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The invasion of immune cells into the central nervous system (CNS) is a hallmark of the
process we call neuroinflammation. Diseases such as encephalitides or multiple sclerosis
(MS) are characterised by the dramatic influx of T lymphocytes and monocytes. The
communication between inflammatory infiltrates and CNS resident cells is primarily
mediated through cytokines. Over the years, numerous cytokine networks have been
assessed to better understand the development of immunopathology in
neuroinflammation. In MS for instance, many studies have shown that CD4+ T cells
infiltrate the CNS and subsequently lead to immunopathology. Inflammatory CD4+ T cells,
such as TH1, TH17, GM-CSF-producing helper T cells are big players in chronic
neuroinflammation. Conversely, encephalitogenic or meningeal regulatory T cells (TREGs)
and TH2 cells have been shown to drive a decrease in inflammatory functions in microglial
cells and thus promote a neuroprotective microenvironment. Recent studies report
overlapping as well as differential roles of these cells in tissue inflammation. Taken
together, this suggests a more complex relationship between effector T cell subsets in
neuroinflammation than has hitherto been established. In this overview, we review the
interplay between helper T cell subsets infiltrating the CNS and how they actively
contribute to neuroinflammation and degeneration. Importantly, in this context, we will
especially focus on the current knowledge regarding the contribution of various helper cell
subsets to neuroinflammation by referring to their helper T cell profile in the context of their
target cell.

Keywords: helper T (TH) cells, neuroinflammation, cytokines, multiple sclerosis, EAE (experimental autoimmune
encephalitis), GMCSF, granulocyte macrophage colony-stimulating factor
T CELL POLARISATION: AN OVERVIEW

T cell mediated immunity is reliant on the differentiation of naïve T cells into their effector T cell
counterparts. Upon activation, these cells bifurcate into their two major lineages – CD8-expressing
cytotoxic T lymphocytes (CTL), and CD4-expressing helper T cells (TH) (1). CD4+ cells are
important in the regulation of the adaptive immune response against a plethora of pathogens.
Through differentiation and the secretion of cytokines, these cells help activate antigen-specific B
cells to produce antibodies, and hence drive humoral immunity.

About 4 decades ago, it was postulated thatCD4T cells can differentiate into subsetswith characteristic
effector functions (2). Effector T cells are classified and differentiated based on i) the type of pathogen that
org March 2022 | Volume 13 | Article 8229191
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elicited the activation and ii) the subsequent group of cytokines
secreted by these cells. The main effector subsets of CD4 T cells were
historically described to only bifurcate into two distinct populations,
driven by their inflammatory milieu (3). Briefly, type 1 versus type 2
immunity was grossly classified as immune responses towards
intracellular pathogens versus extracellular parasites and helminths.
However, this historical classificationhasnowbeen revised to include
many further helper T cell subsets extending beyond the scope of the
original TH1 and TH2 cells.

Further Helper T cell subsets include T follicular helper (TFH)
and Regulatory T (TREG) cells. TFH cells work alongside TH1,
TH2, or TH17 cells to help B cells generate class-switched
immunoglobulins of different isotypes, which are recognised by
different innate immune effector cells through cell characteristic
expression of cell surface Fc receptors. TREG cells, characterised
by their expression of the IL-2 receptor alpha chain CD25 (4)
alongside with the transcription factor (TF) FoxP3 (5), have
immunoregulatory functions and promote tolerance towards the
antigens they recognise, usually self-antigens.

