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Exosomes are small extracellular vesicles that are secreted by almost all types of cells and
exist in almost all extracellular spaces. As an important mediator of intercellular
communication, exosomes encapsulate the miRNA, lncRNA, cirRNA, mRNA, cytokine,
enzyme, lipid, and other components from the cytoplasm into its closed single membrane
structure and transfer them to recipient units in an autocrine, paracrine, or endocrine
manner. Hypoxia is a state of low oxygen tension and is involved in many pathological
processes. Hypoxia influences the size, quantity, and expression of exosome cargos.
Exosomes derived from hypoxic tumor cells transfer genetics, proteins, and lipids to the
recipient units to exert pleiotropic effects. Different donor cells produce different cargo
contents, target different recipient units and lead to different biological effects. Hypoxic
exosomes derived from tumor cells uptaken by normoxic tumor cells lead to promoted
proliferation, migration, and invasion; uptaken by extracellular space or liver lead to
promoted metastasis; uptaken by endothelial cells lead to promoted angiogenesis;
uptaken by immune cells lead to promoted macrophage polarization and changed
tumor immune microenvironment. In addition to various types of tumors, hypoxic
exosomes also participate in the development of diseases in the cardiovascular system,
neuron system, respiratory system, hematology system, endocrine system, urinary
system, reproduction system, and skeletomuscular system. Understanding the special
characteristics of hypoxic exosomes provide new insight into elaborating the
pathogenesis of hypoxia related disease. This review summarizes hypoxia induced
cargo changes and the biological effects of hypoxic exosomes in tumors and non-
malignant diseases in different systems.
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INTRODUCTION

Hypoxia, a state of inadequate oxygen supply, is a common
feature of many different diseases, like solid tumor (1), hypoxia
induced pulmonary arterial hypertension (2), sleep-disordered
breathing (3), hypoxic kidney injury (4), placental hypoxia (5)
and so on. The main molecular mechanism to sense oxygen
stress is Hypoxia Induced Factors (HIFs), which functions as a
master regulator of oxygen homeostasis in all metazoan species
(6). HIFs are dimeric proteins composed of an oxygen-sensitive -
subunit (HIF-1a, HIF-2a, or HIF-3a) and a b-subunit (HIF-1b)
(7). HIF-1a is ubiquitously expressed whereas HIF-2a and HIF-
3a are selectively expressed in certain tissues (8). Under
normoxia, HIF-a subunits are hydroxylated by prolyl
hydroxylases (PHD1-3) and recognized and targeted for
proteasomal degradation. The activity of PHD1-3 is oxygen
dependent, so under hypoxia, the rate of HIF-a hydroxylation
is suppressed (9), accumulated HIF-1a dimerizes with HIF-1b
and binds to hypoxia-responsive elements(HREs) in promoters
of target genes to promote a concerted transcriptional
response (10).

Hundreds of genes are now known to respond directly or
indirectly to hypoxia via HIFs (11). Human large-scale genomic
sequencing projects have revealed that less than 2% of
transcriptional output encodes for proteins, while the
remaining genome encrypts different classes of non-coding
RNAs, including miRNA, lncRNA, cirRNA, and so on (12, 13).
Hypoxia upregulates or downregulates the expression of some
key factors, including the non-coding RNAs, as well as mRNAs,
proteins, and lipids in hypoxic cells and the hypoxic exosomes
secreted by these cells. The upregulated or downregulated key
factors were transferred to recipient cells or tissues through
exosomes, leading to various biological effects involving
angiogenesis, invasion, metastasis, and immune escape in
tumor development (14), and other hypoxia involved disease
mentioned above. Recently, myriads of research exploring
hypoxia induced changes in exosomes loads and subsequent
effects have emerged rapidly. This review tries to focus on the
impact of hypoxia on exosomes secretion and cargo changes, and
summarizing various biological results in various diseases.
BIOGENESIS AND RECIPIENCE
OF EXOSOMES

The exosome is one kind of extracellular vesicle. Extracellular
vesicles are mainly classified into three types according to
biogenesis. Namely, apoptotic bodies range from 500-2000 nm,
microvesicles range from 200-2000 nm and exosomes range
from 40-200 nm (15). The nomenclature of extracellular
vesicles has not reached a broad agreement today (16–18), and
in this review, we only discuss those studies clearly stated
“exosome” in their elaboration. The formation of exosomes is
the budding process of membrane organizations. Firstly, the
inward budding of the cell membrane leads to the formation of
the endosome (19). Endosome goes through different stages:
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early endosome, recycling endosome, and end endosome (20),
during the maturation from early endosome to end endosome,
further inward budding inside an intracellular endosome occurs
and leads to the formation of multivesicle body, characterized
by the presence of intraluminal vesicles (21–23). During the
process of endosome inward budding, cytosolic contents,
transmembrane, and peripheral proteins are incorporated into
the invaginating membrane (24). The membrane of the
multivesicle body fuses either with lysosome leading to the
degradation of vesicles contents (25) or fuses with cell
membrane leading to the release of vesicles contents, namely
exosomes (26, 27). In contrast to inward budding, the outward
budding process leads to the formation of microvesicles or
apoptotic bodies (15).

Extracellular vesicles were first found during the maturation
of sheep reticulocytes in 1983 (28). In the beginning, people
thought it was just a kind of cell debris for the disposal of cell
waste (22, 29). Later, researchers found that exosomes
encapsulate RNAs, DNA, proteins, and lipids, and play a
significant role both in cell to cell and cell to its milieu
communication by transferring its encapsulated contents, both
locally and distally (30, 31) and these contents are not
randomized distributed but a specific subset from endosomes,
the plasm membrane and the cytosol (32), suggesting an
endosomal sorting complex required for transport (ESCRT)
during exosome formation. The ESCRT dependent and
independent manner of sorting mechanism are described in
detail by Guillaume van Niel (33). As for the uptake
mechanisms of exosomes by recipient cells, at least five
mechanisms are involved, including clathrin-dependent,
micropinocytosis, lipid-raft, membrane fusion, and caveolin-
dependent endocytosis (34). In another word, exosomes sort
specific contents to load and uptaken by specific recipient cells to
exert their function (Figure 1). In addition, exosomes are
secreted by almost all kinds of cells (35, 36) in biological and
pathological conditions. And exists in almost all body fluids like
blood, urine, saliva, synovial fluid, bile, cerebrospinal fluid,
bronchoalveolar fluid, nasal fluid, uterine fluid, amniotic fluid,
breast milk, feces, seminal plasma (30). It has been reported that
many factors, including hypoxia, the change in pH, temperature,
oxidative stress, radiation, and shear stress can affect the
secretion level and composition of exosomes (37). Here, we
focus on the impact of hypoxia on the production and cargo
changes of exosomes and subsequent biological effects, and we
made a brief summary in Table 1.
HYPOXIC EXOSOMES PROMOTE THE
DEVELOPMENT OF DIFFERENT TYPES
OF TUMORS

Hypoxia is a common phenomenon in the solid tumor
microenvironment. The release of exosomes and the contents
of exosomes change dramatically under a short supply of oxygen,
resulting in altered biological effects. Here, we make a summary
of hypoxia induced changes in the cargos and subsequent
April 2022 | Volume 13 | Article 824188
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biological effects of tumor cell derived exosomes in various types
of tumor, including glioma, ovarian cancer, breast cancer,
prostate cancer, lung cancer, pancreatic cancer, colorectal
cancer, liver cancer, oesophageal squamous cell carcinoma, and
other types of cancer we retrieved (Figure 2).

In glioma, hypoxia promoted the secretion of glioma-derived
exosomes and hypoxic exosomes which contain higher
expression of miR-10a and miR-21 have a stronger ability than
normoxic exosomes to induce myeloid-derived suppressor cells
(MDSCs) expansion and potentiate their immunosuppressive
functions (39). Hypoxic exosomes isolated from glioblastoma
multiforme (GBM) cells have different miRNA and protein
quantitative profiles and they were potent inducers of
proliferation and angiogenesis in vivo and in vitro. Moreover,
exosomes derived from the hypoxia condition show increased
autocrine, promigratory activation of GBM cells (1, 38, 40).
Several miRNAs were reported to be upregulated in hypoxic
exosomes compared to normoxic exosomes and resulted in
further deterioration of glioma. MiR-1246 and miR-10b-5p
were enriched in exosomes that produced in the hypoxic
microenvironment, and such exosomes were transferred to
normoxic glioma cells, promoting their migration and invasion
in vitro and in vivo (44). Plus, miR-1246 containing exosomes
markedly induced M2 macrophage polarization, facilitating the
formation of the immunosuppressive microenvironment, thus
contributing to promoted glioma proliferation, migration, and
invasion in vitro and in vivo (48). MiR-155-3p and interleukin 6
(IL-6) were highly expressed in hypoxic glioma-derived exosomes,
and such exosomes also inducedM2-like macrophage polarization
and eventually promotes glioma progression (43). MiR-182-5p
expression was significantly upregulated in glioblastoma secreted
exosomes in hypoxic conditions. Exosomal miR-182-5p was
uptaken by human umbilical vein endothelial cells, leading to
KLF2 and KLF4 suppression and VEGFR accumulation, thus
promoting tumor angiogenesis (47). miR-301a was also reported
to be encapsulated in the hypoxic exosomes dervied from
Frontiers in Immunology | www.frontiersin.org 3
glioblastoma cells, and was transferred to normoxic glioblastoma
cells to promote radiation resistance by targeting the tumor
suppressor gene TCEAL7 (50). In addition to miRNAs, some
proteins were also reported to be increased in the hypoxic
exosomes. Hypoxia upregulated the expression of lysyl oxidase
homolog 2 and VEGF-F in the glioblastoma derived exosomes, the
latter was able to enhance the blood-brain-barrier by interrupting
the expression of claudin-5 and occludin (51, 190). Hypoxia also
upregulated the monocarboxylate transporter 1(MCT1) and the
cluster of differentiation 147 (CD147) in glioma cells and its
secreted exosomes, transporting these pro-oncogenic molecules
to recipient neighboring cells led to promoted tumor
progression (49).

