial smooth muscle cell
proliferation are inhibited by EMD638683 treatment in the
lungs of rats with pulmonary arterial hypertension (57).
EMD638683 reduces vascular calcification and stiffness in
cholecalciferol-overloaded chronic kidney disease mouse model
(58). EMD638683 reverses glucose absorption in a mouse model,
suggesting that SGK1 may serve as a therapeutic target in
metabolic disorders (59).

SGK1 inhibitors SI113 is one of pyrazolopyrimidine-based
derivatives with an IC50 value of 600nM (60). It has been shown
to induce cytotoxic autophagy and inhibit cell growth in
glioblastoma cells and endometrial cancer cells, suggesting its
therapeutic potential in cancer treatment (61–63).

In summary, SGK1 inhibitors have been developed and
studied in various pathological conditions. These compounds
have shown significant inhibitory effects, suggesting their
potential value of clinical application in multiple diseases,
including carcinomas, metabolic disorders, brain ischemia and
depression, etc. SGK1 inhibitors also exhibit potent inhibitory
February 2022 | Volume 13 | Article 822303
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effects in fibrotic diseases, and their therapeutic potential in
cGVHD need to be studied in the future since fibrosis is one of
the major phases in the pathogenesis of cGVHD.
PROSPECTS

A high-salt diet can increase SGK1 expression, and dietary
factors are becoming an area of considerable interest in the
field of inflammation and/or fibrosis research. The high-salt/
SGK1/TGF-b pathway is expected to become a new direction in
investigations into the pathogenesis of cGVHD. At present, the
specific mechanism by which SGK1 leads to organ fibrosis is not
well understood, but may be related to the following
mechanisms: 1) SGK1 can promote Th cell differentiation into
Th17 and Th2 cells; 2) SGK1 is a transcription target of TGF-b,
leading to fibrosis, and is closely related to organ fibrosis; and 3)
SGKl may mediate the process of fibrosis by downstream
regulation of CTGF.

Whether the frequent administration of glucocorticoids in the
treatment of aGVHD and/or cGVHD might exacerbate the
development of fibrosis though SGK1-mediated mechanisms
remains little studied. Until now, the investigation of the role
of SGK1 in transplantation immunity remains limited, especially
Frontiers in Immunology | www.frontiersin.org 5
in the overlap syndromes, which should be further explored in
the future.

In summary, SGK1 has important roles in fibrosis formation
and development, and has potential to become a new therapeutic
molecular target. Research into SGK1 is a promising new avenue
in investigation of the pathogenesis, prevention, and treatment
of cGVHD.
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