The above-mentioned descriptions of helper T cell subsets fit
the historical classification. However, with increasing advances in
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the field of immunophenotyping, it has become clear that helper T
cell nomenclature in the context of a single lead effector cytokine
fails to capture the functional diversity of these cells. Thus, we and
others propose that T cells should be rather categorised into the
kind of help that these cells provide at a site of injury – based on
whether their downstream functions affect i) phagocytes
(henceforth referred to as type 1 immunity), ii) polymorph-
nucleated cells (type 2), or iii) non-immune cells (type 3) (6).
This model of naming and classifying T cells is summarised in the
form of a schematic as seen in Figure 1. Taking this into account,
in this review, we describe the role of helper T cells in the context
of their target and effector cells in neuroinflammation.
TYPE 1 TH CELLS AND
NEUROINFLAMMATION

TH1 cells are the most prominent members of the type 1 TH cell
family. TH1 cells were first characterised by their ability to
produce interferon gamma (IFN-g), a potent cytokine with
important immunomodulatory functions. TH1 cells help
March 2022 | Volume 13 | Article 822919
FIGURE 1 | Model of helper T cell classification by considering the role of helper T cells in the context of their target and effector cells.

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Krishnarajah and Becher TH Cells and Cytokines in Neuroinflammation
orchestrate the adaptive immune response against intracellular
pathogens (e.g. viruses) through direct activation of phagocytic
cells or CTLs. These cells in turn directly kill the pathogen or
virus infected or transformed host cell in question and can
further promote antibody-dependent cellular cytotoxicity
(ADCC) and opsonisation.

In addition to IFN-g, TH1 cells can also be recognised by their
cell surface expression of the IL-12 receptor (R) b chains (1 and
2) and the chemokine receptor type 3 (CXCR3). Further work
from the late 20th century revealed that there are also key TFs
which play important roles in TH1/TH2 polarisation – and thus
T-bet was associated with TH1, and GATA-3 with TH2 cells (7–
9). The TH1 signal is self-regulating through a positive feedback
loop, as IL-12 and IFN-g both induce T-bet, which in turn
induces IFN-g and T-bet, too (10).

Early studies in an animal model of multiple sclerosis (MS),
termed experimental autoimmune encephalomyelitis (EAE),
showed that IFN-g positive cells were the biggest immune cell
population in the diseased brain (11, 12), suggesting that TH1
cells were potentially very important in the neuro-pathogenesis
of the disease. Furthermore, the adoptive transfer of TH1 cells
into naïve animals was shown to drive neuroinflammation,
further supporting this notion (13).

The exact role of these brain-infiltrating CD4+ T cells in the
context of neuroinflammatory disease is still under investigation.
However, a potential downstream target of TH1 mediated
effector functions in the central nervous system (CNS) are the
resident macrophages of the brain called microglia. Like most
other resident macrophages of the body, several studies have
suggested that TH1 cells secreting their signature cytokine
cocktail leads to the activation of microglia into an
inflammatory phenotype (14). In the parenchyma of the brain,
microglia are the only resident leukocytes, which makes them a
solid contender to interact with T cells invading the CNS in
neuroinflammatory conditions (15).

The capacity of these cells to present antigens has been shown
in several in vitro studies (16–19). Subsequently, several follow-
up studies suggested that microglial activation is directly linked
to immune infiltration of the CNS and the maintenance of
encephalitogenicity during the effector phase of EAE (20–22).
However, in the non-inflamed brain, most cell types including
microglia do not express MHC class II or costimulatory
molecules. This makes them unlikely to be responsible for the
initial reactivation of encephalitogenic T cells.

Key studies were carried out to investigate the bona-fide
antigen presentation capabilities of CNS-resident cells, using
mouse models where MHC class II expression could be
restricted to certain antigen presenting cell (APC) subsets.
These experiments revealed that in vivo, neither microglia, nor
any other parenchymal elements are required to mediate
interactions between APCs and helpers T cells (23). Building
on these findings, systematic interrogation of each potential APC
within the brain revealed that among the conventional dendritic
cell (cDC) subsets, cDC2s in particular are powerful APCs in
bridging CNS-T cell interactions (24). Whilst microglia may not
be the main players in initiating neuroinflammatory pathology, it
Frontiers in Immunology | www.frontiersin.org 3
is however feasible that during the chronic phases of the disease,
microglia play a role in chronification and disease perpetuation.