Besides contributing to glioma progression, miRNA
containing exosomes also contributed to ischemic injury of
peritumoral neurons. MiR-199a-3p was upregulated in a HIF-
a dependent way in hypoxic culturing glioma cells derived
exosomes. Exosomal miR-199a-3p mediated the oxygen-
glucose deprivation (OGD)/reperfusion neuronal injury
process by suppressing the mTOR signaling pathway (46). In
patients with glioma, serum exosome miR-210 was significantly
increased compared to healthy controls. The increased
expression level reflected the hypoxic state of glioma patients
by positively associated with HIF-a, and it also reflected the
changes in malignant glioma loads (42). Apart from miRNA,
lncRNA and protein were also encapsulated and transferred by
exosomes in hypoxic microenvironment. It was reported that
hypoxic glioma stem cells transferred lnc01060 containing
exosomes to glioma cells, activating prooncogenic signaling
and promoting disease progression. In addition, lnc01060 was
upregulated in glioma patients and was significantly correlated
with tumor grade and poor clinical prognosis (45). The protein
content of secreted exosomes from GBM cells was able to induce
differential gene expression in recipient glioma cells. Thus,
intercellular communication was facilitated via exosomes
secreted from hypoxic GBM cells. And prominent changes of
FIGURE 1 | Exosome formation and uptaking process. Inward budding of cell membrane leads to the formation of the endosome. Further inward budding which
encapsulates cell components leads to the formation of vesicles inside the endosome. The membrane of endosome fuse either with lysosome and result in the
degradation of endosome contents, or fuse with cell membrane and lead to the release of its vesicles, namely exosomes. Secreted exosomes will be uptaken by
recipient cells and the internalized contents are thus transferred in an autocrine, paracrine, or endocrine manner. In contrast to the inward budding process, the out
ward budding of the membrane leads to the formation of microvesicles or apoptotic bodies.
April 2022 | Volume 13 | Article 824188
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TABLE 1 | Summary of hypoxia induced changes of exosome cargos from different donor units to their corresponding target recipient units, and leading to different biological effects.
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TABLE 1 | Continued
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Donor units Hypoxia induced changes of exosome contents Recipient units
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cells
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Pancreatic stellate cells
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ration and capillary-like network formation

(117)
genic and metastatic potential, modulate their
t and facilitate angiogenesis and metastasis. (118)
on and metastases.

(119)
arkers (CXCL10 and IL6) in monocytes

(120)
e polarization, enhanced oxidative phosphorylation

(121)
extracellular matrix rearrangements

(122)

e formation, a stem-like phenotype
(123)

development
(124)

target factor-inhibiting hypoxia-inducible factor 1
endothelial tube formation (125)
a-induced H9c2 cells apoptosis

(126)
er survival, smaller scar size and better cardiac
ry; increased vascular density, lower
(CMs) apoptosis; reduced fibrosis and increased
rdiac progenitor cells in the infarcted heart

(127)

ts of hypoxic exosomes were abolished
(128)

sed permeability and dysfunction of endothelial
(129)
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Related
systems

Donor units Hypoxia induced changes of exosome contents Recipient units

HepG2 cells miR23a ↑ HUVECs Induced angiog

Hypoxic hepatocellular
carcinoma Huh7 cells

Not mentioned Normoxic hepatocellular carcinoma
Huh7 cells

Promoted cell p

hepatocellular carcinoma
(HCC) cells

lncRNA HMMR-AS1 ↑ Macrophages Promoted the M
progression of H

Oral squamous cell
carcinoma (OSCC)

miR-21 ↑ Normoxic cells Promoted prom
OSCC cells

OSCC cell lines: Cal-27
and SCC-9

miR-21 ↑ Gammadelta T cells Enhanced the s
cells (MDSCs) o

Esophageal squamous cell
carcinoma (ESCC) cells

Not mentioned HUVECs,
nude mice

Promoted prolif
HUVECs. Enhan
mice models

Gastric cancer cells miR-301a-3p ↑ Gastric cancer cells Facilitated GC p
mesenchymal tr

Papillary thyroid cancer
(PTC)

miR-181a ↑ Human umbilical vein endothelial
cells (HUVECs)

Promoted prolif

A431 carcinoma cells Proteins Not mentioned Enhanced angio
microenvironme

Melanoma cell lines miR-494-5p ↑, miR-4497 ↑, miR-513a-5p ↑, miR-
6087 ↑, miR-4454 ↑, miR-4299 ↑

Neighboring melanoma cells Facilitated invas

Melanoma cell lines: CRL-
1424 and CRL-1675 cells

miRNAs were differently expressed in hypoxic
exosomes

THP1 macrophages Increased M1 m

Mouse melanoma B16-F0
cells

CSF-1 ↑, CCL2 ↑, FTH ↑, FTL ↑, and TGF-beta ↑,
miRNA let-7a ↑

Macrophages Promoted M2-li
of macrophages

Endothelial cells 1,354 proteins (top changed):
SEMG1 ↑, CO4A ↑, LOXL2 ↑, CO1A1 ↓, AN32E ↓,
EPN1 ↓;
1,992 mRNAs(top changed):
NDRG1 ↑, BNIP3 ↑, CIRBP ↓

Extracellular matrix Cytoskeletal an

Hypoxic Ewing’s sarcoma
(EWS) cells

miR-210 ↑ Ewing’s sarcoma (EWS) cells Promoted sphe

Hypoxic multiple myeloma
cells

miR-1305 ↑ Macrophages Promoted tumo

Hypoxia-resistant multiple
myeloma cells

miR-135b ↑ Endothelial cells Suppressing the
(FIH-1), enhance

Cardiovascular
system

Cardiomyoblast cells
(H9c2)

miR-21-5p, miR-378-3p, miR-152-3p, and let-7i-5p None Mitigated hypox

Mouse bone marrow-
derived MSCs

miR-210 ↑, neutral sphingomyelinase 2 (nSMase2) ↑ Infarcted heart Significantly high
functions recove
cardiomyocytes
recruitment of c

Endothelial colony-forming
cells (ECFCs)

miR-10b-5p ↓, neutral sphingomyelinase 2 (N-
SMase2) ↓

Cardiac fibroblast Anti-fibrotic effe

Endothelial cells 6 miRNAs (including has-mir-383-3p) differently
expressed

Endothelial cells Promoted incre
cells in vitro
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Biological effects Ref

ective role
(130)

ctivity, leading to increased IGF-1 expression,
protection (131)
ndothelial cell migration, proliferation, and tube
fectively reduced the infarct area and promote
border surrounding the infarcted area

(132)

(133)
and inhibited proliferation, migration, and

(134)
cells into classically activated macrophages
phages respectively (135)
yte apoptosis and the production of
es (136)
hancement of in vitro proliferation, migration,
of endothelial cells (137)
mulation, affected lipogenic activity

(138)
ic

(139)
esis

(140)

nction, reduced infarct size and enhanced
(141)

sis
(142)

esis
(143)

ation of endothelial cells and decreased
ression in TGF-b-stimulated fibroblasts (144)
ation

(145)
f transplanted CPCs in the ischemic heart

(146)
viability under hypoxia

(147)
larization and graft survival

(148)
nction and suppressed myocardial enzyme
ss, inflammation response, macrophage
t size

(149)

tosis rate of H9c2 cells, reduced infarct size
ac function in acute myocardial infarction rats. (150)
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Related
systems

Donor units Hypoxia induced changes of exosome contents Recipient units

Mesenchymal stem cells
(MSCs)

lncRNA-UCA1 ↑ Rats with myocardial infarction Played a cardiopro

Cardiomyocytes circHIPK3 ↑ Cardiac microvascular endothelial
cells

Inhibiting miR-29a
exhibiting CMVECs

Cardiomyocytes circHIPK3 ↑ Cardiac endothelial cells, mice with
myocardial infarction

Promoted cardiac e
formation in vitro; e
angiogenesis in the

Cardiomyocytes miR-30a ↑ Cardiomyocytes Inhibited Autophag

Cardiomyocytes lncRNA AK139128 ↑ Cardiac fibroblasts Promoted apoptos
invasion

Cardiomyocyte TGF-beta ↑ RAW264.7 cells Induced RAW264.7
(M1) and M2 macro

AC16 cardiomyocytes lncRNA HCG15 Cardiomyocytes Induced cardiomyo
inflammatory cytok

Mesenchymal stem cells
(MSCs)

HIFs is postulated Human umbilical vein endothelial
cells

Dose-dependent e
and tube formation

Adipocyte Enzymes related to de novo lipogenesis ↑, total
amount of proteins increased by 3-4-fold ↑

3T3-L1 adipocytes, neighboring
preadipocytes and adipocytes

Promoted lipid acc

HIF-a-overexpressing
donor MSCs (HIF-MSC)

Jagged1 ↑ Endothelial cells Promoted angiogen

Bone marrow
mesenchymal stem cells
(BMSCs)

High mobility group box 1 protein (HMGB1) ↑ Human umbilical vein endothelial
cells (HUVECs)

Enhancing angioge

Bone marrow-derived
mesenchymal stem cells
(MSCs)

Not mentioned Infarcted hearts Improved cardiac fu
angiogenesis

Human adipose-derived
MSCs (hAD-MSCs)

VEGF↑ Human umbilical vein endothelial
cells (HUVECs)

Improved angiogen

Human cardiosphere-
derived cells (CDCs)

miR-126 ↑, miR-130a ↑, miR-210 ↑ Human umbilical vein endothelial
cells (HUVECs)

Enhancing angioge

Cardiac progenitor cells
(CPCs)

miR-292↑, miR-210↑, miR-103↑, miR-17↑, miR-
20a↑, miR-15b↑, miR-199a↑

Endothelial cells Enhanced tube form
profibrotic gene exp

Bovine aortic endothelial
cells

(IGFBP3, EDN1, CA9, MMP9, VEGFA) ↑,
(NAMPT, PLAU, ODC1, EGR1) ↓

Bovine aortic endothelial cells Increased tube form

Cardiac endothelial cells HIF ↑,
miR-126 ↑, miR-210 ↑

Cardiac progenitor cells (CPCs) Increased survival o

Cardiac fibroblasts (CFs) 1616 proteins Cardiomyocyte Increased myocyte

Adipose mesenchymal
stem cells

Not mentioned Human umbilical vein endothelial
cells (HUVECs)

Promoted neovasc

Bone marrow
mesenchymal stem cells
(BMSCs)

miR-98-5p ↑ Rats with myocardial ischemia-
reperfusion injury (MI/RI)

Promoted cardiac f
levels, oxidative str
infiltration and infarc

Bone marrow
mesenchymal stem cells
(BMSCs)

microRNA-24 ↑ H9c2 cells, rats with acute
myocardial infarction

decreased the apo
and improved card
t
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Biological effects Ref

ocyte survival, reduced infarct size and
tion (151)
ocytes from Dox-induced cardiac damage

(152)
on, migration and tube-formation capability of
neovascularization around the graft in the nude (153)

ardioprotective function post-MI
(154)

poptosis
(155)

l of cardiomyocytes by inhibiting apoptosis
(156)

les from sepsis-induced kidney injury
(157)

f neurons
(158)

neuroprotective effects against NLRP3
iated pyroptosis (159)
g and memory capabilities of APP/PS1 mice,

(160)
ction between CD147 and Hook1

(161)
glucose deprivation (OGD) induced BMEC
damage as well as the loss of vascular (162)

poptosis, reduced cavities formation in the
roved the functional recovery of the hindlimbs (163)

d cell viability according to the amount of miR-
(164)

er’s disease (AD)
(165)

and glucose deprivation-induced neuron death
(166)

protective effect on the lung and inhibit PH
of hyperproliferative pathways, including

hypoxia

(167)

esis and
(168)

on and induced apoptosis resistance in
g to the pathogenesis of pulmonary (169)
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Related
systems

Donor units Hypoxia induced changes of exosome contents Recipient units

Mesenchymal stem cells
(MSCs)

miR-210 ↑ Cardiomyocytes, rats with
myocardial infarction

Enhanced cardiom
improved heart fun

Human adipose-derived
mesenchymal stem cells

lncRNA-MALAT1 ↑ Cardiomyocytes Protected cardiomy

Adipose mesenchymal
stem cells

VEGF ↑, EGF ↑,
FGF ↑,
VEGF-R2 ↑,
VEGF-R3 ↑, MCP-2 ↑,
MCP-4 ↑

Human umbilical vein endothelial
cells (HUVECs), a nude mouse
model of subcutaneous fat grafting

promoted proliferat
HUVECs, improved
mouse

Bone marrow
mesenchymal stem cells
(BM-MSCs)

miR-125b-5p ↑ Mice with permanent condition of
myocardial infarction (MI)

Exerted a marked c

M1-type macrophage miR-222 Bone marrow mesenchymal stem
cells (BMSCs)

Promoted BMSCs

Human cardiosphere-
derived cells (CDCs)

Not mentioned Human embryonic stem cell-derived
cardiomyocytes

Increase the surviva

C2C12 cells (myotubes) miR-21 ↑ Mouse tubular epithelial cells
(mTECs)

Protected renal tub

Neuron system Astrocytes Prion protein ↑ Neurons Improved survival o

Bone marrow
mesenchymal stromal cells

NLRP3 ↓, ASC ↓, Caspase-1 ↓, GSDMD-N ↓,
cleaved IL-1b↓, IL-18 ↓

Mouse neuroblastoma N2a cells, rat
primary cortical neurons

Exhibited significan
inflammasome-med

Mesenchymal stromal cells
(MSCs)

miR-21 ↑ APP/PS1 mice Improved the learn

SH-SY5YAPP (695) cells Ab40 ↑, Ab42 ↑ Transgenic APP/PS1 mice Enhancing the inter

Microglia miR-424-5p ↑ Brain microvascular endothelial cells
(BMEC)

Aggravated oxygen
viability and integrit
formation

Adipose-Derived
Mesenchymal Stem Cells

miR-499a-5p Neuronal cells, Rats with Spinal Cord
Injury

Reduced neuronal
injured area and im
of rats

Neural progenitor cells miR-210 ↑ Neural progenitor cells Increased or inhibit
210

SH-SY5Y and HEK293
cells

amyloid-beta (Abeta) ↑ None Aggravated Alzheim

Astrocytes miR-92b-3p ↑ Neurons Attenuated oxygen
and apoptosis

Respiratory
system

Mesenchymal stromal cell
(MSC)

Not mentioned Mice which exposed to hypoxia after
injection

Exerted a pleiotrop
through suppressio
STAT-3 mediated
signaling induced b

Primary PASMC miR-143 ↑ Pulmonary artery endothelial cells Enhanced angiogen
cell migration

Pulmonary artery
endothelial cells (PAEC)

Not mentioned Pulmonary artery smooth
muscle cells (PASMC)

Promoted proliferat
PASMC, contributin
hypertension
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Biological effects Ref

hroid differentiation of TF-1 cells and CD34+ cells (170)

anced tube formation by HUVECs compared with
ced in normoxic conditions (171)
ration, increased the self-renewal capacity,
clonogenic potential of recipient cells (172)
esence of insulin resistance (3)

tic wound healing and inhibit inflammation through
ing pathway (173)
heliocytes from high glucose induced injury

(174)
elial cell proliferation, migration, and inhibited
erated wound healing (175)
ration, alpha-smooth muscle actin expression, F-
, and type I collagen production in fibroblasts.

(4)

s mitochondrial injury and apoptosis, protected
ular injury (176)

aturation of dendritic cells
(177)

fibroblasts (NRK-49F), aggravated renal fibrosis
(178)

ellular matrix crosslink and remodelling
(179)

C migration by 1.6 folds, increased hPMEC tube
folds; contributed to placental vascular adaptation
nsion

(180)

role in maternal-fetal crosstalk and could also
evelopment (181)
vasion and proliferation (5)
nal behavioral recovery by shifting microglial
M1 to M2 phenotype (182)
genesis, proliferation and migration

(183)
le signaling pathways of ECM repair and

(184)

liferation of CD4(+) T, alleviated the arthropathy of
ffectively (185)
genesis and prevented bone loss

(186)
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Related
systems

Donor units Hypoxia induced changes of exosome contents Recipient units

Hematology
system

TF-1 cells miR-486 ↑ TF-1 cells, cord blood CD34+ cells Induced the ery

K562 cells A subset of miRNAs (including miR-210) ↑ HUVECs Significantly enh
exosomes prod

Mesenchymal stem cells Jagged-1 (Notch ligand) ↑, Umbilical cord blood hematopoietic
stem cells

Enhanced prolif
quiescence, and

Endocrine
system

Plasma Not mentioned Human naive adipocytes Promoted the p

Adipose stem cells miR-21-3p ↑, miR-126-5p ↑, miR-31-5p ↑, miR-99b
↓, miR-146-a ↓

Diabetic mice Promoted diabe
PI3K/AKT signa

Pericytes circEhmt1 ↑ Endotheliocytes Protected endo

Umbilical cord-derived
mesenchymal stem cells

miR-125b ↑ Endothelial cells Increases endot
apoptosis, acce

Urinary system Injured epithelial cells TGF-b1 mRNA containing Fibroblast Promoted prolif
actin expression

Renal tubular epithelial cells miR-20a-5p ↑ Renal tubular epithelial cells, mouse
model of ischemia-reperfusion-
induced acute kidney injury (IRI-AKI)

Inhibition of TEC
against acute tu

Primary renal tubular
epithelial cells

miR-21 ↑ Bone marrow-derived dendritic cells
(BMDCs)

Promoted the m

Renal tubular epithelium
cells (NRK-52E)

miR-150-5p ↑ Kidney fibroblasts (NRK-49F), rats
with unilateral ischemia reperfusion
injury

Activated kidney

Endothelial cell Lysyl oxidase family member lysyl oxidase-like 2
(LOXL2) ↑

Extracellular matrix (ECM) Mediated extrac

Reproductive
system

Placental mesenchymal
stem cells (pMSC)

390 proteins Placental microvascular endothelial
cells (hPMEC)

Increased hPME
formation by 7.2
to low oxygen t

Bovine endometrial stromal
cells

128 proteins Not mentioned Played a crucial
affect placental

Cytotrophoblast (CT) Oxygen-dependent changes of protein HTR-8/SVneo (EVT) Promoted EVT
Skeletomuscular
system

Mesenchymal stem cell miR-216a-5p ↑ BV2 microglia in vitro; mice with
spinal cord injury in vivo

Promoted funct
polarization from

Mesenchymal stem cells miR-126 ↑ HUVEC Promoted angio

tenocytes and adjacent
adipose-derived
mesenchymal stem cells
(ADMSCs)

Tenocytes derived exosomes:THSB1, NSEP1, ITIH4
and TN-C.
ADMSCs derived exosomes: MMP2, COL6A, CTSD
and TN-C

Not mentioned Involved in mult
regeneration

Polymorphonuclearmyeloid-
derived suppressor cells

miR-29a-3p ↑, miR-93-5p ↑ CD4(+) T cell, collagen-induced
arthritis (CIA) mouse

Inhibited the pro
CIA mice more

Mesenchymal Stem Cells Not mentioned Human umbilical vein endothelial
cells (HUVECs), rat with steroid-
induced osteonecrosis of the femoral
head

Promoted angio
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genes expression were induced in neighboring normoxic tumor
cells and possibly in surrounding stromal cells, many of which
are involved in cancer progression and treatment resistance
mechanisms (41).