The most likely immune cell target for type 1 cytokines such
as IFN-g is in fact not resident to the CNS, but instead may
invade the CNS from the circulation, namely monocytes. In mice
and humans, monocytes come in two flavours. One that is
patrolling in the blood (in mice, Ly6Clow) and another capable
of reacting to inflammatory stimuli and invading tissues
(Ly6Chigh). IFN-g has been shown to be important for the
monocyte to macrophage transition in inflamed sites (25).
Nevertheless, the functional consequences of this IFN-g
induced maturation of monocytes remain unclear.

Further studies in animals revealed the extent of the role of
TH1 cells in neuroinflammation. IFN-g is heavily present in the
brain lesions present in EAE mice, and the same holds true for
MS patients. Clinical trial data revealed the IFN-g administration
to patients suffering with MS made their symptoms worse, and
led to increased relapses (26). In contrast though, mice lacking
the IL12R b2 chain (27, 28), or the p35 subunit (29), are
susceptible to EAE. The same holds true for animals deficient
in IFN-g (30). Moreover, IL-12 administration to mice suffering
from early stages of EAE suppressed the disease – the authors of
this study also showed that this was an IFN-g dependent
phenomenon (28). Whilst the majority of historical evidence
points towards an overall pathogenic role for IFN-g producing
TH1 cells (31), many contradictory studies reveal a potential
protective role of these same cells in neuroinflammation (32, 33).
To date, the mechanisms by which IL-12 and IFN-g regulate or
suppress neuroinflammation remain completely unknown.
TYPE 3 TH CELLS AND
NEUROINFLAMMATION

In the context of autoimmunity, studies revealed that IL-23, a
cytokine with a shared p40 subunit with IL-12 (34), is important
in driving inflammation in models of multiple sclerosis and
psoriasiform inflammation. Additionally, the IL-23R comprises
the IL12R b1 chain (35) – and these observations helped to
clarify the contradictory data described in the previous section. It
was then established that IL-23 is a driver of neuroinflammation
by the induction of a subset of helper T cells which secrete IL-17
and therefore also activate a type 1 response (36, 37).

Hence, the way was paved for the coining of TH17 cells (36).
TH17 cells produce the cytokines IL-17A, IL-17F, IL-21 and IL-
22 as lead cytokines (38). The cells are further characterised by
the expression of CCR4, CCR6, CD161 as well as IL23R and IL-
1R. In addition, these cells express retinoic acid receptor-elated
orphan nuclear receptor gt (RORgt) intracellularly.

The main reason we call these cells type 3 immune cells is
because their primary targets are non-immune cells. Receptors
for IL-17 and IL-22 are expressed in various densities throughout
the immune as well as stromal compartments. Dysregulation of
IL-17 for instance, leads to inflammation of tissues of the body
lining, rich in epithelial cells (39). While these mice developed
severe skin inflammation, most solid tissues including the CNS
March 2022 | Volume 13 | Article 822919
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were unaffected. In line with this, dysregulation of any members
from this group of cytokines, such as IL-17A/F, IL-21 or IL-22,
generally leads to pathologies restricted to barrier tissues, like the
skin, lung or gut (40–42).

IL-21 was initially described to play an important role in
encephalitogenicity (43) – however, this claim was rebuked by
many follow-up studies (44, 45).

Whilst these responses are important to curb off an imminent
infection, the flipside of a sustained TH17 response is tissue
inflammation and damage. In neuroinflammation specifically,
these cells have been described to be involved in the pathogenesis
of EAE and MS. There have been claims that helper T cells which
secrete IL-17 are abundant in both the peripheral blood as well as
the cerebrospinal fluid (CSF) of MS patients (46). However,
overall, there is no evidence of overt dysregulation of IL-17
signalling itself in MS. Even though a clinical trial neutralising
IL-17 in MS has shown some early signs of efficacy, it has not
been pursued further and approval was never sought for (47).

Even though disease progression and active disease have also
been linked with the increased presence of TH17 cells in patients,
the most likely contribution from IL-17 in neuroinflammation
may be its effects on the blood brain barrier (BBB). Evidence
links IL-17 with barrier function in other organs such as the lung
and gut (48, 49), with further experimental data pointing towards
IL-17 playing a role in altering of the neurovascular junction
being convincing (50, 51). In addition, TH17 cells from patients
in relapsing MS are associated with inflammatory lesions and
have increased migratory capacities (52).

Astrocytes are a potential neurological cell type which has been
investigated in recent years as an effector cell of TH17 responses.
They are a subtype of glial cells which reside between the BBB and
resident brain cells, are characteristically histologically star-shaped
(53), and perform a vast range of functions including tissue
maintenance, repair, and regulating cerebral flow. Their main
function is directly linked to their location within the brain, where
they can monitor and regulate the exchange between the CNS and
the systemic circulation (54). Increased expression of a functional
IL-17 receptor was demonstrated in vitro (55), as well as under
EAE conditions (56, 57). Disruption of IL-17 signalling in these
cells was shown to improve EAE in mice (58). However, the
signalling pathway targeted in these studies is by no means IL-17
specific, and thus the contribution of IL-17 via astrocytes towards
neuroinflammation remains a subject of debate.

Finally, IL-17 also has an effect on a final CNS resident cell
type, known as oligodendrocytes. These cells assemble myelin,
which is a multi-layered sheath of lipidous membrane around
axonal segments. Studies have shown that TH17 cells interfere
and inhibit the maturation cycle as well as the survival rate of
oligodendrocytes (59, 60).
HELPER T CELL SUBSETS – HIGHLY
PLASTIC?

As discussed previously, recent mounting evidence has led to the
belief that helper T cell subsets may not be rigid and cemented in
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their functional and expression profiles, but that they may adapt
according to environmental cues. This is at least true for TH17
cells. There is a strong propensity for these to differentiate into
cells that secrete IFN-g or play the opposing role by producing
non-inflammatory IL-10 (61).

A study by Capone and colleagues demonstrated this
principle. In relapsing MS patients, TH17 cells upregulate the
expression of IL-1R and produce higher levels of IL-21,IL-2, and
TNF-b (62). Similarly, within the TH17 compartment of MS
patients with active symptoms, another study found elevated
expression of IFN-g and CXCR3 together with reduced
expression of IL-10 (63). Conversely, TREGs have been shown
to be highly stable (64).

Recent studies have gone a step further and suggested the
notion that these subsets may be overlapping in such a manner
that their current naming is largely redundant. Cells that secrete
both IFN-g as well as IL-17, hence sitting on the fence between a
TH1 and TH17 phenotype (65, 66), have been reported on several
occasions. These cells express the receptor for IL-23R. In
addition, they co-express CXCR3 and T-bet together with
CCR6 and RORgt. Interestingly, they have been described to
produce lower amounts of IL-17A compared to classical TH17
cells but high levels of IFN-g [reviewed in (67)]. Specifically, in
the context of neuroinflammation, cells characterised by the
expression of TNF, IFN-g, IL-2, the CXC chemokine receptor
type 4 (CXCR4) and very late antigen 4 (VLA4) were convergent
in the blood of patients with MS. These cells were also enriched
within the CNS, and were drastically reduced upon therapeutic
intervention (68). During acute EAE, cells with a similar mixed
helper T cell phenotype can cross the BBB and accumulate in the
CNS. Finally, cells with a similar phenotypic profile were also
found in brain tissues from MS patients and upregulated in
patients during relapse (69, 70).

The observed plasticity across TH cells is clearly beneficial to
immunity in the fight against infections. An overly rigid, hard-
wired program makes little sense given that the primary role of
TH cells is providing ‘help’. This is why we believe that, in the
future, a categorisation based on single cytokines or even
multiple cytokines will fade in favour of a more nimble and
logical description across their specific helper function (6).
GM-CSF: LICENSING OF PHAGOCYTES
FOR IMMUNOPATHOLOGY

In line with a categorisation of TH cells towards their helper
function, another prominent cytokine produced by type 1 TH

cells is the granulocyte macrophage colony-stimulating factor
(GM-CSF). GM-CSF was originally classified as a growth factor
contributing to haematopoiesis upon its discovery, as it was
shown to lead to the differentiation of bone marrow progenitors
into granulocytes and macrophages in vitro (71–73). What
makes GM-CSF unique among other CSFs is that lack of either
the cytokine, or its receptor, does not lead to any disturbance to
myeloid cell development or maintenance in mice (74–76),
March 2022 | Volume 13 | Article 822919
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despite its receptor being almost exclusively expressed within the
myeloid compartment.