In ovarian cancer, hypoxia also promoted the release of
exosomes from cancer cells, and miRNA containing exosomes
played a vital role in facilitating tumor progression. MiRNA-940
was upregulated in hypoxic exosomes derived from epithelial
ovarian cancer (EOC) (54). EOC cell-derived exosomes delivered
miRNAs to induce M2 macrophage polarization, which promoted
EOC cell proliferation and migration (56). A similar situation
occured in endometrial cancer, the expression of miRNA-21 was
increased in exosomes derived from endometrial cancer KLE cells
cultured in hypoxia. Exosomal transfer of miRNA-21 to monocyte
THP-1 cell promoted its transformation to M2-like polarization
macrophages, forming the immune microenvironment in cancer
progression (55). In some cases, miRNA was downregulated to
facilitate tumor progression. MiR‐199a‐5p was reported to be
downregulated in cancer tissue. Hypoxic culturing further
decreased the miR‐199a‐5p level in both ovarian cancer cells and
T
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FIGURE 2 | The function of hypoxic exosomes in tumors. In different tumors,
hypoxia increased the secretion of exosomes from cancer cells, accompanied
by altered expression of its contents, which can be miRNA, lncRNA, cirRNA,
mRNA, protein, or lipid. The contents can be upregulated or downregulated in
hypoxic exosomes than normoxic exosomes, such contents are briefly listed in
the square box. As most studies reported, hypoxia induce the upregulation of
its contents, such hypoxic exosomes transmit the key messages to recipient
units, result in various biological effects, eventually promote the development of
tumors. The solid arrows indicate the donor cells that secret the exosomes, the
dashed arrows indicate the recipient cells, organs, and tissues that receive the
exosomes. Exosomes are secreted by various hypoxic tumor cells in different
types of tumors, and they can be uptaken by normoxic tumor cells, neighboring
cells or extracellular matrix, endothelial cells, remote organs or tissues in an
autocrine, paracrine, or endocrine manner to exert its function.
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their secreted exosomes. The downregulation of miR‐199a‐5p
promoted tumor metastasis through targeting HIF-2a to regulate
Wnt/b-catenin path-way (53). Besides miRNAs, protein containing
exosomes were also involved in ovarian cancer development. It was
found that exosomes from hypoxic culturing ovarian cancer cell
lines carried more potent oncogenic proteins-STAT3 and FAS, and
significantly increased cell migration, invasion, and chemo-
resistance in vitro and promoted tumor progression, metastasis in
vivo. In addition, cisplatin efflux via exosomes was significantly
increased in ovarian cancer cells under hypoxic conditions,
contributing to chemo-resistance (52).

In breast cancer, activation of hypoxic signaling also resulted
in a significant increase in exosome release. Exposing three
different breast cancer cell lines to moderate (1% O2) and
severe (0.1% O2) hypoxia led to a significant increase in the
number of exosomes and an increase of miR-210 in exosomes
(58). MiR-210 was involved in the expression of vascular
remodeling related genes, such as Ephrin A3 and PTP1B,
which function to promote angiogenesis (59). In addition to
miR-210, lncRNA SNHG1, which was enriched in the hypoxic
breast cancer cells secreted exosomes, also promoted the
angiogenesis, as well as the proliferation and migration of
HUVECs (60). And some research indicated that hypoxic
exosomes were preferentially taken up by hypoxic cancer cells
(191). The autophagy-associated GPR64 was reported to be
upregulated in the hypoxic exosomes derived from the breast
cancer associated fibroblast, it stimulated the NF-KB pathway to
enhance the invasiveness in recipient breast cancer cells (61).
microRNA let-7f was reported to be upregulated both in bone
marrow-derived human mesenchymal stem cells (hMSCs) and
its secreted exosomes under hypoxic culture, and miR-let-7f
attenuated the proliferation and invasion in recipient 4T1 cells
(62). In addition to autocrine, hypoxic exosomes also function in
a paracrine manner in tumor development. It is reported that
under hypoxia, breast cancer cells encapsulate TGF-b into
exosomes, such exosomes were able to be taken up by T cells
and mediated the suppression of T cell proliferation. Such
immunosuppression microenvironment contributes to tumor
progression (57). In contrast to cancer cell derived exosomes,
natural killer (NK) cells, which play an important role in the
tumor immune microenvironment, can also produce exosomes
in the tumor microenvironment. Hypoxia enhanced the release
of exosomes and increased the expression of three functional
proteins of NK cells-specifically FasL, perforin, and granzyme B
in hypoxic exosomes. And such hypoxic exosomes exhibited
significantly increased cytotoxicity, enhanced inhibition of cell
proliferation on breast and pancreatic cancer cells than normoxic
exosomes (63).

In prostate cancer, cancer cells secreted more exosomes in a
hypoxic microenvironment as a survival mechanism to remove
metabolic waste like lactic acid (67). Hypoxia changed not only
the secretion amount but also the average size of exosomes
secreted by prostate cancer cells. Hypoxic exosomes had a
smaller average size and a higher level of exosome biomarkers
compared to normoxic exosomes. Co-culturing of hypoxic
exosomes with normoxic prostate cancer cells increased the
Frontiers in Immunology | www.frontiersin.org 12
stemness, motility, and invasiveness, promoted prostasphere
formation, and enhanced a-SMA expression. Compared to
normoxia, hypoxic exosomes showed higher metalloproteinases
activity and a higher number of proteins, primarily associated
with the remodeling of the epithelial adherens junction pathway
(66, 70). Hypoxic exosomes were also involved in cancer
metastasis progress. Exosomes derived from hypoxic culturing
prostate cancer cells enhanced the level of MMP2, MMP9, and
extracellular matrix proteins (fibronectin and collagen) at
selective pre-metastatic niches sites, contributing to cancer
metastasis (64). Hypoxic exosomes also prompted the
development of bladder tumors and renal cell carcinoma
(RCC). In bladder tumors, hypoxic exosomes derived from
tumor cells showed higher expression levels of lncRNA-UCA1
which could promote tumor growth and progression through
epithelial-mesenchymal transition, in vitro and in vivo (65). In
RCC, hypoxia and treatment with CoCl2, a hypoxia mimic agent,
increased the CA9 level in exosomes in all RCC cell lines. CA9
exosomes released from hypoxic RCC were postulated to
enhance angiogenesis in the microenvironment, thereby
contributing to cancer progression (68). MiR-155-5p was
found to be upregulated in RCC specimens and hypoxia
promoted its selective enrichment in exosomes secreted by
hypoxic tumor-associated macrophages (TAM). The exosomes
transferred miR-155-5p to RCC and promoted the tumor
progression partially through activating IGF1R/PI3K/AKT
cascades (71). lncHILAR was also reported to be secreted by
hypoxic cancer cells and transferred to normoxic cancer cells
through exosomes to activate the miR-613/206/1-1-3p/Jagged-1/
Notch/CXCR4 axis, thereby promoting cell invasion and
metastasis (69).

In lung cancer, cancer cells produced more exosomes under
hypoxic conditions than normoxic conditions. MiRNA, cirRNA,
lncRNA, and protein were both reported to be encapsulated in
cancer cell derived exosomes and contributed to tumor
progression. MiR-23a was significantly upregulated in hypoxic
exosomes, resulting in enhanced angiogenesis through regulation
of endothelial cells (73). Besides immunosuppressive function,
TGF-b, as well as IL-10 which were increased in hypoxic lung
cancer cell derived exosomes, also played a positive role in
regulating cancer cell migration (74). MiR-31-5p and miR-582-
3p were largely internalized within hypoxic exosomes. Exosomal
transfer of miRNAs from hypoxic cancer cells to normoxic
cancer cells significantly enhanced the proliferation, migration,
and invasion of receptive normoxic lung cancer cells in vitro, and
promoted lung adenocarcinoma metastasis (77, 83). Similarly,
hypoxia induced the upregulation of angiopoietin-like 4
(ANGPTL4), HIF-1a/COX-2 and miR-135b and miR-210 in
the exosome cargo of A549 cells, exosome transfer of these
factors to other A549 cells led to the enhanced proliferation,
migration, angiogenesis, and tumor progression (80, 84). In
hypoxic tumor microenvironment, bone marrow-derived
mesenchymal stem cells (BMSCs) secreted exosomes that
contained miR-193a-3p, miR-210-3p and miR-5100, these
exosomes were taken up by neighboring epithelial lung cancer
cells, led to STAT3 signaling activation and increased expression
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of mesenchymal related molecules (75). In addition to metastasis
and tumor progression, chemoresistance is also involved.
Hypoxia upregulated the miR-21 expression in non-small cell
lung cancer (NSCLC) cells and cell-derived exosomes, while
exosomal miR-21 contributed to cisplatin resistance by
downregulating phosphatase and tensin homolog (PTEN) in its
recipient normoxic NSCLC cells (81). In some cases, hypoxia
decreased the expression of some key genes. It was reported that
hypoxic stress suppressed the expression of miR101 in A549 cell
secreted exosomes, the exosomes with suppressed expression of
miR101 were transferred to THP-1 cells and upregulating the
expression of IL-1 and IL-6, contributing to the promoted
inflammation of macrophages in the tumor microenvironment
(79). Besides miRNA and protein, cirRNA and lncRNA also play
a role in tumor progression. circSETDB1 was found to be
significantly upregulated in hypoxia-induced exosomes from
lung adenocarcinoma (LUAD) cell lines in comparison to
normoxic exosomes. And such exosomes improved the
migration, invasion, and proliferation capacity of normoxic
LUAD cells (78). LncRNA-p21 was reported to be upregulated
by hypoxia in non-small cell lung cancer tumor tissue and a
higher level of lncRNA-p21 encapsulated exosomes in blood
indicates a shorter time to relapse and shorter overall survival. In
addition, lncRNA-p21 enriched exosomes promoted tube
formation of endothelial cells and enhanced tumor cell
adhesion to endothelial cells (76). Besides continuous hypoxia,
intermittent hypoxia also has a stronger prosurvival effect than
normoxia. Circulating exosomes released under intermittent
hypoxia conditions significantly promoted lung carcinoma
cells’ malignant properties (72). Hypoxic exosomes also play a
role in the chemoresistance of lung cancer therapy. In NSCLC,
normoxic and hypoxic exosomes derived from cisplatin-resistant
cancer cells were analyzed. As a result, the expression of PKM2
was elevated in hypoxic exosomes. PKM2 promoted glycolysis
and finally may neutralize reactive oxygen species (ROS) induced
by cisplatin, eventually promoting cisplatin resistance in
sensitive NSCLC (82).

In the digestive system malignant disease, including
pancreatic cancer, colorectal cancer (CRC), hepatocellular
cancer, oesophageal squamous cell carcinoma (OSCC), and
other relatively less frequently diagnosed malignant disease like
oral squamous cell carcinoma, nasopharyngeal carcinoma, and
gastric cancer, hypoxia also exerted a great impact on exosomes
and thus contributed to tumor development.