In vitro, there are compelling data to suggest that GM-CSF
promotes DC differentiation from both human and mouse
progenitor cells (73, 77). However, the same could not be
readily replicated in vivo (78). What was clear is the role of
GM-CSF in tissue inflammation, due to evidence pointing to its
role in activation and survival of many myeloid cell subtypes
such as neutrophils, monocytes and macrophages (79, 80).

GM-CSF expression originates from a plethora of cell types,
including haematopoietic cells as well as epithelial or endothelial
cells, fibroblasts and stromal cells. Under steady state, healthy
physiological conditions, GM-CSF is rarely detected in
physiological conditions in vivo – rather, its secretion has also
been associated with sites of inflammatory injury (81–83). TH

cells secreting GM-CSF were shown to be induced by IL-23 (84),
and El-Behi et al. showed that GM-CSF producing cells promote
a positive-feedback loop to keep stimulating IL-23 secretion (85).
The evidence that GM-CSF is a mandatory cytokine produced by
encephalitogenic T cells is overwhelming. IL-1b can further elicit
GM-CSF secretion in TH17 cells in vitro, while IL-27, IFN-g and
IL-12 counteracts GM-CSF production (21, 84).

Using a fate-mapping and reporter system for GM-CSF
expressing cells, it was shown that secretion of GM-CSF was
both IL-23 and IL-1b dependent (86). The specific role of each of
these individual cytokines on the expression of GM-CSF is yet to
be elucidated. In the same study, cells that formerly secreted GM-
CSF were shown to be more likely to express GM-CSF once again
in a recall setting as opposed to their GM-CSF naïve counterparts
(86). Another study revealed that antigen-independent GM-CSF
release by TH cells, and this cytokine alone, was enough to induce
neuroinflammation. Interestingly, whilst GM-CSF lead to severe
neurological symptoms, other organs were not affected (87). In
this study, the authors showed that GM-CSF-induced infiltration
of inflammatory phagocytes was confined to the CNS, liver, and
lung. Conversely, the skin, colon, and pancreas were spared. This
suggests that the specific tissue microenvironments harbour
different cues for the invasion of myeloid cells. In addition, it
seems that the microenvironment of the target tissue itself
influences the effector function of these cells, since the
inflammatory phagocytes found in the CNS had a unique
genetic signature when compared to the phagocytes within the
other tissues. Microarray analysis of in vitro-differentiated
Frontiers in Immunology | www.frontiersin.org 5
cytokine-secreting TH cells identified a large portfolio of genes
that were exclusively expressed in GM-CSF-secreting TH cells
(88). Altogether, these findings support the notion of a distinct
TH subset related to GM-CSF driving neuroinflammation.
CONCLUSIONS

There is no doubt that encephalitogenic TH cells play an
important role of in propagating neuroinflammation. Even
though there is a heavy debate as to whether MS is primarily
driven by type 1 or type 3 cytokines, if one considers the cellular
composition within neuroinflammatory lesions, it should be
termed a type 1-driven immune response. However, the ability
of type 3 cytokines (e.g. IL-17) to interact with epithelial and
endothelial cells, suggests a role of type 3 immunity in BBB
dysfunction. The interplay of other factors and the rest of the
cytokine network in neuroinflammation remains to be
established. Currently ongoing research is targeted towards
elucidating these unanswered questions. Among the most
pressing questions is the relative role of CNS resident versus
invading cells in immunopathology, and how this intertwines
with the instruction delivered by CNS invading TH cells. Equally,
among the biggest challenges will be to identify unique molecular
patterns of encephalitogenic TH cells which allows for their targeting
and neutralisation without collateral broad immunosuppression.
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