In pancreatic cancer, hypoxic pancreatic cancer cells secreted
exosomes that contained miRNA, lncRNA, cirRNA or protein to
promote tumor progression. Hypoxia was reported to upregulate
a series of miRAN including hsa-miR-29b-3p and hsa-miR-
216a-5p,hsa-miR-148a-3p and islet cell damage marker hsa-
miR-375 in the exosomes derived from human islets (192).
MiR-301a-3p-rich exosomes were induced in the hypoxic
microenvironment from pancreatic cancer cells, such exosomes
then polarized macrophages to promote malignant behaviors of
pancreatic cancer cells (85). miR-30b-5p enriched hypoxic
exosomes that derived from pancreatic ductal adenocarcinoma
(PDAC) cells, was transferred to HUVEC, leading to enhanced
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tube formation and angiogenesis (90). LncRNA UCA1 was also
reported to be highly expressed in exosomes derived from
hypoxic pancreatic cancer cells. Exosomal transfer of lncRNA
UCA1 promoted cell migration and tube formation of human
umbilical vein endothelial cells (HUVECs), contributing to
angiogenesis and tumor growth (89). Interestingly, lncRNA
UCA1 was also enriched in exosomes derived from pancreatic
stellate cells (PSCs), and such exosome was able to promote the
Gemcitabine resistance of pancreatic cancer cells through
SOCS3/EZH2 Axis (91). CircZNF91 was encapsulated and
transmitted to normoxic pancreatic cancer cells through
hypoxic exosomes, eventually enhancing the stability of HIF-
1a and leading to glycolysis and chemoresistance of normoxic
pancreatic cancer cells (87). C4.4A, a molecular which was
upregulated in several tumor types, was upregulated in the
pancreatic cancer cells and its secreted exosomes, promoting
wound healing and tumor metastasis (86). Pancreatic stellate
cells (PSCs), the important components of the tumor
microenvironment in pancreatic cancer (PC), also contributed
to its development and metastasis through exosome delivery. In
tumor hypoxic microenvironment, miR-4465 and miR-616-3p
were encapsulated in PSCs secreted exosomes and transmitted to
pancreatic cancer cells, promoting PC cell proliferation,
migration, and invasion, contributing to PC progression and
metastasis (88).

In colorectal cancer (CRC), the hypoxic microenvironment
boosted exosome release. Hypoxia promoted colon cancer cells
to release more exosomes and thereby promoting self-
proliferation in a time-and dose-dependent manner through
shortening mitosis duration and upregulating phosphorylated
STAT3 (100). Many proteins, miRNAs, cirRNAs were indicated
to be upregulated in hypoxic conditions and internalized into
exosomes and transferred from hypoxic CRC cancer cells to
normoxic cancer cells to promote tumor deterioration. Wnt4,
S100A9, MiR-210-3p, miR-361-3p, miR-410-3p, circ-133 were
reported to be remarkably elevated in hypoxic CRC exosomes,
and can be transferred to normoxic CRC cells, leading to
facilitated cell growth and suppressed cell apoptosis, eliciting a
protumoral effect, promoting cancer metastasis and enhancing
tumor progression. In addition, some miRNA or cirRNA were
also enriched in the plasma exosomes of CRC patients and
positively associated with a poor prognosis of colorectal cancer
(94–98, 103). Some hypoxic colorectal cancer derived exosomes,
like exosomes enriched with miR-135a-5p, were phagocytosed by
Kupffer cells and transferred from blood circulation into the
liver, initiating the large tumor suppressor kinase 2-yes-
associated protein-matrix metalloproteinase 7 axis to promote
liver metastasis (93). It is worth noting that CRC cells not only
secreted exosomes to promote tumor development, but also
uptaken exosomes in some case. For example, hypoxic
exosomes that was enrich with circEIF3K and derived from
cancer-associated fibroblasts (CAF), could be uptaken by
colorectal cancer cells (CRC) HCT116 and SW620, and
contributed the proliferation, invasion, and tube formation.
Knocking down circEIF3K in CAF could mitigate hypoxia
induced CRC progression (102). Hypoxic exosomes derived
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from colorectal cancer cells also enhanced angiogenesis in tumor
progression by promoting the proliferation and migration of
endothelial cells. Suppression of exosome secretion inhibited
these effects (92). In some cases, hypoxia suppressed specific
gene expression to adapt to oxygen stress. It was reported that
hypoxia downregulated the exosomal miR-1255b-5p that was
secreted by colorectal cancer cells and eventually enhanced the
epithelial-to-mesenchymal transition as a response to hypoxia
(99). Hypoxia also downregulated miR-486-5p and miR-181a-5p
while upregulated miR-30d-5p in the cancer cell derived
exosomes, both of which were associated with organ-
invasiveness and lymph node metastases (101).

In liver cancer, hypoxia promoted tumor self-growth through
exosome transfer. Hypoxic exosomes derived from hypoxic
hepatocellular carcinoma cancer cells promoted cell
proliferation, migration and invasion of normoxic cancer cells
through a paracrine manner (111). miR-1273f was reported to be
upregulated by hypoxia in the exosomes derived from
hepatocellular carcinoma cells, and it was transferred to
normoxic cancer cells to promote their proliferation,
migration, and invasiveness by targeting LHX6 and
subsequently activating Wnt/beta-catenin signaling pathway
(108). LncRNA HMMR-AS1 was also increased in the hypoxic
exosomes from hepatocellular carcinoma cells, and could be
transferred to promote the M2 macrophages polarization and
promote the progression of HCC (112). In addition to
hepatocellular carcinoma cells, hypoxic tumor exosomes can
also be uptaken by HUVECs. It was reported that hypoxia
upregulated the miR-155 and miR23a in the hepatocellular
carcinoma secreted exosomes. Such exosomes remarkably
enhanced tube formation of HUVECs, indicating its facilitating
role in promoting angiogenesis in hepatocellular carcinoma
(109, 110).

Hypoxia induced significant upregulation of a series of
miRNAs in exosomes isolated from oesophageal squamous cell
carcinoma (OSCC) cell lines, among which miR-340-5p was
reported to be transferred to normoxic OSCC cells through
hypoxic exosomes. Such hypoxic exosomes alleviated
radiation-induced apoptosis and accelerated DNA damage
repair, leading to radioresistance (104). Besides miRNA, hsa-
circ-0048117 rich exosomes were also generated in the hypoxic
microenvironment in OSCC. Exosomal hsa-circ-0048117 could
be transmitted to macrophages to promote M2 polarization and
M2 macrophages could enhance the ability of invasion and
migration of tumor cells (105). It was reported that hypoxic
exosomes derived from esophageal squamous cell carcinoma
cells had stronger effects than normoxic exosomes both in vitro
and in vivo. Hypoxic exosomes which contains altered gene
information had better effects in promoting proliferation,
migration, invasion and tube formation of HUVECs than
normoxic exosomes. And hypoxic exosomes also significantly
promoted the tumor growth and lung metastasis in nude mice
(115). Hypoxic tumor derived exosomes were also reported to
influence tumor immune microenvironment. It was reported
that the OSCC cell lines: Cal-27 and SCC-9 secreted hypoxic
exosomes which contain miR-21 and such exosomes were
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transferred to myeloid-derived suppressor cells (MDSCs),
promoting its suprressive effect on gammadelta T cells,
eventually affecting the anti-and pro-tumoral equilibrium (114).

In oral squamous cell carcinoma cells, a hypoxic
microenvironment promoted the enrichment of miR-21 in its
secreted exosomes. These exosomes were delivered to normoxic
cel ls and promoted metastat ic behaviors (113) . In
nasopharyngeal carcinoma, hypoxic adipocyte-derived
exosomes transferred low expression of miR-433-3p into
cancer cells, promoting proliferation, migration, and lipid
accumulation in cancer cells (107). In many cases, HIF was
involved in the pathological process of tumor malignant
behaviors. Hypoxic cancer cell derived exosomes can enhance
the metastases in a HIF-1a dependent manner. HIF-1a
stimulated MMPs expression to affect cell migration and
invasion (106). In gastric cancer, hypoxia promoted miR-301a-
3p expression in a HIF-a dependent manner and exosomes
released from cancer cells were also increased in the hypoxic
tumor microenvironment. The miR-301a-3p enriched exosomes
were transmitted among gastric cancer cells, eventually leading
to cancer cell proliferation, invasion, migration, and epithelial-
mesenchymal transition (116).

In many cell types, hypoxia induced the change of RNA and
proteins components in cells and such changes were also
reflected in hypoxic exosomes (122). In papillary thyroid
cancer, hypoxia promoted both the expression of miR-181a in
cancer cells and the secretion of miR-181a enriched exosomes
from cancer cells. Human umbilical vein endothelial cells
(HUVECs) which uptake such exosomes exhibited enhanced
proliferation and capillary-like network formation, contributing
to tumor angiogenesis (117). In skin carcinoma A431 cells,
hypoxia induced the expression of proteins involved in
angiogenesis, focal adhesion, extracellular matrix-receptor
interaction, and immune cell recruitment. These proteins were
encapsulated into exosomes and facilitated angiogenesis and
metastasis in the microenvironment (118). In melanoma cells,
hypoxia induced the upregulation of 15 miRNAs and
downregulation of 3 miRNAs in exosomes derived from cancer
cells through miRNA profile analysis (119). Co-culturing of
hypoxic exosomes derived from melanoma cells which
contained alternated miRNA profiles with THP1 macrophages
led to increased M1 markers (CXCL10 and IL6) in macrophages
(120). Hypoxia also upregulated the immunomodulatory
proteins and chemokines including CSF-1, CCL2, FTH, FTL,
and TGFbeta in exosomes from mouse melanoma B16-F0 cells,
and such exosomes promoted M2-like polarization of
macrophages. And the upregulated miRNA let-7a in hypoxic
exosomes enhanced oxidative phosphorylation in macrophages
(121). In Ewing’s sarcoma (EWS), hypoxic cancer cells secreted
miR-210 enriched exosomes to normoxic cancer cells, leading to
promoted sphere formation by targeting the proapoptotic
protein CASP8AP2 (123). In multiple myeloma, hypoxia
upregulated the expression of miR-1305 in cancer cell secreted
exosomes, thus the cellular miR-1305 decreased and its target
genes increased, eventually promoting the oncogenic activity of
multiple myeloma cells. On the other hand, macrophages
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uptaken the miR-1305 containing exosomes and exhibited
tumor-promoting, M2-macrophage phenotypes (124). miR-
135b was also reported to be increased by hypoxia in the
exosomes derived from multiple myeloma cells. Such exosomes
enhanced endothelial tube formation under hypoxia (125). To
conclude, hypoxia increase the release of exosomes from
malignant cells and the content of exosomes changed under
low oxygen tension, which induce recipient cells to alter gene
expression and eventually promote tumor progression.
HYPOXIC EXOSOMES IN CARDIOLOGY

Cardioprotective Effect of
Hypoxic Exosomes
Under hypoxia, a series of miRNA were encapsulated into the
exosomes and transferred to recipient cells to exhibit
cardioprotective effects. A series of cardioprotective miRNAs,
including miR-21-5p, miR-378-3p, miR-152-3p, and let-7i-5p
were identified in hypoxic exosomes derived from cardiomyocyte
H9c2 cells. These anti-apoptotic miRNAs mitigate hypoxia-
induced H9c2 cells apoptosis (126). In contrast to these
miRNAs, lncRNA HCG15 in the exosomes derived from
hypoxic cardiomyocytes led to increased apoptosis, reduced
proliferation, and release of inflammatory factors (136).
Hypoxia also promoted the accumulation of TGF-beta in
exosomes from cardiomyocyte H9c2 cells, and such exosomes
could be taken up by RAW264.7 cells and induce the polarization
of macrophages and reduce the apoptosis of cardiomyocytes
(135). There were large amounts of studies that investigated
exosomes derived from mesenchymal stem cells, such exosomes
exhibited protective effects in cardiac injury and many miRNAs
were reported to be encapsulated in exosome cargo. Especially,
exosomes derived from hypoxia pretreated bone marrow-derived
mesenchymal stem cells (BMSCs) were able to improve the
cardiac function, reduce the infarct size and enhance the
angiogenesis of the infarcted hearts (141). miR-98-5p was
upregulated by hypoxia in exosomes derived from BMSCs and
injection of such exosomes to rats with myocardial ischemia-
reperfusion injury improved the cardiac function by targeting
TRL4 and activating PI3K/AKT signaling pathway (149). miR-24
in exosomes derived from BMSCs was also upregulated by
hypoxia, and such exosomes decreased the apoptosis rate of
H9c2 cells, reduced infarct sized and improved cardiac function
in acute myocardial infarction rats (150). miR-210 in exosomes
derived from mesenchymal stem cells was increased under
hypoxic culture, administration of such exosomes enhanced
cardiomyocyte survival to hypoxia in vitro, reduced infarct size
and improved heart function in vivo (151). Injecting such
hypoxic exosomes into the infarcted heart of C57BL/6 mouse
resulted in significantly higher survival, smaller scar size, and
better cardiac functions recovery. Hypoxic exosomes conferred
increased vascular density, lower cardiomyocytes apoptosis,
reduced fibrosis, and increased recruitment of cardiac
progenitor cells in the infarcted heart relative to exosomes
isolated from the same cell line cultured under normoxia
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(127). miR-125b-5p in the exosomes from mesenchymal stem
cells was also upregulated by hypoxia, adminstration of such
exosomes to mice with myocardial infarction suppressed the
expression of the proapoptotic genes p53 and BAK1 in
cardiomyocytes and exerted a marked cardioprotective
function post-infarction (154). Hypoxic exosomes derived from
human cardiosphere-derived cells also exhibited protective
effects in cardiomyocytes by inhibiting apoptosis (156).

Although most miRNAs were upregulated in hypoxic
exosomes, some miRNAs were enriched in normoxic exosomes
rather than hypoxic exosomes. miR-10b-5p was reported to be
downregulated in hypoxic exosomes derived from endothelial
colony forming cells compared to normoxic exosomes. Due to a
reduction of miR-10b-5p, which targets the fibrotic genes Smurf1
and HDAC4, the anti-fibrotic effects of exosomes were abolished
(128). Besides continuous hypoxia, intermittent hypoxia also alters
endothelial cell derived exosome cargo, including has-mir-383-3p,
and such exosomes promote increased permeability and
dysfunction of endothelial cells, contributing to cardiovascular
dysfunction (129). Apart from miRNAs, lncRNA and cirRNA are
also important non-coding RNAs that are induced and transferred
through hypoxic exosomes. LncRNA-UCA1 is elevated both
in myocardial infarction patients and exosomes derived
from hypoxic culturing mesenchymal stem cells (hMSCs).
Intramyocardial injection of lncRNA-UCA1 containing
exosomes to rats with myocardial infarction demonstrated that
hypoxic exosomes had a better cardioprotection effect than
normoxic exosomes (130). lncRNA-MALAT1 was increased by
hypoxia in exosomes from human adipose-derived mesenchymal
stem cells, such exosomes functioned as competing endogenous
RNAs (ceRNAs) binding to miR-92a-3p to protect cardiomyocyte
from doxorubicin (Dox) induced cardiac damage (152). CirRNA
is also involved in cardioprotective effects. circHIPK3 expression
was found to be significantly upregulated in hypoxic exosomes
compared to normoxic exosomes. Such circHIPK3 encapsulated
exosomes were transferred from cardiomyocytes to cardiac
microvascular endothelial cells (CMVECs). Leading to promoted
endothelial cell migration, proliferation, and tube formation in
vitro, and can effectively reduce the infarct area and promote
angiogenesis in the border surrounding the infarcted area in
myocardial infarction mice (132). Hypoxia also upregulated a
series of proteins, like vascular endothelial growth factor (VEGF),
epidermal growth factor (EGF), fibroblast growth factor (FGF)
and their receptors (VEGF-R2, VEGF-R3), and monocyte
chemoattractant protein 2 (MCP-2), monocyte chemoattractant
protein 4 (MCP-4) in the exosomes derived from adipose
mesenchymal stem cells, administration of such hypoxic
exosomes promoted proliferation, migration, and tube-
formation capability of HUVECs, and also improved
neovascularization around the graft in the nude mice model of
fat grafting (153).

In addition to protective effects, the hypoxia augmented
miRNA in exosomes can also be harmful in some cases. MiR-
30a was highly enriched in exosomes either from the culture
medium of cardiomyocytes after hypoxic stimulation in vitro or
the serum of acute myocardial infarction (AMI) patients in vivo.
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The miR-30a enriched exosomes were regulated by HIF-a and
were efficiently transferred between cardiomyocytes in an
autocrine manner after hypoxia. But miR-30a inhibits the
expression of core autophagy regulators, which are beneficial
in ischemic heart disease. Inhibition of such exosomes release or
inhibition of miR-30a was considered a promising treatment
strategy in AMI (133). miR-222 was also reported to be
transferred under hypoxic culture from M1-type macrophages
to bone marrow mesenchymal stem cells, and co-culturing with
such exosomes led to decreased cell viability, migration and
increased apoptosis in the recipient cells, such effects were partly
abolished by the exosome secretion inhibitor GM4869. Similarly,
lncRNA AK139128 was also increased in hypoxia and played a
negative role. Cardiomyocyte derived exosomal which contained
lncRNA AK139128 promoted apoptosis and inhibited
proliferation, migration, and invasion in cardiac fibroblasts.
Such exosomes could also exacerbate myocardial infarction in
the rat model (134).

Hypoxic Exosomes Promote Angiogenesis
in Cardiology
Upon hypoxia, exosomes and microvesicles released by bone
marrow mesenchymal stem cells (MSCs) were easily taken up by
human umbilical vein endothelial cells (HUVECs), which led to
promoted angiogenesis and improved cardiac function in
infarction attack (137). The total amount of proteins secreted
from exosomes increased by 3-4 folds under hypoxic conditions
(138). Overexpressing HIF-1a in MSCs led to an increased
angiogenic capacity mediated by its secreted exosomes (139).
High mobility group box 1 protein (HMGB1) was induced by
hypoxia in MSCs derived exosomes. Exosomal HMGB1
transferred to HUVECs activated JNK signaling and induced
HIF-1a dependent VEGF expression, eventually led to enhanced
angiogenesis (140). Compared with normoxia, hypoxic
exosomes were more easily to be taken up by HUVECs and
their angiogenesis stimulatory activity was also significantly
enhanced. The expression of vascular endothelial growth factor
(VEGF) and activation of the protein kinase A (PKA) signaling
pathway in HUVECs was significantly increased by hypoxia-
exposed exosomes (142). Besides, HUVECs also uptaken
exosomes derived from hypoxic culturing human cardiosphere
derived cells and exhibited enhanced tube formation. Pro-
angiogenic exosomal miRNAs including miR-126, miR-130a,
and miR-210 showed a substantial increase in the hypoxic
exosomes compared to normoxic exosomes (143).

Besides bone marrow meschmenal stem cells, cardiac
progenitor cells (CPCs), and other stem cell types were also
attractive candidates for the treatment of myocardial infarction,
however, the role of exosomes in the treatment remains unclear.
Recent research shows that upon hypoxia, exosomes secreted by
cardiac progenitor cells enhanced tube formation of endothelial
cells and decreased profibrotic gene expression in TGF-b-
stimulated fibroblasts. Microarray analysis identified 11
miRNAs that were upregulated in hypoxic exosomes compared
with normoxic exosomes. Hypoxic exosomes improved cardiac
function and reduced fibrosis (144). In research involving
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different degrees of hypoxia, human CPCs were cultured under
normoxia (21% O2), physoxia (5% O2), and hypoxia (1% O2)
conditions. As a result, the release of exosomes under physoxia
increased 1.6 folds and significantly increased tube formation
compared to normoxia and hypoxia (145). Interestingly,
exosomes secreted by endothelial cells cultured under hypoxia
can be taken up by CPCs, giving them increased tolerance when
subjected to in vitro hypoxic stress. These exosomes overexpress
HIF1 and have higher contents of miR-126 and miR-210 which
activated prosurvival kinases and induced a glycolytic switch in
recipient cells (146). These studies revealed close crosstalk
between cardiac progenitor cells and endothelial cells via
exosomes. For stem cell derived exosomes, the stemness of the
cell is crucial for the treatment effect. In research evaluating the
effect of donor’s age and hypoxia to exosomes, cardiac progenitor
cells secreted exosomes from older children were reparative only
when subjected to hypoxic conditions (193).
HYPOXIC EXOSOMES IN
NON-MALIGNANT DISEASE
FROM DIFFERENT SYSTEMS

Besides cardiovascular system, hypoxic exosomes also play a
comprehensive role in diseases from other systems. A wide range
of donor units and recipient units are involved, and various
biological effects are induced (Figure 3).

Neuron System
In the neuron system, different hypoxic exosomal content has
been reported and they play a neuron protective role from
different perspectives. Amyloid-b (Ab), which is related to the
pathogenesis of Alzheimer’s disease, was accumulated during a
hypoxic environment. Hypoxia increased the level of Ab40 and
Ab42 in human neuroblastoma SH-SY5Y cells derived exosomes
and such exosomes promote amyloids propagation (161).
Hypoxia also increased Amyloid-beta (Ab) both in the
extracellular and exosomes of HEK293, which aggravated
Alzheimer’s disease (AD) (165). Prion protein in astrocytes is a
sensor for oxidative stress and mediates beneficial cellular
responses. Under hypoxic and ischemic conditions, the release
of exosomes carrying enriched prion protein and other
molecules led to improved survival of neurons (158). The
expression of NLRP3, ASC, Caspase-1, GSDMD-N, cleaved IL-
1b and IL-18 were decreased in neuron cells after taking up bone
marrow mesenchymal stromal cells-derived exosomes. Hypoxic
exosomes had more significant effects to decrease these
molecules, and exhibited a more pronounced neuroprotective
effect against oxygen-glucose deprivation injury (159). MiR-21
was also reported to be increased by hypoxia in exosomes derived
from mesenchymal stromal cells and mediated the improvement
of neurologic conditions. And hypoxic exosomes were
demonstrated to have better effects than normoxic exosomes to
ameliorate cognitive decline in APP/PS1 mice by rescuing
synaptic dysfunction and regulating inflammatory responses
(160). miR-92b-3p was reported to be upregulated in exosomes
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derived from oxygen-glucose deprivated (OGD) astrocytes, such
exosomes could be uptaken by neurons and attenuated OGD-
induced neuron death and apoptosis (166). miR-499a-5p that
was encapsulated into exosomes from hypoxic adipose tissue-
derived stromal cells (ADSCs) reduced neuronal apoptosis after
oxygen-glucose deprivation and reperfusion (OGD/R) in vitro,
and relieved the damage of rats with spinal cord injury (SCI) in
vivo (163).

Apart from the protective role, hypoxic exosomal content can
be harmful as well. MiR-424-5p was upregulated in the exosomes
derived from oxygen-glucose deprivation activated microglia.
Such exosomes induced significant cell damage and permeability
of microvascular endothelial cells. This interpreted how
microglia secreted exosomes participate in neurovascular unit
injury under the ischemic and hypoxic state (162). miR-210 was
upregulated by hypoxia in exosomes from neural stem/
progenitor cells, but high levels of miR-210 inhibited the cell
viability of recipient neural stem/progenitor cells (164).

Respiratory System
Hypoxia is a broad accepted factor to induce vascular remodeling
and the development of pulmonary hypertension. Hypoxic
exosomes from different donor cells play a different role in this
process. Hypoxia and inflammation could induce pulmonary
artery endothelial cells (PAECs) to release exosomes. These
exosomes were involved in overproliferation and apoptosis
resistance in pulmonary arterial smooth muscle cells (PASMCs),
by which they may contribute to the pathogenesis of pulmonary
hypertension (169). In contrast, hypoxia can also induce PASMCs
to release exosomes and the exosomes were transferred to PAECs
in a paracrine manner, affecting the migration and apoptosis of
PAECs, then promoting the development of pulmonary arterial
hypertension (168). Exosomes transferred between PAECs and
PASMCs promoted the development of pulmonary hypertension
while exosomes derived from mesenchymal stromal cells
prevented the development of pulmonary hypertension. Hypoxic
mesenchymal stromal cells derived exosomes exerted a pleiotropic
protective effect on the lung and inhibit hypoxic pulmonary
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hypertension through suppression of hyperproliferative
pathways, including STAT-3 mediated signaling induced by
hypoxia (2).

Hematology System
Hypoxia enhanced the package of miRNA and protein in exosomes
derived from hematology system and such exosomes could be taken
up by endothelial cells and leading to enhanced tube formation, or
they could be taken up by other hematology cells and promoting
further differentiation. Compared to normoxia, hypoxia
significantly upregulated a subset of miRNAs, including miR-210,
in exosomes derived from human leukemia cells. Coculturing such
exosomes with HUVECs remarkably enhanced tube formation by
HUVECs compared with exosomes produced in normoxic
conditions (171). MiR-486 was also upregulated by hypoxia both
in intracellular space and in the secreted exosomes of
erythroleukemia TF-1 cells. Exosomal miR-486 played critical
roles in regulating the hypoxia-induced erythroid differentiation
of hematopoietic cells (170). Hypoxia also upregulated the the
Jagged-1 (Notch ligand) in the exosomes from mesenchymal stem
cells, and co-culture such exosomes with hematopoietic stem cells
(HSCs) enhanced the proliferation, increased the self-renewal
capacity, quiescence, and clonogenic potential of HSCs (172).

Endocrine System
Hypoxic exosomes play a bilateral role in diabetic disease. On
one hand, hypoxic exosomes led to insulin resistance in some
cases. Exosomes isolated from sleep fragmentation and
intermittent hypoxia exposed mice induced attenuated p-AKT/
total AKT responses to exogenous insulin, leading to insulin
resistance in adipocytes (3). On the other hand, hypoxic
exosomes internalized miRNA or lncRNA to exert a protective
role in diabetic disease. Compared to normoxia, miR-21-3p,
miR-126-5p, miR-31-5p were significantly upregulated while
miR-99b and miR-146-a were significantly downregulated in
hypoxic exosomes derived from adipose stem cells. Hypoxic
exosomes exhibited significantly better effects in promoting
wound healing than normoxic exosomes when they were
FIGURE 3 | The function of hypoxic exosomes in non-malignant diseases. A summary of donor units, recipient units, and biological effects in different systems. Each
box briefly summarizes the corresponding contents from different systems, they don’t relate to each other line to line. Specific relationship among the donor units,
recipient units, and biological effects can be found in Table 1 and in the body text.
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injected into diabetic mice (173). miR-125b was also upregulated
by hypoxia in the exosomes from umbilical cord-derived
mesenchymal stem cells (ucMSCs), such exosomes can be
taken up by endothelial cells and promoted cell proliferation,
migration, inhibited apoptosis, and accelerated wound healing by
targeting and suppressing the tumor protein p53 inducible
nuclear protein 1 (TP53INP1) (175). In addition, it was
reported that hypoxia upregulated circEhmt1 both in pericytes
and its secreted exosomes. CircEhmt1 that were encapsulated
into exosomes were transmitted to endotheliocytes, protecting
endotheliocytes against high glucose induced injury (174). In
another word, hypoxic exosomes mediated impaired insulin
sensitivity in the intermittent hypoxia process.

Urinary System
In the urinary system, hypoxia did not change the average size of
exosomes secreted by rat renal proximal tubular cells, but
significantly increased exosome production in a time-
dependent manner. HIF-1 induction also promoted exosome
secretion, pharmacological and genetic suppression of HIF-1
abrogated the increase of exosome secretion under hypoxia
(194). Many miRNAs were reported to be encapsulated in the
exosomes from tubular epithelial cells and exhibited renal
protective effects both in vivo and in vitro. Hypoxia induced
the enrichment of miR-20a-5p in exosomes from renal tubular
epithelial cells. Such exosomes were protective in acute tubular
injury by promoting tubular epithelial cells proliferation and
improving mitochondrial functions (176). Hypoxia increased the
miR-21 both in tubular epithelial cells and in the exosomes of
bone marrow-derived dendritic cells. And it was postulated that
the upregulated miR-21 of tubular epithelial cells promoted
dentritic cell maturation (177). Hypoxia upregulated the miR-
150-5p in the exosomes from rat renal tubular epithelium cells
(NRK-52E), such exosomes could activate rat kidney fibroblasts
(NRK-49F), and injection of such exosomes alleviated renal
fibrosis in rats with unilateral ischemia reperfusion injury
(178). Hypoxia also upregulated the miR-21 in the exosomes
from myotubes C2C12 cells, and such exosomes protected renal
tubes from sepsis-induced kidney injury (157). In addition to
tubular epithelial cells, exosomes from epithelial cells were also
more active under hypoxia. Hypoxia promoted epithelial cells to
produce an increased number of exosomes containing TGF-b1
mRNA, to activate fibroblasts, contributing to fibrosis that
involved in the pathology of hypoxia induced kidney injury
(4). Hypoxia upregulated the lysyl oxidase family member lysyl
oxidase-like 2 (LOXL2) in the exosomes from endothelial cells,
and such exosomes mediated extracellular matrix crosslink and
remodelling (179).

Reproductive System
Different degree of hypoxia has different impacts on exosome
contents. Compared to the controls (8% O2), exosomes released
from placental mesenchymal stem cells increased by 3.3 folds in
1% O2 and 6.7 folds in 3% O2 respectively. Such changes may
contribute to placental vascular adaptation to low oxygen tension
under both physiological and pathological conditions (180).
Similarly, in endometrial stromal cells, the secretion of exosomes
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cultured at 1% O2 was increased by about 3.6 folds compared with
8% O2. Mass spectrometry analysis identified 128 proteins unique
to exosomes produced at 1% O2 compared with only 46 proteins
unique to those produced at 8% O2. Differential production of
proteins was associated with different specific biological processes
(181). It was reported that hypoxic cytotrophoblast derived
exosomes promoted extravillous trophoblasts’ invasion and
proliferation (5). Implying the mechanism of hypoxic placenta
contributing to the pathophysiology of preeclampsia. Besides
proteins encapsulated in hypoxic exosomes, hypoxic exosomal
miRNA may also contribute to the pathogenesis of preeclampsia.
The level of circulating exosomal total-miRNA and the hypoxia
sensitive hsa-miR-210 was elevated in preeclampsia and it was
higher in the severe form. Hsa-miR-210 was secreted via
exosomes, which may play a role in the pathomechanism of the
disease (195).

Skeletomuscular System
In the skeletomuscular system, hypoxic exosomes play an
important role to promote angiogenesis and injury recovery
in different joint damage. In the spinal cord injury model,
hypoxia resulted in an enrichment of miR-216a-5p in the
exosomes from mesenchymal stem cells (MSCs). Hypoxic
exosomes promoted functional behavioral recovery by shifting
microglial polarization from M1 to M2 phenotype in vivo and in
vitro (182). LncGm37494 was also reported to be upregulated
by hypoxia in the exosomes from adipose tissue-derived
mesenchymal stem/stromal cells, and such hypoxic exosomes
were more effective than normoxic exosomes in repairing spinal
cord injury (189). In spinal cord angiogenesis, preconditioning
pericyte with hypoxia mimic and coculture it with endothelial cells
resulted in faster wound healing, greater endothelial cord
formation, and greater vascular density in the spinal cord tissue.
Exosome secretion and the physical presence of stimulated
pericytes were necessary for the promotion of angiogenic
outcomes (188). In a research of bone fracture healing, hypoxia
enhanced the production of exosomal miR-126 through the
activation of HIF-1a. Such exosomes were transferred to
HUVECs and promoted angiogenesis, proliferation, and
migration in vitro. In vivo experiments demonstrated that
hypoxic exosome administration promoted bone fracture
healing through exosomal miR-126 transfer (183). In rotator
cuff tendon injuries (RCTI), the hypoxic environment triggered
tenocytes and adjacent adipose-derived mesenchymal stem cells
(ADMSCs) to release exosomes to the extracellular matrix (ECM).
Tenocytes secreted exosomes encapsulated THSB1, NSEP1,
ITIH4, and TN-C. ADMSCs secreted exosomes encapsulated
MMP2, COL6A, CTSD, and TN-C. These proteins were
involved in multiple signaling pathways of ECM repair and
regeneration, protecting the tendon matrix from injury (184). In
the arthropathy of collagen-induced arthritis (CIA), hypoxia
upregulated the expression of miR-29a-3p and miR-93-5p in
exosomes derived from polymorphonuclear myeloid-derived
suppressor cells. Compared to normoxic exosomes, hypoxic
exosomes could inhibit the proliferation of CD4(+) T cells more
effectively. And the administration of hypoxic exosomes alleviated
mice with CIA more effectively (185). In steroid-induced
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osteonecrosis of the femoral head (ONFH) model, hypoxic
exosomes derived from bone marrow mesenchymal stem cells
(BMMSCs) exhibited better therapeutic effects in promoting
angiogenesis and preventing bone loss (186). In rheumatoid
arthritis, hypoxia induced the upregulation of miR-424 in
exosomes derived from synovial fibroblasts. Exosomal miR-424
could significantly induce T cells differentiation and contribute to
the aggravation of rheumatoid arthritis (187).
CONCLUSION

In many hypoxia related diseases, miRNAs have been reported
most to be internalized into exosomes under hypoxia. The
master regulator of oxygen homeostasis and a hypoxia
sensitive transcription factor HIF, has been reported to have
crosstalk with miRNA by many studies. HIF-1a/HIF-1b dimmer
can bind to the promoters of target miRNAs and regulate
extensive cellular processes, including proliferation, metastasis,
apoptosis, and drug resistance, etc. Also, tumor-related miRNAs
can modulate the activity of HIF-1a, and play a positive or
negative role in tumor development (196). Whether HIF
regulated miRNAs are more easily to be encapsulated into
exosomes and if there is crosstalk between HIF and other
lncRNAs, cirRNAs, proteins, and Lipids that internalized into
hypoxic exosomes still awaits further investigation.

As mentioned above, in various types of tumors and other
diseases, hypoxia not only increases the quantities of exosome
release but also alters the contents of exosomes. Since exosomes
are a crucial mediator of genetic, protein, and lipid information
carrier and transmitter, manipulating the release, degradation,
cargo sorting, and receiving of exosomes becomes a promising
strategy to interfere with disease development. In tumor
development, hypoxic tumor cells secret more exosomes, such
hypoxic exosomes disseminate the malignant information to
recipient cells, tissue, and organs, contributing to tumor
progression. Reducing exosomes release, promoting lysosome
degradation, inhibiting key factors encapsulating, or disrupting
exosomes uptaking could be a possible way to prevent the
invasion and metastasis of tumors. In fact, through high-
throughput screening, a series of inhibitors and activators of
exosomes biogenesis have been identified in prostate cancer cells
(197). And the mechanisms of how inhibitors function have been
well reviewed (198, 199). But targeting exosome donor cells
exploration, a broader range of cell line study and the in vivo
effects investigation is warranted. Vice versa, when exosomes are
beneficial, for example, exosomes derived from mesenchymal
stem cells play a cardioprotective role and promote angiogenesis
in acute myocardial infarction, and prevent the development of
pulmonary hypertension. Under such circumstances, facilitating
the secretion and function of exosomes is profitable for
improving health conditions. In fact, there are already attempt
to applying exosomes in cancer therapy. Reprocessing exosomes
that target immune cells to induce an immune response against
the tumor, as well as other infectious diseases has been
investigated by researchers (200). Such strategies were also
explored in several tumor types, including colorectal cancer,
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metastatic melanoma, and non-small cell lung cancer (201).
More research is needed to extend such kind of engineer for
disease control.

In addition, although the release of exosomes is increased
under hypoxia, there is also baseline release of exosomes under a
physiological state. In another word, almost all cell types within
the body produce exosomes and the mixed exosomes exist in
almost all intercellular space and body fluids. The increased
amount of exosome secretion and some specific encapsulated
markers make exosomes a potential biomarker for detecting
tumors. The closed and naturally biocompatible membrane
structure, stable circulation in the blood, and ability to cross
the blood-brain-barrier make exosomes ideal candidates to
deliver drugs or genes to target spots (202, 203). But how to
classify the exosomes, distinguish their parent cells, identify their
target cells remains less elucidated. More research is needed to
investigate the specific molecular markers of exosomes to
categorize them. Elucidating the specific mechanism of
exosomes network and function has great potential for deep
understanding and accurate interferer with disease progression.

To conclude, hypoxia increased the release of exosomes in tumor
development and other diseases. Donor cells grown in hypoxic
microenvironment release exosomes that encapsulate miRNA,
lncRNA, circRNA, mRNA, cytokines, and enzymes and transfer
them to recipient cells, tissue or, organs in an autocrine, paracrine,
or endocrine manner. Such exosomal transfer eventually leads to
promoted angiogenesis, tumor progression and metastasis, epithelial
meschemenal transition, metabolic waste disposal, immune
suppression, and chemoresistance in tumor development. In non-
malignant disease, hypoxic exosomes can lead to attenuated fibrosis,
altered cell proliferation/migration/apoptosis, autography and
inflammation inhibition, immune cell differentiation, insulin
resistance, injury recovery, and organ function improvement.
Understanding the biogenesis, sorting, and receiving of exosomes
provide new perspectives to interfere with the disease.
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GLOSSARY

HIFs Hypoxia Induced Factors
PHD prolyl hydroxylases
HREs hypoxia-responsive elements
ESCRT endosomal sorting complex required for transport
MDSCs myeloid-derived suppressor cells
GBM glioblastoma multiforme
IL-6 interleukin 6
RORA RAR-related orphan receptor alpha
PTEN phosphatase and tensin homolog
MCT1 monocarboxylate transporter 1
CD147 cluster of differentiation 147
OGD oxygen-glucose deprivation
EOC epithelial ovarian cancer
hMSCs human mesenchymal stem cells
NK natural killer
RCC renal cell carcinoma
TAM tumor-associated macrophages
ANGPTL4 angiopoietin-like 4
BMSCs bone marrow-derived mesenchymal stem cells
PTEN phosphatase and tensin homolog
LUAD lung adenocarcinoma
NSCLC non-small cell lung cancer
ROS reactive oxygen species
CRC colorectal cancer
OSCC oesophageal squamous cell carcinoma
HUVECs human umbilical vein endothelial cells
PSCs Pancreatic stellate cells
PC pancreatic cancer
OSCC oesophageal squamous cell carcinoma
MDSCs myeloid-derived suppressor cells
HUVECs Human umbilical vein endothelial cells

(Continued)
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Continued

EWS Ewing’s sarcoma
BMSCs bone marrow mesenchymal stem cells
ceRNAs competing endogenous RNAs
Dox doxorubicin
CMVECs cardiac microvascular endothelial cells
VEGF vascular endothelial growth factor
EGF epidermal growth factor
FGF fibroblast growth factor
MCP monocyte chemoattractant protein
AMI acute myocardial infarction
MSCs mesenchymal stem cells
HUVECs human umbilical vein endothelial cells
HMGB1 High mobility group box 1 protein
PKA protein kinase A
CPCs cardiac progenitor cells
Ab Amyloid-b
AD Alzheimer’s disease
PAECs pulmonary artery endothelial cells
PASMCs pulmonary arterial smooth muscle cells
HSCs hematopoietic stem cells
ucMSCs umbilical cord-derived mesenchymal stem cells
TP53INP1 tumor protein p53 inducible nuclear protein 1
LOXL2 lysyl oxidase-like 2
MSCs mesenchymal stem cells
RCTI rotator cuff tendon injuries
ADMSCs adjacent adipose-derived mesenchymal stem cells
ECM extracellular matrix
CIA collagen-induced arthritis
ONFH osteonecrosis of the femoral head
BMMSCs bone marrow mesenchymal stem cells
PDAC pancreatic ductal adenocarcinoma
PSCs pancreatic stellate cells
ADSCs adipose tissue-derived stromal cells
OGD/R oxygen-glucose deprivation and reperfusion
SCI spinal cord injury
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